Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant J ; 119(2): 927-941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38872484

RESUMEN

Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.


Asunto(s)
Catecol Oxidasa , Glucósidos , Fenoles , Proteínas de Plantas , Catecol Oxidasa/metabolismo , Catecol Oxidasa/genética , Glucósidos/metabolismo , Glucósidos/biosíntesis , Fenoles/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Vías Biosintéticas , Oleaceae/enzimología , Oleaceae/genética , Oleaceae/metabolismo , Catecoles/metabolismo , Regulación de la Expresión Génica de las Plantas , Polifenoles
2.
Plant Physiol ; 195(4): 2815-2828, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38753307

RESUMEN

Sweet osmanthus (Osmanthus fragrans) is famous in China for its flowers and contains four groups: Albus, Luteus, Aurantiacus, and Asiaticus. Understanding the relationships among these groups and the genetic mechanisms of flower color and aroma biosynthesis are of tremendous interest. In this study, we sequenced representative varieties from two of the four sweet osmanthus groups. Multiomics and phylogenetic analyses of varieties from each of the four groups showed that Asiaticus split first within the species, followed by Aurantiacus and the sister groups Albus and Luteus. We show that the difference in flower color between Aurantiacus and the other three groups was caused by a 4-bp deletion in the promoter region of carotenoid cleavage dioxygenase 4 (OfCCD4) that leads to expression decrease. In addition, we identified 44 gene pairs exhibiting significant structural differences between the multiseasonal flowering variety "Rixianggui" in the Asiaticus group and other autumn-flowering varieties. Through correlation analysis between intermediate products of aromatic components and gene expression, we identified eight genes associated with the linalool and α- and ß-ionone biosynthesis pathways. Overall, our study offers valuable genetic resources for sweet osmanthus, while also providing genetic clues for improving the flower color and multiseasonal flowering of osmanthus and other flowers.


Asunto(s)
Flores , Oleaceae , Filogenia , Oleaceae/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Multiómica
3.
BMC Plant Biol ; 24(1): 331, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664619

RESUMEN

BACKGROUND: Jasmine (Jasminum), renowned for its ornamental value and captivating fragrance, has given rise to numerous species and accessions. However, limited knowledge exists regarding the evolutionary relationships among various Jasminum species. RESULTS: In the present study, we sequenced seven distinct Jasminum species, resulting in the assembly of twelve high-quality complete chloroplast (cp) genomes. Our findings revealed that the size of the 12 cp genomes ranged from 159 to 165 kb and encoded 134-135 genes, including 86-88 protein-coding genes, 38-40 tRNA genes, and 8 rRNA genes. J. nudiflorum exhibited a larger genome size compared to other species, mainly attributed to the elevated number of forward repeats (FRs). Despite the typically conservative nature of chloroplasts, variations in the presence or absence of accD have been observed within J. sambac. The calculation of nucleotide diversity (Pi) values for 19 cp genomes indicated that potential mutation hotspots were more likely to be located in LSC regions than in other regions, particularly in genes ycf2, rbcL, atpE, ndhK, and ndhC (Pi > 0.2). Ka/Ks values revealed strong selection pressure on the genes rps2, atpA, rpoA, rpoC1, and rpl33 when comparing J. sambac with the three most closely related species (J. auriculatum, J. multiflorum, and J. dichotomum). Additionally, SNP identification, along with the results of Structure, PCA, and phylogenetic tree analyses, divided the Jasminum cp genomes into six groups. Notably, J. polyanthum showed gene flow signals from both the G5 group (J. nudiflorum) and the G3 group (J. tortuosum and J. fluminense). Phylogenetic tree analysis reflected that most species from the same genus clustered together with robust support in Oleaceae, strongly supporting the monophyletic nature of cp genomes within the genus Jasminum. CONCLUSION: Overall, this study provides comprehensive insights into the genomic composition, variation, and phylogenetic relationships among various Jasminum species. These findings enhance our understanding of the genetic diversity and evolutionary history of Jasminum.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma del Cloroplasto , Jasminum , Filogenia , Jasminum/genética , Oleaceae/genética
4.
BMC Plant Biol ; 24(1): 589, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902627

RESUMEN

BACKGROUND: The plant-specific YABBY transcription factor family plays important roles in plant growth and development, particularly leaf growth, floral organ formation, and secondary metabolite synthesis. RESULTS: Here, we identified a total of 13 OfYABBY genes from the Osmanthus fragrans genome. These 13 OfYABBY genes were divided into five subfamilies through phylogenetic analysis, and genes in the same subfamily showed similar gene structures and conserved protein motifs. Gene duplication promoted the expansion of the OfYABBY family in O. fragrans. Tissue-specific expression analysis showed that the OfYABBY family was mainly expressed in O. fragrans leaves and floral organs. To better understand the role of OfYABBY genes in plant growth and development, OfYABBY12 was selected for heterologous stable overexpression in tobacco, and OfYABBY12-overexpressing tobacco leaves released significantly fewer volatile organic compounds than wild-type tobacco leaves. Overexpression of OfYABBY12 led to the downregulation of NtCCD1/4 and decreased ß-ionone biosynthesis. Correspondingly, a dual-luciferase assay showed that OfYABBY12 negatively regulated the expression of OfCCD4, which promotes ß-ionone synthesis. Furthermore, tobacco leaves overexpressing OfYABBY12 were curled and wrinkled and had significantly reduced leaf thickness and leaf inclusions and significantly extended flower pistils (styles). CONCLUSION: Overall, the results suggest that the OfYABBY gene family may influence the biosynthesis of the floral scent (especially ß-ionone) in O. fragrans and may regulate leaf morphogenesis and lateral organs.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Oleaceae , Hojas de la Planta , Proteínas de Plantas , Factores de Transcripción , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/anatomía & histología , Oleaceae/genética , Oleaceae/crecimiento & desarrollo , Oleaceae/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/anatomía & histología , Flores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Odorantes , Compuestos Orgánicos Volátiles/metabolismo
5.
ScientificWorldJournal ; 2024: 5080176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515931

RESUMEN

The importance of medicinal plants for the treatment of different diseases is high from the aspects of the pharmaceutical industry and traditional healers. The present study involves nine different medicinal plants, namely, Neolamarckia cadamba, Nyctanthes arbor-tristis, Pogostemon benghalensis, Equisetum debile, Litsea monopetala, Spilanthes uliginosa, Desmostachya bipinnata, Mallotus philippensis, and Phoenix humilis, collected from Chitwan district of Nepal for biochemical analysis followed by the isolation of active plant fractions from the bioactive plant extract. The methanolic extracts of roots, barks, seeds, seed cover, and the other aerial parts of plants were used for the phytochemical analysis and biological activities. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay was adopted to evaluate the antioxidant activity. Antibacterial activity was evaluated using the agar well diffusion method. The antidiabetic activity was studied by the α-amylase enzyme inhibition assay. The highest antioxidant activity was observed in extracts of Nyctanthes arbor-tristis followed by Mallotus philippensis (seed cover), Pogostemon benghalensis, Litsea monopetala, Phoenix humilis, and Neolamarckia cadamba with IC50 values of 27.38 ± 1.35, 32.08 ± 2.81, 32.75 ± 2.13, 33.82 ± 1.07, 40.14 ± 0.93, and 50.44 ± 3.75 µg/mL, respectively. The highest antidiabetic activity was observed in extracts of Phoenix humilis followed by Desmostachya bipinnata and Pogostemon benghalensis with IC50 values of 95.69 ± 6.97, 99.24 ± 12.6, and 106.3 ± 12.89 µg/mL, respectively. The mild α-amylase enzyme inhibition was found in extracts of Nyctanthes arbor-tristis, Spilanthes uliginosa Swartz, Litsea monopetala, and Equisetum debile showing IC50 values of 110.4 ± 7.78, 115.98 ± 10.24, 149.83 ± 8.3, and 196.45 ± 6.04 µg/mL, whereas Mallotus Philippensis (seed cover), Mallotus philippensis (seed), and Desmostachya bipinnata showed weak α-amylase inhibition with IC50 values of 208.87 ± 1.76, 215.41 ± 2.09, and 238.89 ± 9.27 µg/mL, respectively. The extract of Nyctanthes arbor-tristis showed high zones of inhibition against S. aureus (ATCC 25923) and E. coli (ATCC 25922) of ZOI 26 and 22 mm, respectively. The chemical constituents isolated from the active plant Nyctanthes arbor-tristis were subjected to GCMS analysis where the major chemical compounds were 11,14,17-eicosatrienoic acid and methyl ester. These results support the partial scientific validation for the traditional uses of these medicinal plants in the treatment of diabetes and infectious diseases by the people living in different communities of Chitwan, Nepal.


Asunto(s)
Oleaceae , Plantas Medicinales , Humanos , Nepal , Antioxidantes/farmacología , Antioxidantes/química , Escherichia coli , Staphylococcus aureus , Extractos Vegetales/química , Oleaceae/química , Hipoglucemiantes , alfa-Amilasas
6.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255929

RESUMEN

Endophytic fungi in flowers influence plant health and reproduction. However, whether floral volatile organic compounds (VOCs) affect the composition and function of the endophytic fungal community remains unclear. Here, gas chromatography-mass spectrometry (GC-MS) and high-throughput sequencing were used to explore the relationship between floral VOCs and the endophytic fungal community during different flower development stages in Osmanthus fragrans 'Rixiang Gui'. The results showed that the composition of the endophytic fungal community and floral VOCs shifted along with flowering development. The highest and lowest α diversity of the endophytic fungal community occurred in the flower fading stage and full blooming stage, respectively. The dominant fungi, including Dothideomycetes (class), Pleosporales (order), and Neocladophialophora, Alternaria, and Setophoma (genera), were enriched in the flower fading stage and decreased in the full blooming stage, demonstrating the enrichment of the Pathotroph, Saprotroph, and Pathotroph-Saprotroph functions in the flower fading stage and their depletion in the full blooming stage. However, the total VOC and terpene contents were highest in the full blooming stage and lowest in the flower fading stage, which was opposite to the α diversity of the endophytic fungal community and the dominant fungi during flowering development. Linalool, dihydro-ß-ionone, and trans-linalool oxide(furan) were key factors affecting the endophytic fungal community composition. Furthermore, dihydro-ß-ionone played an extremely important role in inhibiting endophytic fungi in the full blooming stage. Based on the above results, it is believed that VOCs, especially terpenes, changed the endophytic fungal community composition in the flowers of O. fragrans 'Rixiang Gui'. These findings improve the understanding of the interaction between endophytic fungi and VOCs in flowers and provide new insight into the mechanism of flower development.


Asunto(s)
Micobioma , Oleaceae , Compuestos Orgánicos Volátiles , Norisoprenoides , Flores , Terpenos
7.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125596

RESUMEN

Ethylene-Responsive Factor (ERF) is a key element found in the middle and lower reaches of the ethylene signal transduction pathway. It is widely distributed in plants and plays important roles in plant growth and development, hormone signal transduction, and various stress processes. Although there is research on AP/ERF family members, research on AP2/ERF in Osmanthus fragrans is lacking. Thus, in this work, AP2/ERF in O. fragrans was extensively and comprehensively analyzed. A total of 298 genes encoding OfAP2/ERF proteins with complete AP2/ERF domains were identified. Based on the number of AP2/ERF domains and the similarity among amino acid sequences between AP2/ERF proteins from A. thaliana and O. fragrans, the 298 putative OfAP2/ERF proteins were divided into four different families, including AP2 (45), ERF (247), RAV (5), and SOLOIST (1). In addition, the exon-intron structure characteristics of these putative OfAP2/ERF genes and the conserved protein motifs of their encoded OfAP2/ERF proteins were analyzed, and the results were found to be consistent with those of the population classification. A tissue-specific analysis showed the spatiotemporal expression of OfAP2/ERF in the stems and leaves of O. fragrans at different developmental stages. Specifically, 21 genes were not expressed in any tissue, while high levels of expression were found for 25 OfAP2/ERF genes in several tissues, 60 genes in the roots, 34 genes in the stems, 37 genes in young leaves, 34 genes in old leaves, 32 genes in the early flowering stage, 18 genes in the full flowering stage, and 37 genes in the late flowering stage. Quantitative RT-PCR experiments showed that OfERF110a and OfERF110b had the highest expression levels at the full-bloom stage (S4), and this gradually decreased with the senescence of petals. The expression of OfERF119c decreased first and then increased, while the expression levels of OfERF4c and OfERF5a increased constantly. This indicated that these genes may play roles in flower senescence and the ethylene response. In the subsequent subcellular localization experiments, we found that ERF1-4 was localized in the nucleus, indicating that it was expressed in the nucleus. In yeast self-activation experiments, we found that OfERF112, OfERF228, and OfERF23 had self-activation activity. Overall, these results suggest that OfERFs may have the function of regulating petal senescence in O. fragrans.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oleaceae , Filogenia , Proteínas de Plantas , Factores de Transcripción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oleaceae/genética , Oleaceae/metabolismo , Oleaceae/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Etilenos/metabolismo , Secuencia de Aminoácidos
8.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39337681

RESUMEN

Carotenoids are important natural pigments that are responsible for the fruit and flower colors of many plants. The composition and content of carotenoid can greatly influence the color phenotype of plants. However, the regulatory mechanism underling the divergent behaviors of carotenoid accumulation, especially in flower, remains unclear. In this study, a new cultivar Osmanthus fragrans 'Yanzhi Hong' was used to study the regulation of carotenoid pigmentation in flower. Liquid chromatograph-mass spectrometer (LC-MS) analysis showed that ß-carotene, phytoene, lycopene, γ-carotene, and lutein were the top five pigments enriched in the petals of 'Yanzhi Hong'. Through transcriptome analysis, we found that the expression of the structural genes in carotenoid pathway was imbalanced: most of the structural genes responsible for lycopene biosynthesis were highly expressed throughout the flower developmental stages, while those for lycopene metabolism kept at a relatively lower level. The downregulation of LYCE, especially at the late developmental stages, suppressed the conversion from lycopene to α-carotene but promoted the accumulation of ß-carotene, which had great effect on the carotenoid composition of 'Yanzhi Hong'. Ethylene response factor (ERF), WRKY, basic helix-loop-helix (bHLH), v-myb avian myeloblastosis viral oncogene homolog (MYB), N-Acetylcysteine (NAC), auxin response factor (ARF), and other transcription factors (TFs) have participated in the flower color regulation of 'Yanzhi Hong', which formed co-expression networks with the structural genes and functioned in multiple links of the carotenoid pathway. The results suggested that the cyclization of lycopene is a key link in determining flower color. The modification of the related TFs will break the expression balance between the upstream and downstream genes and greatly influence the carotenoid profile in flowers, which can be further used for creating colorful plant germplasms.


Asunto(s)
Carotenoides , Flores , Regulación de la Expresión Génica de las Plantas , Oleaceae , Pigmentación , Carotenoides/metabolismo , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo , Pigmentación/genética , Oleaceae/genética , Oleaceae/metabolismo , Oleaceae/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos
9.
Plant J ; 111(3): 836-848, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35673966

RESUMEN

Lilacs (Syringa L.), a group of well-known ornamental and aromatic woody plants, have long been used for gardening, essential oils and medicine purposes in East Asia and Europe. The lack of knowledge about the complete genome of Syringa not only hampers effort to better understand its evolutionary history, but also prevents genome-based functional gene mining that can help in the variety improvement and medicine development. Here, a chromosome-level genome of Syringa oblata is presented, which has a size of 1.12 Gb including 53 944 protein coding genes. Synteny analysis revealed that a recent duplication event and parallel evolution of two subgenomes formed the current karyotype. Evolutionary analysis, transcriptomics and metabolic profiling showed that segment and tandem duplications contributed to scent formation in the woody aromatic species. Moreover, phylogenetic analysis indicated that S. oblata shared a common ancestor with Osmanthus fragrans and Olea europaea approximately 27.61 million years ago (Mya). Biogeographic reconstruction based on a resequenced data set of 26 species suggested that Syringa originated in the northern part of East Asia during the Miocene (approximately 14.73 Mya) and that the five Syringa groups initially formed before the Late Miocene (approximately 9.97 Mya). Furthermore, multidirectional dispersals accompanied by gene introgression among Syringa species from Northern China during the Miocene were detected by biogeographic reconstruction. Taken together, the results showed that complex gene introgression, which occurred during speciation history, greatly contributed to Syringa diversity.


Asunto(s)
Oleaceae , Syringa , Cromosomas , Oleaceae/genética , Filogenia , Syringa/genética , Transcriptoma
10.
BMC Plant Biol ; 23(1): 452, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37749509

RESUMEN

BACKGROUND: Olive is one of the most cultivated species in the Mediterranean Basin and beyond. Despite being extensively studied for its commercial relevance, the origin of cultivated olive and the history of its domestication remain open questions. Here, we present a genealogical and kinship relationships analysis by mean of chloroplast and nuclear markers of different genera, subgenus, species, subspecies, ecotypes, cultivated, ancient and wild types, which constitutes one of the most inclusive research to date on the diversity within Olea europaea species. A complete survey of the variability across the nuclear and plastid genomes of different genotypes was studied through single nucleotide polymorphisms, indels (insertions and deletions), and length variation. RESULTS: Fifty-six different chlorotypes were identified among the Oleaceae family including Olea europaea, other species and genera. The chloroplast genome evolution, within Olea europaea subspecies, probably started from subsp. cuspidata, which likely represents the ancestor of all the other subspecies and therefore of wild types and cultivars. Our study allows us to hypothesize that, inside the subspecies europaea containing cultivars and the wild types, the ancestral selection from var. sylvestris occurred both in the eastern side of the Mediterranean and in the central-western part of Basin. Moreover, it was elucidated the origin of several cultivars, which depends on the introduction of eastern cultivars, belonging to the lineage E1, followed by crossing and replacement of the autochthonous olive germplasm of central-western Mediterranean Basin. In fact, our study highlighted that two main 'founders' gave the origin to more than 60% of analyzed olive cultivars. Other secondary founders, which strongly contributed to give origin to the actual olive cultivar diversity, were already detected. CONCLUSIONS: The application of comparative genomics not only paves the way for a better understanding of the phylogenetic relationships within the Olea europaea species but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance and parentage inside olive cultivars, opening new scenarios for further research such as the association studies and breeding programs.


Asunto(s)
Olea , Oleaceae , Olea/genética , Filogenia , Fitomejoramiento , Cloroplastos/genética
11.
Ann Bot ; 132(7): 1219-1232, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37930793

RESUMEN

BACKGROUND AND AIMS: Androdioecy, the co-occurrence of males and hermaphrodites, is a rare reproductive system. Males can be maintained if they benefit from a higher male fitness than hermaphrodites, referred to as male advantage. Male advantage can emerge from increased fertility owing to resource reallocation. However, empirical studies usually compare sexual phenotypes over a single flowering season, thus ignoring potential cumulative effects over successive seasons in perennials. In this study, we quantify various components of male fertility advantage, both within and between seasons, in the long-lived perennial shrub Phillyrea angustifolia (Oleaceae). Although, owing to a peculiar diallelic self-incompatibility system and female sterility mutation strictly associated with a breakdown of incompatibility, males do not need fertility advantage to persist in this species, this advantage remains an important determinant of their equilibrium frequency. METHODS: A survey of >1000 full-sib plants allowed us to compare males and hermaphrodites for several components of male fertility. Individuals were characterized for proxies of pollen production and vegetative growth. By analysing maternal progeny, we compared the siring success of males and hermaphrodites. Finally, using a multistate capture-recapture model we assessed, for each sexual morph, how the intensity of flowering in one year impacts next-year growth and reproduction. KEY RESULTS: Males benefitted from a greater vegetative growth and flowering intensity. Within one season, males sired twice as many seeds as equidistant, compatible hermaphroditic competitors. In addition, males more often maintained intense flowering over successive years. Finally, investment in male reproductive function appeared to differ between the two incompatibility groups of hermaphrodites. CONCLUSION: Males, by sparing the cost of female reproduction, have a higher flowering frequency and vegetative growth, both of which contribute to male advantage over an individual lifetime. This suggests that studies analysing sexual phenotypes during only single reproductive periods are likely to provide inadequate estimates of male advantage in perennials.


Asunto(s)
Oleaceae , Reproducción , Humanos , Masculino , Femenino , Estaciones del Año , Fertilidad , Oleaceae/genética , Plantas
12.
Physiol Plant ; 175(6): e14119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148217

RESUMEN

The night-flowering Jasmine, Nyctanthes arbor-tristis also known as Parijat, is a perennial woody shrub belonging to the family of Oleaceae. It is popular for its fragrant flowers that bloom in the night and is a potent source of secondary metabolites. However, knowledge about its genome and the expression of genes regulating flowering or secondary metabolite accumulation is lacking. In this study, we generated whole genome sequencing data to assemble the first de novo assembly of Parijat and use it for comparative genomics and demographic history reconstruction. The temporal dynamics of effective population size (Ne ) experienced a positive influence of colder climates suggesting the switch to night flowering may have provided an evolutionary advantage. We employed multi-tissue transcriptome sequencing of floral stages/parts to obtain insights into the transcriptional regulation of nocturnal flower development and the production of volatiles/metabolites. Tissue-specific transcripts for mature flowers revealed key players in circadian regulation and flower development, including the auxin pathway and cell wall modifying genes. Furthermore, we identified tissue-specific transcripts responsible for producing numerous secondary metabolites, mainly terpenoids and carotenoids. The diversity and specificity of Terpene Synthase (TPS) and CCDs (Carotenoid Cleavage Deoxygenases) mediate the bio-synthesis of specialised metabolites in Parijat. Our study establishes Parijat as a novel non-model species to understand the molecular mechanisms of nocturnal blooming and secondary metabolite production.


Asunto(s)
Jasminum , Oleaceae , Oleaceae/genética , Perfilación de la Expresión Génica , Genómica , Carotenoides/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Transcriptoma/genética
13.
Chem Biodivers ; 20(2): e202200658, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36633391

RESUMEN

The osmanthus volatile oil was welcomed by consumers even if the high price since the unique and pleasant odor. Meanwhile, the low yield of osmanthus volatile oil restricts industrial production. In this work, an osmanthus volatile oil was obtained by means of a novel ultrasonic-assisted flash extraction method and was compared with the oil from hydrodistillation and supercritical fluid extraction on yield, aroma, and biological activities. The volatile oil obtained from the ultrasonic-assisted flash extraction was obtained with the petroleum ether and got a high yield at 3.51 % within a 40-min process, an increase of nearly 81 % from the single solvent extraction. This oil also showed a high aroma intensity and aroma compound concentration. Meanwhile, the oil also has the highest antioxidant ability but lower antibacterial activity against oil from hydrodistillation. It was considered that this work was helpful for the optimization of the extraction method of osmanthus volatile oil.


Asunto(s)
Aceites Volátiles , Oleaceae , Odorantes , Solventes
14.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240011

RESUMEN

Alternative splicing refers to the process of producing different splicing isoforms from the same pre-mRNA through different alternative splicing events, which almost participates in all stages of plant growth and development. In order to understand its role in the fruit development of Osmanthus fragrans, transcriptome sequencing and alternative splicing analysis was carried out on three stages of O. fragrans fruit (O. fragrans "Zi Yingui"). The results showed that the proportion of skipping exon events was the highest in all three periods, followed by a retained intron, and the proportion of mutually exclusive exon events was the lowest and most of the alternative splicing events occurred in the first two periods. The results of enrichment analysis of differentially expressed genes and differentially expressed isoforms showed that alpha-Linolenic acid metabolism, flavonoid biosynthesis, carotenoid biosynthesis, photosynthesis, and photosynthetic-antenna protein pathways were significantly enriched, which may play an important role in the fruit development of O. fragrans. The results of this study lay the foundation for further study of the development and maturation of O. fragrans fruit and further ideas for controlling fruit color and improving fruit quality and appearance.


Asunto(s)
Carotenoides , Oleaceae , Carotenoides/metabolismo , Ácido alfa-Linolénico/metabolismo , Empalme Alternativo , Frutas/metabolismo
15.
Molecules ; 28(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687134

RESUMEN

The exploration of low-cost, high-performance adsorbents is a popular research issue. In this work, a straightforward method that combined hydrothermal with tube firing was used to produce Osmanthus fragrans biomass charcoal (OBC) from low-cost osmanthus for dye adsorption in water. The study examined the parameters of starting concentration, pH, and duration, which impacted the process of adsorption of different dyes by OBC. The analysis showed that the adsorption capacities of OBC for six dyes: malachite green (MG, C0 = 800 mg/L, pH = 7), Congo red (CR, C0 = 1000 mg/L, pH = 8), rhodamine B (RhB, C0 = 500 mg/L, pH = 6), methyl orange (MO, C0 = 1000 mg/L, pH = 7), methylene blue (MB, C0 = 700 mg/L, pH = 8), and crystalline violet (CV, C0 = 500 mg/L, pH = 7) were 6501.09, 2870.30, 554.93, 6277.72, 626.50, and 3539.34 mg/g, respectively. The pseudo-second-order model and the Langmuir isotherm model were compatible with the experimental findings, which suggested the dominance of ion exchange and chemisorption. The materials were characterized by using XRD, SEM, FTIR, BET, and XPS, and the results showed that OBC had an outstanding specific surface area (2063 m2·g-1), with potential adsorption mechanisms that included electrostatic mechanisms, hydrogen bonding, and π-π adsorption. The fact that the adsorption capacity did not drastically decrease after five cycles of adsorption and desorption suggests that OBC has the potential to be a dye adsorbent.


Asunto(s)
Colorantes , Oleaceae , Aguas Residuales , Carbón Orgánico , Biomasa , Rojo Congo
16.
BMC Genomics ; 23(1): 418, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35659179

RESUMEN

BACKGROUND: Temperature is involved in the regulation of carotenoid accumulation in many plants. The floral color of sweet osmanthus (Osmanthus fragrans Lour.) which is mainly contributed by carotenoid content, is affected by temperature in autumn. However, the mechanism remains unknown. Here, to reveal how temperature regulates the floral color of sweet osmanthus, potted sweet osmanthus 'Jinqiu Gui' were treated by different temperatures (15 °C, 19 °C or 32 °C). The floral color, carotenoid content, and the expression level of carotenoid-related genes in petals of sweet osmanthus 'Jinqiu Gui' under different temperature treatments were investigated. RESULTS: Compared to the control (19 °C), high temperature (32 °C) changed the floral color from yellow to yellowish-white with higher lightness (L*) value and lower redness (a*) value, while low temperature (15 °C) turned the floral color from yellow to pale orange with decreased L* value and increased a* value. Total carotenoid content and the content of individual carotenoids (α-carotene, ß-carotene, α-cryptoxanthin, ß-cryptoxanthin, lutein and zeaxanthin) were inhibited by high temperature, but were enhanced by low temperature. Lower carotenoid accumulation under high temperature was probably attributed to transcriptional down-regulation of the biosynthesis gene OfPSY1, OfZ-ISO1 and OfLCYB1, and up-regulation of degradation genes OfNCED3, OfCCD1-1, OfCCD1-2, and OfCCD4-1. Up-regulation of OfLCYB1, and down-regulation of OfNCED3 and OfCCD4-1 were predicted to be involved in low-temperature-regulated carotenoid accumulation. Luciferase assays showed that the promoter activity of OfLCYB1 was activated by low temperature, and repressed by high temperature. However, the promoter activity of OfCCD4-1 was repressed by low temperature, and activated by high temperature. CONCLUSIONS: Our study revealed that high temperature suppressed the floral coloration by repressing the expression of carotenoid biosynthesis genes, and activating the expression of carotenoid degradation genes. However, the relative low temperature had opposite effects on floral coloration and carotenoid biosynthesis in sweet osmanthus. These results will help reveal the regulatory mechanism of temperature on carotenoid accumulation in the petals of sweet osmanthus.


Asunto(s)
Citrus sinensis , Oleaceae , Carotenoides/metabolismo , Citrus sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Oleaceae/genética , Oleaceae/metabolismo , Temperatura
17.
Magn Reson Chem ; 60(2): 247-254, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34464002

RESUMEN

Six new iridoid glycosides, myxosmosides A-F (1-6) were isolated from the roots of Myxopyrum smilacifolium (Wall.) Blume. Their chemical structures were determined using, 1D-, 2D-NMR, and mass spectra and chemical methods.


Asunto(s)
Glucósidos Iridoides , Oleaceae , Glucósidos Iridoides/análisis , Iridoides/análisis , Iridoides/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Raíces de Plantas/química
18.
J Asian Nat Prod Res ; 24(9): 891-897, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34821174

RESUMEN

One new phenylpropanoid glycoside, myxosmoside I (1) and six known compounds, arenarioside (2), verbacoside (3), 3-formylindole (4), 5-hydroxymethyl furfural (5), D-manitol (6), and glycerol monooleate (7) were isolated from the roots of Myxopyrum smilacifolium (Wall.) Blume. Their chemical structures were determined by 1D-, 2D-NMR, and mass spectra, chemical methods, and compared with those reported in the literature. All compounds were evaluated for α-glucosidase inhibitory effect. Among them, phenylpropanoid glycosides 1-3 significantly inhibited α-glucosidase activity with IC50 values of 30.0 ± 0.9, 66.6 ± 2.3, and 36.9 ± 2.0 µM, respectively.


Asunto(s)
Glicósidos Cardíacos , Oleaceae , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Glicósidos/química , Glicósidos/farmacología , Estructura Molecular , alfa-Glucosidasas
19.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142310

RESUMEN

Androdioecy is the crucial transition state in the evolutionary direction of hermaphroditism to dioecy, however, the molecular mechanisms underlying the formation of this sex system remain unclear. While popular in China for its ornamental and cultural value, Osmanthus fragrans has an extremely rare androdioecy breeding system, meaning that there are both male and hermaphroditic plants in a population. To unravel the mechanisms underlying the formation of androdioecy, we performed small RNA sequencing studies on male and hermaphroditic O. fragrans. A total of 334 miRNAs were identified, of which 59 were differentially expressed. Functional categorization revealed that the target genes of differentially expressed miRNAs were mainly involved in the biological processes of reproductive development and the hormone signal transduction pathway. We speculated that the miRNA160, miRNA167, miRNA393 and miRNA396 families may influence the sex differentiation in O. fragrans. Overall, our study is the first exploration of miRNAs in the growth and development process of O. fragrans, and is also the first study of androdioecious plants from the miRNA sequencing perspective. The analysis of miRNAs and target genes that may be involved in the sex differentiation process lay a foundation for the ultimate discovery of the androdioecious molecular mechanism in O. fragrans.


Asunto(s)
MicroARNs , Oleaceae , Hormonas , Humanos , MicroARNs/genética , Oleaceae/genética , Fitomejoramiento , Diferenciación Sexual/genética
20.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36293004

RESUMEN

Osmanthus fragrans flowers have long been used as raw materials in food, tea, beverage, and perfume industries due to their attractive and strong fragrance. The P450 superfamily proteins have been reported to widely participate in the synthesis of plant floral volatile organic compounds (VOCs). To investigate the potential functions of P450 superfamily proteins in the fragrance synthesis of O. fragrans, we investigated the P450 superfamily genome wide. A total of 276 P450 genes were identified belonging to 40 families. The RNA-seq data suggested that many OfCYP genes were preferentially expressed in the flower or other organs, and some were also induced by multiple abiotic stresses. The expression patterns of seven flower-preferentially expressed OfCYPs during the five different flower aroma content stages were further explored using quantitative real-time PCR, showing that the CYP94C subfamily member OfCYP142 had the highest positive correlation with linalool synthesis gene OfTPS2. The transient expression of OfCYP142 in O. fragrans petals suggested that OfCYP142 can increase the content of linalool, an important VOC of the O. fragrans floral aroma, and a similar result was also obtained in flowers of OfCYP142 transgenic tobacco. Combined with RNA-seq data of the transiently transformed O. fragrans petals, we found that the biosynthesis pathway of secondary metabolites was significantly enriched, and many 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes were also upregulated. This evidence indicated that the OfCYP proteins may play critical roles in the flower development and abiotic response of O. fragrans, and that OfCYP142 can participate in linalool synthesis. This study provides valuable information about the functions of P450 genes and a valuable guide for studying further functions of OfCYPs in promoting fragrance biosynthesis of ornamental plants.


Asunto(s)
Oleaceae , Perfumes , Compuestos Orgánicos Volátiles , Humanos , Oleaceae/genética , Flores/genética , Sistema Enzimático del Citocromo P-450/genética ,
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA