Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 958
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 157(4): 771-3, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813603

RESUMEN

Techniques for profiling individual cells are rapidly advancing and are providing an unprecedented opportunity for studying the genetic regulation of development and disease. In this issue, Durruthy-Durruthy et al. analyze gene expression at the single-cell level for a simple but highly organized three-dimensional structure, the mouse otocyst.


Asunto(s)
Oído Interno/citología , Oído Interno/embriología , Células-Madre Neurales/citología , Análisis de la Célula Individual , Transcriptoma , Animales , Femenino , Masculino
2.
Cell ; 157(4): 964-78, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24768691

RESUMEN

The otocyst harbors progenitors for most cell types of the mature inner ear. Developmental lineage analyses and gene expression studies suggest that distinct progenitor populations are compartmentalized to discrete axial domains in the early otocyst. Here, we conducted highly parallel quantitative RT-PCR measurements on 382 individual cells from the developing otocyst and neuroblast lineages to assay 96 genes representing established otic markers, signaling-pathway-associated transcripts, and novel otic-specific genes. By applying multivariate cluster, principal component, and network analyses to the data matrix, we were able to readily distinguish the delaminating neuroblasts and to describe progressive states of gene expression in this population at single-cell resolution. It further established a three-dimensional model of the otocyst in which each individual cell can be precisely mapped into spatial expression domains. Our bioinformatic modeling revealed spatial dynamics of different signaling pathways active during early neuroblast development and prosensory domain specification.


Asunto(s)
Oído Interno/citología , Oído Interno/embriología , Células-Madre Neurales/citología , Análisis de la Célula Individual , Transcriptoma , Animales , Embrión de Mamíferos/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Análisis de Componente Principal
3.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38804528

RESUMEN

The planar polarized organization of hair cells in the vestibular maculae is unique because these sensory organs contain two groups of cells with oppositely oriented stereociliary bundles that meet at a line of polarity reversal (LPR). EMX2 is a transcription factor expressed by one hair cell group that reverses the orientation of their bundles, thereby forming the LPR. We generated Emx2-CreERt2 transgenic mice for genetic lineage tracing and demonstrate Emx2 expression before hair cell specification when the nascent utricle and saccule constitute a continuous prosensory domain. Precursors labeled by Emx2-CreERt2 at this stage give rise to hair cells located along one side of the LPR in the mature utricle or saccule, indicating that this boundary is first established in the prosensory domain. Consistent with this, Emx2-CreERt2 lineage tracing in Dreher mutants, where the utricle and saccule fail to segregate, labels a continuous field of cells along one side of a fused utriculo-saccular-cochlear organ. These observations reveal that LPR positioning is pre-determined in the developing prosensory domain, and that EMX2 expression defines lineages of hair cells with oppositely oriented stereociliary bundles.


Asunto(s)
Linaje de la Célula , Polaridad Celular , Oído Interno , Proteínas de Homeodominio , Ratones Transgénicos , Factores de Transcripción , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Ratones , Linaje de la Célula/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Oído Interno/metabolismo , Oído Interno/embriología , Oído Interno/citología , Polaridad Celular/genética , Sáculo y Utrículo/citología , Sáculo y Utrículo/metabolismo , Sáculo y Utrículo/embriología , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citología
4.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682291

RESUMEN

The planar polarized organization of hair cells in the vestibular maculae is unique because these sensory organs contain two groups of cells with oppositely oriented stereociliary bundles that meet at a line of polarity reversal (LPR). EMX2 is a transcription factor expressed by one hair cell group that reverses the orientation of their bundles, thereby forming the LPR. We generated Emx2-CreERt2 transgenic mice for genetic lineage tracing and demonstrate Emx2 expression before hair cell specification when the nascent utricle and saccule constitute a continuous prosensory domain. Precursors labeled by Emx2-CreERt2 at this stage give rise to hair cells located along one side of the LPR in the mature utricle or saccule, indicating that this boundary is first established in the prosensory domain. Consistent with this, Emx2-CreERt2 lineage tracing in Dreher mutants, where the utricle and saccule fail to segregate, labels a continuous field of cells along one side of a fused utriculo-saccular-cochlear organ. These observations reveal that LPR positioning is pre-determined in the developing prosensory domain, and that EMX2 expression defines lineages of hair cells with oppositely oriented stereociliary bundles.


Asunto(s)
Linaje de la Célula , Polaridad Celular , Oído Interno , Proteínas de Homeodominio , Ratones Transgénicos , Factores de Transcripción , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Ratones , Linaje de la Célula/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Oído Interno/metabolismo , Oído Interno/embriología , Oído Interno/citología , Polaridad Celular/genética , Sáculo y Utrículo/citología , Sáculo y Utrículo/metabolismo , Sáculo y Utrículo/embriología , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citología
5.
Proc Natl Acad Sci U S A ; 119(28): e2118938119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867760

RESUMEN

The vertebrate inner ear arises from a pool of progenitors with the potential to contribute to all the sense organs and cranial ganglia in the head. Here, we explore the molecular mechanisms that control ear specification from these precursors. Using a multiomics approach combined with loss-of-function experiments, we identify a core transcriptional circuit that imparts ear identity, along with a genome-wide characterization of noncoding elements that integrate this information. This analysis places the transcription factor Sox8 at the top of the ear determination network. Introducing Sox8 into the cranial ectoderm not only converts non-ear cells into ear progenitors but also activates the cellular programs for ear morphogenesis and neurogenesis. Thus, Sox8 has the unique ability to remodel transcriptional networks in the cranial ectoderm toward ear identity.


Asunto(s)
Oído Interno , Ectodermo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción SOXE , Animales , Oído Interno/embriología , Ectodermo/embriología , Factores de Transcripción SOXE/fisiología , Cráneo , Vertebrados/embriología
6.
Development ; 148(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33795231

RESUMEN

All epithelial components of the inner ear, including sensory hair cells and innervating afferent neurons, arise by patterning and differentiation of epithelial progenitors residing in a simple sphere, the otocyst. Here, we identify the transcriptional repressors TBX2 and TBX3 as novel regulators of these processes in the mouse. Ablation of Tbx2 from the otocyst led to cochlear hypoplasia, whereas loss of Tbx3 was associated with vestibular malformations. The loss of function of both genes (Tbx2/3cDKO) prevented inner ear morphogenesis at midgestation, resulting in indiscernible cochlear and vestibular structures at birth. Morphogenetic impairment occurred concomitantly with increased apoptosis in ventral and lateral regions of Tbx2/3cDKO otocysts around E10.5. Expression analyses revealed partly disturbed regionalisation, and a posterior-ventral expansion of the neurogenic domain in Tbx2/3cDKO otocysts at this stage. We provide evidence that repression of FGF signalling by TBX2 is important to restrict neurogenesis to the anterior-ventral otocyst and implicate another T-box factor, TBX1, as a crucial mediator in this regulatory network.


Asunto(s)
Apoptosis , Oído Interno/embriología , Regulación del Desarrollo de la Expresión Génica , Organogénesis , Transducción de Señal , Proteínas de Dominio T Box/biosíntesis , Animales , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones , Ratones Noqueados , Proteínas de Dominio T Box/genética
7.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34414417

RESUMEN

Branchio-oto-renal syndrome (BOR) is a disorder characterized by hearing loss, and craniofacial and/or renal defects. Variants in the transcription factor Six1 and its co-factor Eya1, both of which are required for otic development, are linked to BOR. We previously identified Sobp as a potential Six1 co-factor, and SOBP variants in mouse and humans cause otic phenotypes; therefore, we asked whether Sobp interacts with Six1 and thereby may contribute to BOR. Co-immunoprecipitation and immunofluorescence experiments demonstrate that Sobp binds to and colocalizes with Six1 in the cell nucleus. Luciferase assays show that Sobp interferes with the transcriptional activation of Six1+Eya1 target genes. Experiments in Xenopus embryos that either knock down or increase expression of Sobp show that it is required for formation of ectodermal domains at neural plate stages. In addition, altering Sobp levels disrupts otic vesicle development and causes craniofacial cartilage defects. Expression of Xenopus Sobp containing the human variant disrupts the pre-placodal ectoderm similar to full-length Sobp, but other changes are distinct. These results indicate that Sobp modifies Six1 function and is required for vertebrate craniofacial development, and identify Sobp as a potential candidate gene for BOR.


Asunto(s)
Desarrollo Óseo , Proteínas de Homeodominio/metabolismo , Metaloproteínas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Síndrome Branquio Oto Renal/embriología , Síndrome Branquio Oto Renal/genética , Núcleo Celular/metabolismo , Oído Interno/embriología , Oído Interno/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Expresión Génica , Proteínas de Homeodominio/genética , Larva/crecimiento & desarrollo , Metaloproteínas/genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Proteínas Tirosina Fosfatasas/metabolismo , Activación Transcripcional , Proteínas de Xenopus/genética , Xenopus laevis
8.
Dev Biol ; 471: 65-75, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33316259

RESUMEN

The function of the inner ear depends on the maintenance of high concentrations of K+ ions. The slow-inactivating delayed rectifier Kv2.1/KCNB1 channel works in the inner ear in mammals. The kcnb1 gene is expressed in the otic vesicle of developing zebrafish, suggesting its role in development of the inner ear. In the present study, we found that a Kcnb1 loss-of-function mutation affected development of the inner ear at multiple levels, including otic vesicle expansion, otolith formation, and the proliferation and differentiation of mechanosensory cells. This resulted in defects of kinocilia and stereocilia and abnormal function of the inner ear detected by behavioral assays. The quantitative transcriptional analysis of 75 genes demonstrated that the kcnb1 mutation affected the transcription of genes that are involved in K+ metabolism, cell proliferation, cilia development, and intracellular protein trafficking. These results demonstrate a role for Kv2.1/Kcnb1 channels in development of the inner ear in zebrafish.


Asunto(s)
Proliferación Celular , Oído Interno/embriología , Mecanotransducción Celular , Canales de Potasio con Entrada de Voltaje/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Cilios/genética , Cilios/metabolismo , Mutación con Pérdida de Función , Canales de Potasio con Entrada de Voltaje/genética , Transporte de Proteínas/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Dev Biol ; 469: 160-171, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131705

RESUMEN

The inner ear comprises four epithelial domains: the cochlea, vestibule, semicircular canals, and endolymphatic duct/sac. These structures are segregated at embryonic day 13.5 (E13.5). However, these four anatomical structures remain undefined at E10.5. Here, we aimed to identify lineage-specific genes in the early developing inner ear using published data obtained from single-cell RNA-sequencing (scRNA-seq) of embryonic mice. We downloaded 5000 single-cell transcriptome data, named 'auditory epithelial trajectory', from the Mouse Organogenesis Cell Atlas. The dataset was supposed to include otic epithelial cells at E9.5-13.5. We projected the 5000 â€‹cells onto a two-dimensional space encoding the transcriptional state and visualised the pattern of otic epithelial cell differentiation. We identified 15 clusters, which were annotated as one of the four components of the inner ear epithelium using known genes that characterise the four different tissues. Additionally, we classified 15 clusters into sub-regions of the four inner ear components. By comparing transcriptomes between these 15 clusters, we identified several candidates of lineage-specific genes. Characterising these new candidate genes will help future studies about inner ear development.


Asunto(s)
Oído Interno/embriología , Oído Interno/metabolismo , Animales , Diferenciación Celular/genética , Cóclea/metabolismo , Simulación por Computador , Oído Interno/citología , Embrión de Mamíferos/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Hibridación in Situ , Ratones , Ratones Endogámicos ICR , ARN Mensajero/metabolismo , RNA-Seq , Análisis de la Célula Individual , Vestíbulo del Laberinto/metabolismo
10.
Development ; 146(4)2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30718289

RESUMEN

USP22, a component of the SAGA complex, is overexpressed in highly aggressive cancers, but the normal functions of this deubiquitinase are not well defined. We determined that loss of USP22 in mice results in embryonic lethality due to defects in extra-embryonic placental tissues and failure to establish proper vascular interactions with the maternal circulatory system. These phenotypes arise from abnormal gene expression patterns that reflect defective kinase signaling, including TGFß and several receptor tyrosine kinase pathways. USP22 deletion in endothelial cells and pericytes that are induced from embryonic stem cells also hinders these signaling cascades, with detrimental effects on cell survival and differentiation as well as on the ability to form vessels. Our findings provide new insights into the functions of USP22 during development that may offer clues to its role in disease states.


Asunto(s)
Endopeptidasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Placenta/metabolismo , Transducción de Señal , Animales , Sistema Cardiovascular/metabolismo , Diferenciación Celular , Supervivencia Celular , Membrana Corioalantoides/metabolismo , Oído Interno/embriología , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Ratones , Fenotipo , Embarazo , Procesamiento Proteico-Postraduccional , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ubiquitina Tiolesterasa
11.
Development ; 146(13)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31152002

RESUMEN

The transcription factor sex determining region Y-box 2 (SOX2) is required for the formation of hair cells and supporting cells in the inner ear and is a widely used sensory marker. Paradoxically, we demonstrate via fate mapping that, initially, SOX2 primarily marks nonsensory progenitors in the mouse cochlea, and is not specific to all sensory regions until late otic vesicle stages. SOX2 fate mapping reveals an apical-to-basal gradient of SOX2 expression in the sensory region of the cochlea, reflecting the pattern of cell cycle exit. To understand SOX2 function, we undertook a timed-deletion approach, revealing that early loss of SOX2 severely impaired morphological development of the ear, whereas later deletions resulted in sensory disruptions. During otocyst stages, SOX2 shifted dramatically from a lateral to medial domain over 24-48 h, reflecting the nonsensory-to-sensory switch observed by fate mapping. Early loss or gain of SOX2 function led to changes in otic epithelial volume and progenitor proliferation, impacting growth and morphological development of the ear. Our study demonstrates a novel role for SOX2 in early otic morphological development, and provides insights into the temporal and spatial patterns of sensory specification in the inner ear.


Asunto(s)
Cóclea/embriología , Oído Interno/embriología , Células Ciliadas Auditivas/fisiología , Morfogénesis/genética , Factores de Transcripción SOXB1/fisiología , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Cóclea/citología , Oído Interno/crecimiento & desarrollo , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Células Ciliadas Auditivas/citología , Masculino , Ratones , Ratones Transgénicos , Embarazo , Factores de Transcripción SOXB1/genética , Factores de Tiempo
12.
PLoS Comput Biol ; 17(11): e1009063, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34723957

RESUMEN

A common feature of morphogenesis is the formation of three-dimensional structures from the folding of two-dimensional epithelial sheets, aided by cell shape changes at the cellular-level. Changes in cell shape must be studied in the context of cell-polarised biomechanical processes within the epithelial sheet. In epithelia with highly curved surfaces, finding single-cell alignment along a biological axis can be difficult to automate in silico. We present 'Origami', a MATLAB-based image analysis pipeline to compute direction-variant cell shape features along the epithelial apico-basal axis. Our automated method accurately computed direction vectors denoting the apico-basal axis in regions with opposing curvature in synthetic epithelia and fluorescence images of zebrafish embryos. As proof of concept, we identified different cell shape signatures in the developing zebrafish inner ear, where the epithelium deforms in opposite orientations to form different structures. Origami is designed to be user-friendly and is generally applicable to fluorescence images of curved epithelia.


Asunto(s)
Forma de la Célula/fisiología , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Modelos Biológicos , Animales , Fenómenos Biomecánicos , Polaridad Celular , Biología Computacional , Simulación por Computador , Oído Interno/embriología , Epitelio/embriología , Imagenología Tridimensional , Microscopía Fluorescente , Morfogénesis , Prueba de Estudio Conceptual , Programas Informáticos , Pez Cebra/embriología
13.
Dev Dyn ; 250(10): 1450-1462, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33715274

RESUMEN

BACKGROUND: Eya2 expression during mouse development has been studied by in situ hybridization and it has been shown to be involved skeletal muscle development and limb formation. Here, we generated Eya2 knockout (Eya2- ) and a lacZ knockin reporter (Eya2lacZ ) mice and performed a detailed expression analysis for Eya2lacZ at different developmental stages to trace Eya2lacZ -positive cells in Eya2-null mice. We describe that Eya2 is not only expressed in cranial sensory and dorsal root ganglia, retina and olfactory epithelium, and somites as previously reported, but also Eya2 is specifically detected in other organs during mouse development. RESULTS: We found that Eya2 is expressed in ocular and trochlear motor neurons. In the inner ear, Eya2lacZ is specifically expressed in differentiating hair cells in both vestibular and cochlear sensory epithelia of the inner ear and Eya2-/- or Eya2lacZ/lacZ mice displayed mild hearing loss. Furthermore, we detected Eya2 expression during both salivary gland and thymus development and Eya2-null mice had a smaller thymus. CONCLUSIONS: As Eya2 is coexpressed with other members of the Eya family genes, these results together highlight that Eya2 as a potential regulator may act synergistically with other Eya genes to regulate the differentiation of the inner ear sensory hair cells and the formation of the salivary gland and thymus.


Asunto(s)
Oído Interno/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Pérdida Auditiva/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Diferenciación Celular/fisiología , Oído Interno/embriología , Pérdida Auditiva/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatasas/genética
14.
Dev Biol ; 457(1): 43-56, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31526806

RESUMEN

SOX2 is essential for maintaining neurosensory stem cell properties, although its involvement in the early neurosensory development of cranial placodes remains unclear. To address this, we used Foxg1-Cre to conditionally delete Sox2 during eye, ear, and olfactory placode development. Foxg1-Cre mediated early deletion of Sox2 eradicates all olfactory placode development, and disrupts retinal development and invagination of the lens placode. In contrast to the lens and olfactory placodes, the ear placode invaginates and delaminates NEUROD1 positive neurons. Furthermore, we show that SOX2 is not necessary for early ear neurogenesis, since the early inner ear ganglion is formed with near normal central projections to the hindbrain and peripheral projections to the undifferentiated sensory epithelia of E11.5-12.5 ears. However, later stages of ear neurosensory development, in particular, the late forming auditory system, critically depend on the presence of SOX2. Our data establish distinct differences for SOX2 requirements among placodal sensory organs with similarities between olfactory and lens but not ear placode development, consistent with the unique neurosensory development and molecular properties of the ear.


Asunto(s)
Oído Interno/embriología , Neurogénesis , Factores de Transcripción SOXB1/metabolismo , Animales , Apoptosis , Oído Interno/citología , Oído Interno/metabolismo , Cristalino/embriología , Cristalino/metabolismo , Ratones , Ratones Noqueados , Mucosa Nasal/embriología , Mucosa Nasal/metabolismo , Factores de Transcripción SOXB1/genética
15.
Dev Biol ; 457(1): 91-103, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31550482

RESUMEN

Little is known about the role of TBX1 in post-otocyst stages of inner ear development. Here, we report on mice with a missense mutation of Tbx1 that are viable with fully developed but abnormally formed inner ears. Mutant mice are deaf due to an undeveloped stria vascularis and show vestibular dysfunction associated with abnormal semicircular canal formation. We show that TBX1 is expressed in endolymph-producing strial marginal cells and vestibular dark cells of the inner ear and is an upstream regulator of Esrrb, which previously was shown to control the developmental fate of these cells. We also show that TBX1 is expressed in sensory cells of the crista ampullaris, which may relate to the semicircular canal abnormalities observed in mutant mice. Inner ears of mutant embryos have a non-resorbed fusion plate in the posterior semicircular canal and a single ampulla connecting anterior and lateral canals. We hypothesize that the TBX1 missense mutation prevents binding with specific co-regulatory proteins. These findings reveal previously unknown functions of TBX1 during later stages of inner ear development.


Asunto(s)
Oído Interno/embriología , Mutación Missense , Canales Semicirculares/embriología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Oído Interno/citología , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Morfogénesis , Receptores de Estrógenos/metabolismo , Canales Semicirculares/anomalías , Estría Vascular/citología , Proteínas de Dominio T Box/química , Técnicas del Sistema de Dos Híbridos , Secuenciación del Exoma
16.
Dev Biol ; 462(1): 74-84, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32147304

RESUMEN

The five vestibular organs of the inner ear derive from patches of prosensory cells that express the transcription factor SOX2 and the Notch ligand JAG1. Previous work suggests that JAG1-mediated Notch signaling is both necessary and sufficient for prosensory formation and that the separation of developing prosensory patches is regulated by LMX1a, which antagonizes Notch signaling. We used an inner ear-specific deletion of the Rbpjκ gene in which Notch signaling is progressively lost from the inner ear to show that Notch signaling, is continuously required for the maintenance of prosensory fate. Loss of Notch signaling in prosensory patches causes them to shrink and ultimately disappear. We show this loss of prosensory fate is not due to cell death, but rather to the conversion of prosensory tissue into non-sensory tissue that expresses LMX1a. Notch signaling is therefore likely to stabilize, rather than induce prosensory fate.


Asunto(s)
Oído Interno/embriología , Proteína Jagged-1/metabolismo , Receptores Notch/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular , Oído Interno/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Células Ciliadas Auditivas Internas/citología , Proteína Jagged-1/genética , Proteínas con Homeodominio LIM/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos ICR , Organogénesis/fisiología , Receptores Notch/fisiología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
17.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204426

RESUMEN

The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene.


Asunto(s)
Oído Interno/embriología , Oído Interno/metabolismo , Proteínas Musculares/deficiencia , Músculos/embriología , Músculos/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Desarrollo Embrionario , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Ciliadas Auditivas/metabolismo , Mecanotransducción Celular/genética , Desarrollo de Músculos/genética , Organogénesis/genética , Fenotipo , Transporte de Proteínas
18.
Dev Dyn ; 249(3): 410-424, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31400045

RESUMEN

BACKGROUND: Retinoic acid (RA) plays an important role in organogenesis as a paracrine signal through transcriptional regulation of an increasing number of known downstream target genes, regulating cell proliferation, and differentiation. During the development of the inner ear, RA directly governs the morphogenesis and specification processes mainly by means of RA-synthesizing retinaldehyde dehydrogenase (RALDH) enzymes. Interestingly, CYP1B1, a cytochrome P450 enzyme, is able to mediate the oxidative metabolisms also leading to RA generation, its expression patterns being associated with many known sites of RA activity. RESULTS: This study describes for the first time the presence of CYP1B1 in the developing chick inner ear as a RALDH-independent RA-signaling mechanism. In our in situ hybridization analysis, Cyp1B1 expression was first observed in a domain located in the ventromedial wall of the otic anlagen, being included within the rostralmost aspect of an Fgf10-positive pan-sensory domain. As development proceeds, all identified Fgf10-positive areas were Cyp1B1 stained, with all sensory patches being Cyp1B1 positive at stage HH34, except the macula neglecta. CONCLUSIONS: Cyp1B1 expression suggested a possible contribution of CYP1B1 action in the specification of the lateral-to-medial and dorsal-to-ventral axes of the developing chick inner ear.


Asunto(s)
Citocromo P-450 CYP1B1/metabolismo , Oído Interno/embriología , Animales , Embrión de Pollo , Pollos , Citocromo P-450 CYP1B1/genética , Oído Interno/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Tretinoina/metabolismo
19.
Dev Dyn ; 249(7): 867-883, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32384225

RESUMEN

BACKGROUND: Sensorineural hearing loss is an understudied consequence of congenital Zika syndrome, and balance disorders are essentially unreported to date. Also lacking is information about the susceptibility and the pathogenesis of the developing inner ear following Zika virus (ZIKV) exposure. To address this, ZIKV was delivered directly into the otic cup/otocyst of chicken embryos and infection of inner ear tissues was evaluated using immunohistochemistry. RESULTS: After injections on embryonic days 2 to 5, ZIKV infection was observed in 90% of the samples harvested 2 to 8 days later; however, the degree of infection was highly variable across individuals. ZIKV was detected in all regions of the inner ear, associated ganglia, and in the surrounding periotic mesenchyme. Detection of virus peaked earlier in the ganglion and vestibular compartments, and later in the cochlea. ZIKV infection increased cell death robustly in the auditory ganglion, and modestly in the auditory sensory organ. Macrophage accumulation was found to overlap with dense viral infection in some tissues. Additionally, dysmorphogenesis of the semicircular canals and ganglion was observed for a subset of injection conditions. CONCLUSIONS: This article presents evidence of direct ZIKV infection of developing inner ear epithelium and shows previously unknown inner ear dysmorphogenesis phenotypes.


Asunto(s)
Oído Interno/embriología , Oído Interno/virología , Pérdida Auditiva Sensorineural/embriología , Infección por el Virus Zika/virología , Virus Zika/metabolismo , Animales , Muerte Celular , Embrión de Pollo , Pollos , Cóclea , Oído Interno/metabolismo , Epitelio/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Hibridación in Situ , Macrófagos/metabolismo , Fenotipo , Canales Semicirculares/embriología , Canales Semicirculares/metabolismo , Factores de Tiempo , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patología
20.
Dev Biol ; 446(2): 133-141, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30605626

RESUMEN

Damage or loss of auditory hair cells leads to irreversible sensorineural hearing loss in human, thus regeneration of these cells to reconstruct auditory sensory epithelium holds the promise for the treatment of deafness. Regulatory factors involved in the development of auditory sensory epithelium play crucial roles in hair cell regeneration and hearing restoration. Here, we first focus on the transcription factor Atoh1 which is critical for hair cell development and regeneration, and comprehensively summarize the current understanding of the protein structure, target binding motif, developmental expression pattern, functional role, and upstream and downstream regulatory mechanism of Atoh1 in the context of controlling the cell fate commitment to hair cells or transdifferentiation from supporting cells. We also discuss cellular context dependency of Atoh1 in hair cell induction which should be taken into consideration when using Atoh1 gene therapy for hair cell regeneration. Next, we review the roles of Gfi1, Pou4f3, and Barhl1 in hair cell maturation and maintenance, and suggest that manipulation of these genes and their downstream targets will be helpful for the generation of functional hair cells with long-term viability. Finally, we provide an overview of the interplay between Notch, Wnt, Shh, and FGF signaling pathways during auditory sensory epithelium development. By analyzing crosstalk between these pathways, we suggest that combination of Wnt signaling activation with Hey1 and Hey2 inhibition will be crucial for hair cell regeneration and hearing restoration. Furthermore, this review highlights the importance of deeper understanding of the cellular context for hair cell development and the interconnection between these key regulators in developing new strategies to treat sensorineural hearing loss.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Oído Interno/metabolismo , Regulación del Desarrollo de la Expresión Génica , Órgano Espiral/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Oído Interno/embriología , Oído Interno/crecimiento & desarrollo , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Órgano Espiral/embriología , Órgano Espiral/crecimiento & desarrollo , Factor de Transcripción Brn-3C/genética , Factor de Transcripción Brn-3C/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA