Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.380
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 613(7942): 90-95, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36600067

RESUMEN

Organic carbon buried in marine sediment serves as a net sink for atmospheric carbon dioxide and a source of oxygen1,2. The rate of organic carbon burial through geologic history is conventionally established by using the mass balance between inorganic and organic carbon, each with distinct carbon isotopic values (δ13C)3,4. This method is complicated by large uncertainties, however, and has not been tested with organic carbon accumulation data5,6. Here we report a 'bottom-up' approach for calculating the rate of organic carbon burial that is independent from mass balance calculations. We use data from 81 globally distributed sites to establish the history of organic carbon burial during the Neogene (roughly 23-3 Ma). Our results show larger spatiotemporal variability of organic carbon burial than previously estimated7-9. Globally, the burial rate is high towards the early Miocene and Pliocene and lowest during the mid-Miocene, with the latter period characterized by the lowest ratio of organic-to-carbonate burial rates. This is in contrast to earlier work that interpreted enriched carbonate 13C values of the mid-Miocene as massive organic carbon burial (that is, the Monterey Hypothesis)10,11. Suppressed organic carbon burial during the warm mid-Miocene is probably related to temperature-dependent bacterial degradation of organic matter12,13, suggesting that the organic carbon cycle acted as positive feedback of past global warming.


Asunto(s)
Secuestro de Carbono , Sedimentos Geológicos , Océanos y Mares , Ciclo del Carbono , Carbonatos/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Oxígeno/análisis , Historia Antigua , Bacterias/metabolismo , Temperatura , Calentamiento Global , Retroalimentación
2.
Nature ; 619(7970): 521-525, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380780

RESUMEN

The oxygen content of the oceans is susceptible to climate change and has declined in recent decades1, with the largest effect in oxygen-deficient zones (ODZs)2, that is, mid-depth ocean regions with oxygen concentrations <5 µmol kg-1 (ref. 3). Earth-system-model simulations of climate warming predict that ODZs will expand until at least 2100. The response on timescales of hundreds to thousands of years, however, remains uncertain3-5. Here we investigate changes in the response of ocean oxygenation during the warmer-than-present Miocene Climatic Optimum (MCO; 17.0-14.8 million years ago (Ma)). Our planktic foraminifera I/Ca and δ15N data, palaeoceanographic proxies sensitive to ODZ extent and intensity, indicate that dissolved-oxygen concentrations in the eastern tropical Pacific (ETP) exceeded 100 µmol kg-1 during the MCO. Paired Mg/Ca-derived temperature data suggest that an ODZ developed in response to an increased west-to-east temperature gradient and shoaling of the ETP thermocline. Our records align with model simulations of data from recent decades to centuries6,7, suggesting that weaker equatorial Pacific trade winds during warm periods may lead to decreased upwelling in the ETP, causing equatorial productivity and subsurface oxygen demand to be less concentrated in the east. These findings shed light on how warm-climate states such as during the MCO may affect ocean oxygenation. If the MCO is considered as a possible analogue for future warming, our findings seem to support models suggesting that the recent deoxygenation trend and expansion of the ETP ODZ may eventually reverse3,4.


Asunto(s)
Oxígeno , Agua de Mar , Clima Tropical , Cambio Climático/historia , Cambio Climático/estadística & datos numéricos , Oxígeno/análisis , Oxígeno/historia , Océano Pacífico , Agua de Mar/química , Historia Antigua , Historia del Siglo XXI , Modelos Climáticos , Foraminíferos/aislamiento & purificación , Mapeo Geográfico , Incertidumbre
3.
Nature ; 617(7962): 747-754, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37165189

RESUMEN

While early multicellular lineages necessarily started out as relatively simple groups of cells, little is known about how they became Darwinian entities capable of sustained multicellular evolution1-3. Here we investigate this with a multicellularity long-term evolution experiment, selecting for larger group size in the snowflake yeast (Saccharomyces cerevisiae) model system. Given the historical importance of oxygen limitation4, our ongoing experiment consists of three metabolic treatments5-anaerobic, obligately aerobic and mixotrophic yeast. After 600 rounds of selection, snowflake yeast in the anaerobic treatment group evolved to be macroscopic, becoming around 2 × 104 times larger (approximately mm scale) and about 104-fold more biophysically tough, while retaining a clonal multicellular life cycle. This occurred through biophysical adaptation-evolution of increasingly elongate cells that initially reduced the strain of cellular packing and then facilitated branch entanglements that enabled groups of cells to stay together even after many cellular bonds fracture. By contrast, snowflake yeast competing for low oxygen5 remained microscopic, evolving to be only around sixfold larger, underscoring the critical role of oxygen levels in the evolution of multicellular size. Together, this research provides unique insights into an ongoing evolutionary transition in individuality, showing how simple groups of cells overcome fundamental biophysical limitations through gradual, yet sustained, multicellular evolution.


Asunto(s)
Aclimatación , Evolución Biológica , Agregación Celular , Saccharomyces cerevisiae , Modelos Biológicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Anaerobiosis , Aerobiosis , Oxígeno/análisis , Oxígeno/metabolismo , Forma de la Célula , Agregación Celular/fisiología
4.
Nature ; 618(7967): 974-980, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258677

RESUMEN

Phosphorus is a limiting nutrient that is thought to control oceanic oxygen levels to a large extent1-3. A possible increase in marine phosphorus concentrations during the Ediacaran Period (about 635-539 million years ago) has been proposed as a driver for increasing oxygen levels4-6. However, little is known about the nature and evolution of phosphorus cycling during this time4. Here we use carbonate-associated phosphate (CAP) from six globally distributed sections to reconstruct oceanic phosphorus concentrations during a large negative carbon-isotope excursion-the Shuram excursion (SE)-which co-occurred with global oceanic oxygenation7-9. Our data suggest pulsed increases in oceanic phosphorus concentrations during the falling and rising limbs of the SE. Using a quantitative biogeochemical model, we propose that this observation could be explained by carbon dioxide and phosphorus release from marine organic-matter oxidation primarily by sulfate, with further phosphorus release from carbon-dioxide-driven weathering on land. Collectively, this may have resulted in elevated organic-pyrite burial and ocean oxygenation. Our CAP data also seem to suggest equivalent oceanic phosphorus concentrations under maximum and minimum extents of ocean anoxia across the SE. This observation may reflect decoupled phosphorus and ocean anoxia cycles, as opposed to their coupled nature in the modern ocean. Our findings point to external stimuli such as sulfate weathering rather than internal oceanic phosphorus-oxygen cycling alone as a possible control on oceanic oxygenation in the Ediacaran. In turn, this may help explain the prolonged rise of atmospheric oxygen levels.


Asunto(s)
Océanos y Mares , Fósforo , Agua de Mar , Atmósfera/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Sedimentos Geológicos/química , Historia Antigua , Hipoxia/metabolismo , Oxígeno/análisis , Oxígeno/historia , Oxígeno/metabolismo , Fósforo/análisis , Fósforo/historia , Fósforo/metabolismo , Agua de Mar/química , Sulfatos/metabolismo , Carbonatos/análisis , Carbonatos/metabolismo , Oxidación-Reducción
5.
Nature ; 615(7953): 640-645, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890233

RESUMEN

The Devonian-Carboniferous transition marks a fundamental shift in the surface environment primarily related to changes in ocean-atmosphere oxidation states1,2, resulting from the continued proliferation of vascular land plants that stimulated the hydrological cycle and continental weathering3,4, glacioeustasy5,6, eutrophication and anoxic expansion in epicontinental seas3,4, and mass extinction events2,7,8. Here we present a comprehensive spatial and temporal compilation of geochemical data from 90 cores across the entire Bakken Shale (Williston Basin, North America). Our dataset allows for the detailed documentation of stepwise transgressions of toxic euxinic waters into the shallow oceans that drove a series of Late Devonian extinction events. Other Phanerozoic extinctions have also been related to the expansion of shallow-water euxinia, indicating that hydrogen sulfide toxicity was a key driver of Phanerozoic biodiversity.


Asunto(s)
Extinción Biológica , Sulfuro de Hidrógeno , Océanos y Mares , Oxígeno , Análisis Espacio-Temporal , Biodiversidad , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/envenenamiento , Atmósfera/química , Ciclo Hidrológico , Eutrofización , Conjuntos de Datos como Asunto , Oxígeno/análisis , Oxígeno/metabolismo , Oxidación-Reducción , Plantas/metabolismo , América del Norte , Historia Antigua , Sedimentos Geológicos/química , Animales
6.
Nature ; 608(7923): 523-527, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35978129

RESUMEN

The early evolutionary and much of the extinction history of marine animals is thought to be driven by changes in dissolved oxygen concentrations ([O2]) in the ocean1-3. In turn, [O2] is widely assumed to be dominated by the geological history of atmospheric oxygen (pO2)4,5. Here, by contrast, we show by means of a series of Earth system model experiments how continental rearrangement during the Phanerozoic Eon drives profound variations in ocean oxygenation and induces a fundamental decoupling in time between upper-ocean and benthic [O2]. We further identify the presence of state transitions in the global ocean circulation, which lead to extensive deep-ocean anoxia developing in the early Phanerozoic even under modern pO2. Our finding that ocean oxygenation oscillates over stable thousand-year (kyr) periods also provides a causal mechanism that might explain elevated rates of metazoan radiation and extinction during the early Palaeozoic Era6. The absence, in our modelling, of any simple correlation between global climate and ocean ventilation, and the occurrence of profound variations in ocean oxygenation independent of atmospheric pO2, presents a challenge to the interpretation of marine redox proxies, but also points to a hitherto unrecognized role for continental configuration in the evolution of the biosphere.


Asunto(s)
Océanos y Mares , Oxígeno , Animales , Evolución Biológica , Biota , Planeta Tierra , Extinción Biológica , Historia Antigua , Oxígeno/análisis , Oxígeno/metabolismo , Factores de Tiempo , Movimientos del Agua
7.
Nature ; 609(7925): 77-82, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045236

RESUMEN

Dissolved oxygen (O2) is essential for most ocean ecosystems, fuelling organisms' respiration and facilitating the cycling of carbon and nutrients. Oxygen measurements have been interpreted to indicate that the ocean's oxygen-deficient zones (ODZs) are expanding under global warming1,2. However, models provide an unclear picture of future ODZ change in both the near term and the long term3-6. The paleoclimate record can help explore the possible range of ODZ changes in warmer-than-modern periods. Here we use foraminifera-bound nitrogen (N) isotopes to show that water-column denitrification in the eastern tropical North Pacific was greatly reduced during the Middle Miocene Climatic Optimum (MMCO) and the Early Eocene Climatic Optimum (EECO). Because denitrification is restricted to oxygen-poor waters, our results indicate that, in these two Cenozoic periods of sustained warmth, ODZs were contracted, not expanded. ODZ contraction may have arisen from a decrease in upwelling-fuelled biological productivity in the tropical Pacific, which would have reduced oxygen demand in the subsurface. Alternatively, invigoration of deep-water ventilation by the Southern Ocean may have weakened the ocean's 'biological carbon pump', which would have increased deep-ocean oxygen. The mechanism at play would have determined whether the ODZ contractions occurred in step with the warming or took centuries or millennia to develop. Thus, although our results from the Cenozoic do not necessarily apply to the near-term future, they might imply that global warming may eventually cause ODZ contraction.


Asunto(s)
Ecosistema , Calor , Oxígeno , Agua de Mar , Regiones Antárticas , Carbono/metabolismo , Desnitrificación , Foraminíferos/metabolismo , Calentamiento Global , Historia Antigua , Isótopos de Nitrógeno , Oxígeno/análisis , Oxígeno/metabolismo , Océano Pacífico , Agua de Mar/química
8.
Nature ; 594(7861): 66-70, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079137

RESUMEN

The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.


Asunto(s)
Lagos/química , Oxígeno/análisis , Oxígeno/metabolismo , Temperatura , Animales , Cambio Climático , Ecosistema , Océanos y Mares , Oxígeno/química , Fitoplancton/metabolismo , Solubilidad , Factores de Tiempo
9.
Nature ; 600(7889): 395-407, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34912083

RESUMEN

The ocean is warming, losing oxygen and being acidified, primarily as a result of anthropogenic carbon emissions. With ocean warming, acidification and deoxygenation projected to increase for decades, extreme events, such as marine heatwaves, will intensify, occur more often, persist for longer periods of time and extend over larger regions. Nevertheless, our understanding of oceanic extreme events that are associated with warming, low oxygen concentrations or high acidity, as well as their impacts on marine ecosystems, remains limited. Compound events-that is, multiple extreme events that occur simultaneously or in close sequence-are of particular concern, as their individual effects may interact synergistically. Here we assess patterns and trends in open ocean extremes based on the existing literature as well as global and regional model simulations. Furthermore, we discuss the potential impacts of individual and compound extremes on marine organisms and ecosystems. We propose a pathway to improve the understanding of extreme events and the capacity of marine life to respond to them. The conditions exhibited by present extreme events may be a harbinger of what may become normal in the future. As a consequence, pursuing this research effort may also help us to better understand the responses of marine organisms and ecosystems to future climate change.


Asunto(s)
Ácidos/análisis , Organismos Acuáticos , Modelos Climáticos , Ecosistema , Calentamiento Global/estadística & datos numéricos , Océanos y Mares , Oxígeno/análisis , Ácidos/química , Animales , Organismos Acuáticos/fisiología , Calor Extremo/efectos adversos , Cadena Alimentaria , Concentración de Iones de Hidrógeno , Oxígeno/química
10.
Nature ; 592(7853): 232-236, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33782617

RESUMEN

The rise of atmospheric oxygen fundamentally changed the chemistry of surficial environments and the nature of Earth's habitability1. Early atmospheric oxygenation occurred over a protracted period of extreme climatic instability marked by multiple global glaciations2,3, with the initial rise of oxygen concentration to above 10-5 of the present atmospheric level constrained to about 2.43 billion years ago4,5. Subsequent fluctuations in atmospheric oxygen levels have, however, been reported to have occurred until about 2.32 billion years ago4, which represents the estimated timing of irreversible oxygenation of the atmosphere6,7. Here we report a high-resolution reconstruction of atmospheric and local oceanic redox conditions across the final two glaciations of the early Palaeoproterozoic era, as documented by marine sediments from the Transvaal Supergroup, South Africa. Using multiple sulfur isotope and iron-sulfur-carbon systematics, we demonstrate continued oscillations in atmospheric oxygen levels after about 2.32 billion years ago that are linked to major perturbations in ocean redox chemistry and climate. Oxygen levels thus fluctuated across the threshold of 10-5 of the present atmospheric level for about 200 million years, with permanent atmospheric oxygenation finally arriving with the Lomagundi carbon isotope excursion at about 2.22 billion years ago, some 100 million years later than currently estimated.


Asunto(s)
Atmósfera/química , Oxígeno/análisis , Oxígeno/historia , Isótopos de Carbono/análisis , Carbonatos/análisis , Clima , Ecosistema , Sedimentos Geológicos/química , Historia Antigua , Océanos y Mares , Oxidación-Reducción , Agua de Mar/química , Sudáfrica , Isótopos de Azufre/análisis , Factores de Tiempo
11.
N Engl J Med ; 386(17): 1627-1637, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35476651

RESUMEN

BACKGROUND: Neonatal endotracheal intubation often involves more than one attempt, and oxygen desaturation is common. It is unclear whether nasal high-flow therapy, which extends the time to desaturation during elective intubation in children and adults receiving general anesthesia, can improve the likelihood of successful neonatal intubation on the first attempt. METHODS: We performed a randomized, controlled trial to compare nasal high-flow therapy with standard care (no nasal high-flow therapy or supplemental oxygen) in neonates undergoing oral endotracheal intubation at two Australian tertiary neonatal intensive care units. Randomization of intubations to the high-flow group or the standard-care group was stratified according to trial center, the use of premedication for intubation (yes or no), and postmenstrual age of the infant (≤28 or >28 weeks). The primary outcome was successful intubation on the first attempt without physiological instability (defined as an absolute decrease in the peripheral oxygen saturation of >20% from the preintubation baseline level or bradycardia with a heart rate of <100 beats per minute) in the infant. RESULTS: The primary intention-to-treat analysis included the outcomes of 251 intubations in 202 infants; 124 intubations were assigned to the high-flow group and 127 to the standard-care group. The infants had a median postmenstrual age of 27.9 weeks and a median weight of 920 g at the time of intubation. A successful intubation on the first attempt without physiological instability was achieved in 62 of 124 intubations (50.0%) in the high-flow group and in 40 of 127 intubations (31.5%) in the standard-care group (adjusted risk difference, 17.6 percentage points; 95% confidence interval [CI], 6.0 to 29.2), for a number needed to treat of 6 (95% CI, 4 to 17) for 1 infant to benefit. Successful intubation on the first attempt regardless of physiological stability was accomplished in 68.5% of the intubations in the high-flow group and in 54.3% of the intubations in the standard-care group (adjusted risk difference, 15.8 percentage points; 95% CI, 4.3 to 27.3). CONCLUSIONS: Among infants undergoing endotracheal intubation at two Australian tertiary neonatal intensive care units, nasal high-flow therapy during the procedure improved the likelihood of successful intubation on the first attempt without physiological instability in the infant. (Funded by the National Health and Medical Research Council; Australian New Zealand Clinical Trials Registry number, ACTRN12618001498280.).


Asunto(s)
Intubación Intratraqueal , Terapia por Inhalación de Oxígeno , Australia , Procedimientos Quirúrgicos Electivos , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Intubación Intratraqueal/métodos , Oxígeno/análisis , Terapia por Inhalación de Oxígeno/métodos
12.
Nature ; 570(7760): 228-231, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31190013

RESUMEN

The balance between photosynthetic organic carbon production and respiration controls atmospheric composition and climate1,2. The majority of organic carbon is respired back to carbon dioxide in the biosphere, but a small fraction escapes remineralization and is preserved over geological timescales3. By removing reduced carbon from Earth's surface, this sequestration process promotes atmospheric oxygen accumulation2 and carbon dioxide removal1. Two major mechanisms have been proposed to explain organic carbon preservation: selective preservation of biochemically unreactive compounds4,5 and protection resulting from interactions with a mineral matrix6,7. Although both mechanisms can operate across a range of environments and timescales, their global relative importance on 1,000-year to 100,000-year timescales remains uncertain4. Here we present a global dataset of the distributions of organic carbon activation energy and corresponding radiocarbon ages in soils, sediments and dissolved organic carbon. We find that activation energy distributions broaden over time in all mineral-containing samples. This result requires increasing bond-strength diversity, consistent with the formation of organo-mineral bonds8 but inconsistent with selective preservation. Radiocarbon ages further reveal that high-energy, mineral-bound organic carbon persists for millennia relative to low-energy, unbound organic carbon. Our results provide globally coherent evidence for the proposed7 importance of mineral protection in promoting organic carbon preservation. We suggest that similar studies of bond-strength diversity in ancient sediments may reveal how and why organic carbon preservation-and thus atmospheric composition and climate-has varied over geological time.


Asunto(s)
Secuestro de Carbono , Carbono/análisis , Carbono/química , Sedimentos Geológicos/química , Suelo/química , Atmósfera/química , Carbono/metabolismo , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Respiración de la Célula , Conjuntos de Datos como Asunto , República Democrática del Congo , Pradera , Oxígeno/análisis , Oxígeno/metabolismo , Fotosíntesis , Ríos
13.
Proc Natl Acad Sci U S A ; 119(45): e2204986119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322766

RESUMEN

The modern Pacific Ocean hosts the largest oxygen-deficient zones (ODZs), where oxygen concentrations are so low that nitrate is used to respire organic matter. The history of the ODZs may offer key insights into ocean deoxygenation under future global warming. In a 12-My record from the southeastern Pacific, we observe a >10‰ increase in foraminifera-bound nitrogen isotopes (15N/14N) since the late Miocene (8 to 9 Mya), indicating large ODZs expansion. Coinciding with this change, we find a major increase in the nutrient content of the ocean, reconstructed from phosphorus and iron measurements of hydrothermal sediments at the same site. Whereas global warming studies cast seawater oxygen concentrations as mainly dependent on climate and ocean circulation, our findings indicate that modern ODZs are underpinned by historically high concentrations of seawater phosphate.


Asunto(s)
Foraminíferos , Agua de Mar , Océanos y Mares , Océano Pacífico , Oxígeno/análisis , Nutrientes
14.
Proc Natl Acad Sci U S A ; 119(32): e2206321119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914135

RESUMEN

A fundamental understanding of extracellular microenvironments of O2 and reactive oxygen species (ROS) such as H2O2, ubiquitous in microbiology, demands high-throughput methods of mimicking, controlling, and perturbing gradients of O2 and H2O2 at microscopic scale with high spatiotemporal precision. However, there is a paucity of high-throughput strategies of microenvironment design, and it remains challenging to achieve O2 and H2O2 heterogeneities with microbiologically desirable spatiotemporal resolutions. Here, we report the inverse design, based on machine learning (ML), of electrochemically generated microscopic O2 and H2O2 profiles relevant for microbiology. Microwire arrays with suitably designed electrochemical catalysts enable the independent control of O2 and H2O2 profiles with spatial resolution of ∼101 µm and temporal resolution of ∼10° s. Neural networks aided by data augmentation inversely design the experimental conditions needed for targeted O2 and H2O2 microenvironments while being two orders of magnitude faster than experimental explorations. Interfacing ML-based inverse design with electrochemically controlled concentration heterogeneity creates a viable fast-response platform toward better understanding the extracellular space with desirable spatiotemporal control.


Asunto(s)
Microambiente Celular , Electroquímica , Peróxido de Hidrógeno , Aprendizaje Automático , Oxígeno , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Oxígeno/análisis , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(43): e2109315119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252021

RESUMEN

The characterization of Neandertals' diets has mostly relied on nitrogen isotope analyses of bone and tooth collagen. However, few nitrogen isotope data have been recovered from bones or teeth from Iberia due to poor collagen preservation at Paleolithic sites in the region. Zinc isotopes have been shown to be a reliable method for reconstructing trophic levels in the absence of organic matter preservation. Here, we present the results of zinc (Zn), strontium (Sr), carbon (C), and oxygen (O) isotope and trace element ratio analysis measured in dental enamel on a Pleistocene food web in Gabasa, Spain, to characterize the diet and ecology of a Middle Paleolithic Neandertal individual. Based on the extremely low δ66Zn value observed in the Neandertal's tooth enamel, our results support the interpretation of Neandertals as carnivores as already suggested by δ15N isotope values of specimens from other regions. Further work could help identify if such isotopic peculiarities (lowest δ66Zn and highest δ15N of the food web) are due to a metabolic and/or dietary specificity of the Neandertals.


Asunto(s)
Carnívoros , Hombre de Neandertal , Diente , Oligoelementos , Animales , Carbono/análisis , Isótopos de Carbono/análisis , Colágeno , Esmalte Dental/química , Dieta , Isótopos de Nitrógeno/análisis , Oxígeno/análisis , España , Estroncio/análisis , Diente/química , Oligoelementos/análisis , Zinc/análisis , Isótopos de Zinc/análisis
16.
Environ Microbiol ; 26(1): e16557, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38173306

RESUMEN

Marine snow and other particles are abundant in estuaries, where they drive biogeochemical transformations and elemental transport. Particles range in size, thereby providing a corresponding gradient of habitats for marine microorganisms. We used standard normalized amplicon sequencing, verified with microscopy, to characterize taxon-specific microbial abundances, (cells per litre of water and per milligrams of particles), across six particle size classes, ranging from 0.2 to 500 µm, along the main stem of the Chesapeake Bay estuary. Microbial communities varied in salinity, oxygen concentrations, and particle size. Many taxonomic groups were most densely packed on large particles (in cells/mg particles), yet were primarily associated with the smallest particle size class, because small particles made up a substantially larger portion of total particle mass. However, organisms potentially involved in methanotrophy, nitrite oxidation, and sulphate reduction were found primarily on intermediately sized (5-180 µm) particles, where species richness was also highest. All abundant ostensibly free-living organisms, including SAR11 and Synecococcus, appeared on particles, albeit at lower abundance than in the free-living fraction, suggesting that aggregation processes may incorporate them into particles. Our approach opens the door to a more quantitative understanding of the microscale and macroscale biogeography of marine microorganisms.


Asunto(s)
Bahías , Microbiota , Tamaño de la Partícula , Salinidad , Oxígeno/análisis , Estuarios
17.
New Phytol ; 242(3): 975-987, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38439696

RESUMEN

Stable oxygen isotope ratio of tree-ring α-cellulose (δ18Ocel) yields valuable information on many aspects of tree-climate interactions. However, our current understanding of the mechanistic controls on δ18Ocel is incomplete, with a knowledge gap existent regarding the fractionation effect characterizing carbonyl-water oxygen exchange during sucrose translocation from leaf to phloem. To address this insufficiency, we set up an experimental system integrating a vapor 18O-labeling feature to manipulate leaf-level isotopic signatures in tree saplings enclosed within whole-canopy gas-exchange cuvettes. We applied this experimental system to three different tree species to determine their respective relationships between 18O enrichment of sucrose in leaf lamina (Δ18Ol_suc) and petiole phloem (Δ18Ophl_suc) under environmentally/physiologically stable conditions. Based on the determined Δ18Ophl_suc-Δ18Ol_suc relationships, we estimated that on average, at least 25% of the oxygen atoms in sucrose undergo isotopic exchange with water along the leaf-to-phloem translocation path and that the biochemical fractionation factor accounting for such exchange is c. 34‰, markedly higher than the conventionally assumed value of 27‰. Our study represents a significant step toward quantitative elucidation of the oxygen isotope dynamics during sucrose translocation in trees. This has important implications with respect to improving the δ18Ocel model and its related applications in paleoclimatic and ecophysiological contexts.


Asunto(s)
Oxígeno , Árboles , Oxígeno/análisis , Sacarosa , Agua/análisis , Floema , Isótopos de Oxígeno/análisis , Hojas de la Planta/química , Isótopos de Carbono/análisis
18.
Glob Chang Biol ; 30(5): e17301, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38687496

RESUMEN

Streams are significant contributors of greenhouse gases (GHG) to the atmosphere, and the increasing number of stressors degrading freshwaters may exacerbate this process, posing a threat to climatic stability. However, it is unclear whether the influence of multiple stressors on GHG concentrations in streams results from increases of in-situ metabolism (i.e., local processes) or from changes in upstream and terrestrial GHG production (i.e., distal processes). Here, we hypothesize that the mechanisms controlling multiple stressor effects vary between carbon dioxide (CO2) and methane (CH4), with the latter being more influenced by changes in local stream metabolism, and the former mainly responding to distal processes. To test this hypothesis, we measured stream metabolism and the concentrations of CO2 (pCO2) and CH4 (pCH4) in 50 stream sites that encompass gradients of nutrient enrichment, oxygen depletion, thermal stress, riparian degradation and discharge. Our results indicate that these stressors had additive effects on stream metabolism and GHG concentrations, with stressor interactions explaining limited variance. Nutrient enrichment was associated with higher stream heterotrophy and pCO2, whereas pCH4 increased with oxygen depletion and water temperature. Discharge was positively linked to primary production, respiration and heterotrophy but correlated negatively with pCO2. Our models indicate that CO2-equivalent concentrations can more than double in streams that experience high nutrient enrichment and oxygen depletion, compared to those with oligotrophic and oxic conditions. Structural equation models revealed that the effects of nutrient enrichment and discharge on pCO2 were related to distal processes rather than local metabolism. In contrast, pCH4 responses to nutrient enrichment, discharge and temperature were related to both local metabolism and distal processes. Collectively, our study illustrates potential climatic feedbacks resulting from freshwater degradation and provides insight into the processes mediating stressor impacts on the production of GHG in streams.


Os rios são grandes emissores de gases com efeito de estufa (GEE) para a atmosfera, e o crescente número de agentes de stress que degradam os rios pode exacerbar este processo, e constituir uma ameaça à estabilidade climática. No entanto, não é claro se o efeito dos impactos humanos nas concentrações de GEE na água está associado ao aumento do metabolismo local do rio (processos locais) ou ao aumento da produção de GEE nas zonas a montante dos rios ou nas zonas terrestres adjacentes (processos distais). A nossa hipótese é que os mecanismos que controlam os efeitos dos impactos humanos na emissão de GEE variam entre o dióxido de carbono (CO2) e o metano (CH4). A nossa previsão é que o CO2 responde principalmente a processos distais, enquanto o CH4 é mais influenciado por alterações no metabolismo local dos cursos de água. Para avaliar esta hipótese, medimos o metabolismo aquático e as concentrações de CO2 (pCO2) e CH4 (pCH4) em 50 rios que abrangem gradientes de enriquecimento em nutrientes, depleção de oxigénio, stress térmico, degradação da zona ribeirinha e caudal. Os nossos resultados indicam que estes agentes de stress tiveram efeitos aditivos no metabolismo e nas concentrações de GEE nos rios, e que as interações entre os agentes de stress tiveram pouca capacidade preditiva. O enriquecimento em nutrientes foi associado a um aumento da heterotrofia e pCO2, enquanto o pCH4 aumentou com a depleção de oxigénio e com a temperatura da água. O caudal estava positivamente correlacionado com a produção primária, a respiração e a heterotrofia, mas negativamente correlacionado com o pCO2. Os nossos modelos indicam que as concentrações equivalentes de CO2 podem duplicar em rios eutrofizados e com baixa concentração de oxigénio, em comparação com os rios oligotróficos e com águas bem oxigenadas. A aplicação de modelos de equações estruturais mostrou que os efeitos do enriquecimento em nutrientes e do caudal no pCO2 estavam relacionados com processos distais e não com o metabolismo local. Em contrapartida, as respostas do pCH4 ao enriquecimento de nutrientes, ao caudal e à temperatura estavam relacionadas tanto com o metabolismo local como com processos distais. O nosso estudo demonstra que a degradação dos rios e dos ecossistemas ribeirinhos pode ter efeitos negativos na estabilidade climática e fornece informação relevante sobre os processos biogeoquímicos que medeiam os impactos humanos na produção de GEE nos rios.


Asunto(s)
Dióxido de Carbono , Gases de Efecto Invernadero , Metano , Ríos , Gases de Efecto Invernadero/análisis , Ríos/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Metano/análisis , Metano/metabolismo , Cambio Climático , Temperatura , Oxígeno/análisis , Oxígeno/metabolismo
19.
Analyst ; 149(9): 2609-2620, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535830

RESUMEN

Cellular metabolism has been closely linked to activation state in cells of the immune system, and the oxygen consumption rate (OCR) in particular serves as a valuable metric for assessing metabolic activity. Several oxygen sensing assays have been reported for cells in standard culture conditions. However, none have provided a spatially resolved, optical measurement of local oxygen consumption in intact tissue samples, making it challenging to understand regional dynamics of consumption. Therefore, here we established a system to monitor the rates of oxygen consumption in ex vivo tissue slices, using murine lymphoid tissue as a case study. By integrating an optical oxygen sensor into a sealed perfusion chamber and incorporating appropriate correction for photobleaching of the sensor and of tissue autofluorescence, we were able to visualize and quantify rates of oxygen consumption in tissue. This method revealed for the first time that the rate of oxygen consumption in naïve lymphoid tissue was higher in the T cell region compared to the B cell and cortical regions. To validate the method, we measured OCR in the T cell regions of naïve lymph node slices using the optical assay and estimated the consumption rate per cell. The predictions from the optical assay were similar to reported values and were not significantly different from those of the Seahorse metabolic assay, a gold standard method for measuring OCR in cell suspensions. Finally, we used this method to quantify the rate of onset of tissue hypoxia for lymph node slices cultured in a sealed chamber and showed that continuous perfusion was sufficient to maintain oxygenation. In summary, this work establishes a method to monitor oxygen consumption with regional resolution in intact tissue explants, suitable for future use to compare tissue culture conditions and responses to stimulation.


Asunto(s)
Ganglios Linfáticos , Consumo de Oxígeno , Animales , Consumo de Oxígeno/fisiología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/citología , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Oxígeno/análisis , Linfocitos T/metabolismo , Linfocitos T/citología
20.
Environ Sci Technol ; 58(6): 2881-2890, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38297912

RESUMEN

The use of microbial electrochemical sensors, with electroactive biofilms (EABs) as sensing elements, is a promising strategy to timely measure the biochemical oxygen demand (BOD) of wastewater. However, accumulation of Coulombic yield over a complete degradation cycle is time-consuming. Therefore, understanding the correlation between current output and EAB metabolism is urgently needed. Here, we recognized a tail stage (TS) on a current-time curve according to current increase rate─a period with the least electron harvesting efficiency. EAB adopted a series of metabolic compensation strategies, including slow metabolism of residual BOD, suspended growth, reduced cell activity, and consumption of carbon storage polymers, to cope with substrate deficiency in TS. The supplementary electrons provided by the decomposition of glycogen and fatty acid polymers increased the Coulombic efficiencies of TS to >100%. The tail current produced by spontaneous metabolic compensation showed a trend of convergent exponential decay, independent of BOD concentration. Therefore, we proposed the TS prediction model (TSPM) to predict Coulombic yield, which shortened BOD measurement time by 96% (to ∼0.5 h) with deviation <4 mg/L when using real domestic wastewater. Our findings on current output in TS give insights into bacterial substrate storage and consumption, as well as regulation in substrate-deficient environment, and provide a basis for developing BOD sensors.


Asunto(s)
Técnicas Biosensibles , Aguas Residuales , Biopelículas , Bacterias/metabolismo , Oxígeno/análisis , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA