Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.603
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 299(1): 102748, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436564

RESUMEN

Crustaceans have an open vascular system in which hemocytes freely circulate in hemolymph. Hemocytes are rich in hemocyanin, a specific oxygen-transport protein in crustaceans; therefore, understanding the response of hemocytes to hypoxia is crucial. Although hemocytes take up glucose during hypoxia, the molecular mechanism of glucose uptake in crustaceans remains unclear. Herein, we identified two highly conserved glucose transporters (GLUT1 and GLUT2) in Macrobrachium nipponense (oriental river prawn) and analyzed their tissue-specific expression patterns. Our immunofluorescence assays showed that GLUT1 and GLUT2 are located on the cell membrane, with a strong GLUT1 signal in primary hemocytes under hypoxia. We found that during acute hypoxia, hypoxia-inducible factor-1α-related metabolic alterations result in decreased mitochondrial cytochrome c oxidase activity, implying a classic glycolytic mechanism. As a proof of concept, we replicated these findings in insect S2 cells. Acute hypoxia significantly induced hypoxia-inducible factor-1α, GLUT1, and pyruvate dehydrogenase kinase isozyme 1 expression in primary hemocytes, and hypoxia-induced increases in glucose uptake and lactate secretion were observed. GLUT1 knockdown induced intracellular reactive oxygen species generation and apoptosis in vitro and in vivo, resulting in increased prawn mortality and more apoptotic cells in their brains, implying a vital function of GLUT1 in hypoxia adaptation. Taken together, our results suggest a close relationship between hypoxia-mediated glycolysis and GLUT1 in hemocytes. These results demonstrated that in crustaceans, adaptation to hypoxia involves glucose metabolic plasticity.


Asunto(s)
Palaemonidae , Animales , Palaemonidae/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Hemocitos/metabolismo , Regulación de la Expresión Génica , Hipoxia/metabolismo , Glucosa/metabolismo
2.
BMC Genomics ; 25(1): 35, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183039

RESUMEN

BACKGROUND: Macrobrachium nipponense is a freshwater prawn of economic importance in China. Its reproductive molt is crucial for seedling rearing and directly impacts the industry's economic efficiency. 20-hydroxyecdysone (20E) controls various physiological behaviors in crustaceans, among which is the initiation of molt. Previous studies have shown that 20E plays a vital role in regulating molt and oviposition in M. nipponense. However, research on the molecular mechanisms underlying the reproductive molt and role of 20E in M. nipponense is still limited. RESULTS: A total of 240.24 Gb of data was obtained from 18 tissue samples by transcriptome sequencing, with > 6 Gb of clean reads per sample. The efficiency of comparison with the reference transcriptome ranged from 87.05 to 92.48%. A total of 2532 differentially expressed genes (DEGs) were identified. Eighty-seven DEGs associated with molt or 20E were screened in the transcriptomes of the different tissues sampled in both the experimental and control groups. The reliability of the RNA sequencing data was confirmed using Quantitative Real-Time PCR. The expression levels of the eight strong candidate genes showed significant variation at the different stages of molt. CONCLUSION: This study established the first transcriptome library for the different tissues of M. nipponense in response to 20E and demonstrated the dominant role of 20E in the molting process of this species. The discovery of a large number of 20E-regulated strong candidate DEGs further confirms the extensive regulatory role of 20E and provides a foundation for the deeper understanding of its molecular regulatory mechanisms.


Asunto(s)
Palaemonidae , Transcriptoma , Femenino , Animales , Ecdisterona/farmacología , Palaemonidae/genética , Reproducibilidad de los Resultados , Perfilación de la Expresión Génica
3.
BMC Genomics ; 25(1): 765, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107708

RESUMEN

Macrobrachium nipponense is an important commercial freshwater species in China. However, the ability of alkali tolerance of M. nipponense is insufficient to culture in the major saline-alkali water source in China. Thus, it is urgently needed to perform the genetic improvement of alkali tolerance in this species. In the present study, we aimed to analyse the effects of alkali treatment on gills in this species after 96 h alkalinity exposure under the alkali concentrations of 0 mmol/L, 4 mmol/L, 8 mmol/L, and 12 mmol/L through performing the histological observations, measurement of antioxidant enzymes, metabolic profiling analysis, and transcriptome profiling analysis. The results of the present study revealed that alkali treatment stimulated the contents of malondialdehyde, glutathione, glutathione peroxidase in gills, indicating these antioxidant enzymes plays essential roles in the protection of body from the damage, caused by the alkali treatment. In addition, high concentration of alkali treatment (> 8 mmol/L) resulted in the damage of gill membrane and haemolymph vessel, affecting the normal respiratory function of gill. Metabolic profiling analysis revealed that Metabolic pathways, Biosynthesis of secondary metabolites, Biosynthesis of plant secondary metabolites, Microbial metabolism in diverse environments, Biosynthesis of amino acids were identified as the main enriched metabolic pathways of differentially expressed metabolites, which are consistent with the previous publications, treated by the various environmental factors. Transcriptome profiling analyses revealed that the alkali concentration of 12 mmol/L has more regulatory effects on the changes of gene expression than the other alkali concentrations. KEGG analysis revealed that Phagosome, Lysosome, Glycolysis/Gluconeogenesis, Purine Metabolism, Amino sugar and nucleotide sugar metabolism, and Endocytosis were identified as the main enriched metabolic pathways in the present study, predicting these metabolic pathways may be involved in the adaption of alkali treatment in M. nipponense. Phagosome, Lysosome, Purine Metabolism, and Endocytosis are immune-related metabolic pathways, while Glycolysis/Gluconeogenesis, and Amino sugar and nucleotide sugar metabolism are energy metabolism-related metabolic pathways. Quantitative PCR analyses of differentially expressed genes (DEGs) verified the accuracy of the RNA-Seq. Alkali treatment significantly stimulated the expressions of DEGs from the metabolic pathways of Phagosome and Lysosome, suggesting Phagosome and Lysosome play essential roles in the regulation of alkali tolerance in this species, as well as the genes from these metabolic pathways. The present study identified the effects of alkali treatment on gills, providing valuable evidences for the genetic improvement of alkali tolerance in M. nipponense.


Asunto(s)
Álcalis , Branquias , Palaemonidae , Animales , Branquias/metabolismo , Branquias/efectos de los fármacos , Palaemonidae/genética , Palaemonidae/efectos de los fármacos , Palaemonidae/metabolismo , Perfilación de la Expresión Génica , Transcriptoma/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos
4.
Dev Genes Evol ; 234(1): 21-32, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616194

RESUMEN

Dmrt (doublesex and mab-3 related transcription factor) is a protein family of transcription factors implicated in sexual regulation. Dmrt proteins are widely conserved and known for their involvement in sex determination and differentiation across species, from invertebrates to humans. In this study, we identified a novel gene with a DM (doublesex/Mab-3)-domain gene in the river prawn, Macrobrachium nipponense, which we named MniDmrt1B due to its similarities and close phylogenetic relationship with Dmrt1B in Macrobrachium rosenbergii. Through amino acid alignments and structural predictions, we observed conservation and identified putative active sites within the DM domain. qRT-PCR analysis revealed that MniDmrt1B exhibited high expression levels in the testis, with consistently higher expression in males compared to females during development. Additionally, similar to other sex-regulated genes, the MniDmrt1B gene exhibited high expression levels during the sex differentiation-sensitive periods in M. nipponense. These results strongly indicated that MniDmrt1B probably plays an important role in testis development and sex differentiation in M. nipponense.


Asunto(s)
Proteínas de Artrópodos , Palaemonidae , Factores de Transcripción , Animales , Femenino , Masculino , Secuencia de Aminoácidos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/química , Regulación del Desarrollo de la Expresión Génica , Palaemonidae/genética , Palaemonidae/crecimiento & desarrollo , Palaemonidae/metabolismo , Filogenia , Alineación de Secuencia , Diferenciación Sexual/genética , Testículo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/química
5.
Biol Reprod ; 110(5): 1000-1011, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38408206

RESUMEN

The germ cell-less gene is crucial for gonad development in various organisms. Early interventions in its expression suggested a regulatory role at the mitotic stages of spermatogenesis, and its early knockout resulted in complete sterility in Drosophila. Genomic and transcriptomic data available for the catadromous giant prawn Macrobrachium rosenbergii enabled the identification of a germ cell-less homolog for this species, which we termed MroGCL (mRNA accession number OQ533056). An open reading frame containing 494 amino acids and a typical evolutionarily conserved BTB/POZ domain suggests possible protein-protein interaction functions in keeping with the Drosophila germ cell-less protein. Genomic mapping of MroGCL showed a full length of 120 896 bases. Analysis of the temporal expression of MroGCL showed constant expression in early prawn embryonic and larval stages, but a significant increase 10 days after metamorphosis when crucial sexual differentiation processes occur in prawns. In adult animals, high expression was detected in the gonads compared to the somatic tissues. RNAi-based knock-down experiments showed that both the silenced and control groups reached advanced spermatogenic stages, but that there was a significant decrease in the yield of spermatozoa in about half of the silenced animals. This finding supports our hypothesis that MroGCL is crucial for mitosis during early stage spermatogenesis. In conclusion, this study contributes to the understanding of crustacean gonad development and provides a stepping stone in the development of environmentally valuable sterile crustacean populations.


Asunto(s)
Palaemonidae , Espermatogénesis , Animales , Palaemonidae/genética , Palaemonidae/fisiología , Espermatogénesis/fisiología , Espermatogénesis/genética , Masculino , Secuencia de Aminoácidos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
6.
Cell Tissue Res ; 397(2): 125-146, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878176

RESUMEN

In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.


Asunto(s)
Palaemonidae , Animales , Palaemonidae/metabolismo , Palaemonidae/genética , Masculino , Femenino , Agua Dulce , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética , Acuaporinas/metabolismo , Acuaporinas/genética
7.
Cell Tissue Res ; 397(1): 13-36, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38592496

RESUMEN

Neuropeptide F is a key hormone that controls feeding in invertebrates, including decapod crustaceans. We investigated the differential expression of Macrobrachium rosenbergii neuropeptide F (MrNPF) in the digestive organs of female prawns, M. rosenbergii, during the ovarian cycle. By using RT-qPCR, the expression of MrNPF mRNA in the esophagus (ESO), cardia (CD), and pylorus (PY) of the foregut (FG) gradually increased from stage II and peaked at stage III. In the midgut (MG), hindgut (HG), and hepatopancreas (HP), MrNPF mRNA increased from stage I, reaching a maximal level at stage II, and declined by about half at stages III and IV (P < 0.05). In the ESO, CD, and PY, strong MrNPF-immunoreactivities were seen in the epithelium, muscle, and lamina propria. Intense MrNPF-ir was found in the MG cells and the muscular layer. In the HG, MrNPF-ir was detected in the epithelium of the villi and gland regions, while MrNPF-ir was also more intense in the F-, R-, and B-cells in the HP. However, we found little colocalization between the MrNPF and PGP9.5/ChAT in digestive tissues, implying that most of the positive cells might not be neurons but could be digestive tract-associated endocrine cells that produce and secrete MrNPF to control digestive organ functions in feeding and utilizing feed. Taken together, our first findings indicated that MrNPF was differentially expressed in digestive organs in correlation with the ovarian cycle, suggesting an important link between MrNPF, the physiology of various digestive organs in feeding, and possibly ovarian maturation in female M. rosenbergii.


Asunto(s)
Neuropéptidos , Ovario , Palaemonidae , Animales , Femenino , Palaemonidae/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Ovario/metabolismo , Sistema Digestivo/metabolismo , Agua Dulce , ARN Mensajero/metabolismo , ARN Mensajero/genética , Tracto Gastrointestinal/metabolismo
8.
Fish Shellfish Immunol ; 149: 109617, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723876

RESUMEN

Microbiome in the intestines of aquatic invertebrates plays pivotal roles in maintaining intestinal homeostasis, especially when the host is exposed to pathogen invasion. Decapod iridescent virus 1 (DIV1) is a devastating virus seriously affecting the productivity and success of crustacean aquaculture. In this study, a metagenomic analysis was conducted to investigate the genomic sequences, community structure and functional characteristics of the intestinal microbiome in the giant river prawn Macrobrachiumrosenbergii infected with DIV1. The results showed that DIV1 infection could significantly reduce the diversity and richness of intestinal microbiome. Proteobacteria represented the largest taxon at the phylum level, and at the species level, the abundance of Gonapodya prolifera and Solemya velum gill symbiont increased significantly following DIV1 infection. In the infected prawns, four metabolic pathways related to purine metabolism, pyrimidine metabolism, glycerophospholipid metabolism, and pentose phosphate pathway, and five pathways related to nucleotide excision repair, homologous recombination, mismatch repair, base excision repair, and DNA replication were significantly enriched. Moreover, several immune response related pathways, such as shigellosis, bacterial invasion of epithelial cells, Salmonella infection, and Vibrio cholerae infection were repressed, indicating that secondary infection in M. rosenbergii may be inhibited via the suppression of these immune related pathways. DIV1 infection led to the induction of microbial carbohydrate enzymes such as the glycoside hydrolases (GHs), and reduced the abundance and number of antibiotic-resistant ontologies (AROs). A variety of AROs were identified from the microbiota, and mdtF and lrfA appeared as the dominant genes in the detected AROs. In addition, antibiotic efflux, antibiotic inactivation, and antibiotic target alteration were the main antibiotic resistance mechanisms. Collectively, the data would enable a deeper understanding of the molecular response of intestinal microbiota to DIV1, and offer more insights into its roles in prawn resistance to DIVI infection.


Asunto(s)
Microbioma Gastrointestinal , Palaemonidae , Animales , Palaemonidae/inmunología , Palaemonidae/virología , Palaemonidae/microbiología , Palaemonidae/genética , Metagenómica , Metagenoma , Iridoviridae/fisiología
9.
Fish Shellfish Immunol ; 146: 109403, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266793

RESUMEN

The high morbidity and mortality of Macrobrachium nipponense occurred in several farms in China, with cardinal symptoms of slow swimming, loss of appetite, empty of intestine, reddening of the hepatopancreas and gills. The pathogen has been confirmed as Decapod Iridescent Virus 1 (DIV1), namely DIV1-mn, by molecular epidemiology, histopathological examination, TEM observation, challenge experiment, and viral load detection. Histopathological analysis showed severe damage in hepatopancreas and gills of diseased prawns, exhibited few eosinophilic inclusions and pyknosis, and TEM of diseased prawns revealed that icosahedral virus particles existed in hepatopancreas and gill, which confirmed the disease of the farmed prawns caused by the DIV1 infection. Besides, challenge tests showed LD50 of DIV1 to M. nipponense was determined to be 2.14 × 104 copies/mL, and real-time PCR revealed that M. nipponense had a very high DIV1 load in the hemocytes, gills and hepatopancreas after infection. Furthermore, qRT-PCR was undertaken to investigated the expression of six immune-related genes in DIV1-infected M. nipponense after different time points, and the results revealed UCHL3, Relish, Gly-Cru2, CTL, MyD88 and Hemocyanin were significantly up-regulated in hemocytes, gills and hepatopancreas, which revealed various expression patterns in response to DIV1 infection. This study revealed that DIV1 infection is responsible for the mass mortality of M. nipponense, one of the important crustacean species, indicating its high susceptibility to DIV1. Moreover, this study will contribute to exploring the interaction between the host and DIV1 infection, specifically in terms of understanding how M. nipponense recognizes and eliminates the invading of DIV1.


Asunto(s)
Decápodos , Palaemonidae , Animales , Virulencia , Alimentos Marinos , Inmunidad
10.
Fish Shellfish Immunol ; 147: 109440, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342414

RESUMEN

Vibrio mimicus is a pathogenic bacterium that cause red body disease in Macrobrachium nipponense, leading to high mortality and financial loss. Based on previous studies, rpoS gene contribute to bacterial pathogenicity during infection, but the role of RpoS involved in the immune response of M. nipponense under V. mimicus infection remains unclear. In this study, the pathogen load and the RNA-seq of M. nipponense under wild-type and ΔrpoS strain V. mimicus infection were investigated. Over the entire infection period, the ΔrpoS strain pathogen load was always lower than that of the wild-type strain in the M. nipponense hemolymph, hepatopancreas, gill and muscle. Furthermore, the expression level of rpoS gene in the hepatopancreas was the highest at 24 hours post infection (hpi), then the samples of hepatopancreas tissue infected with the wild type and ΔrpoS strain at 24 hpi were selected for RNA-seq sequencing. The results revealed a significant change in the transcriptomes of the hepatopancreases infected with ΔrpoS strain. In contrast to the wild-type infected group, the ΔrpoS strain infected group exhibited differentially expressed genes (DEGs) enriched in 181 KEGG pathways at 24 hpi. Among these pathways, 8 immune system-related pathways were enriched, including ECM-receptor interaction, PI3K-Akt signaling pathway, Rap1 signaling pathway, Gap junction, and Focal adhesion, etc. Among these pathways, up-regulated genes related to Kazal-type serine protease inhibitors, S-antigen protein, copper zinc superoxide dismutase, tight junction protein, etc. were enriched. This study elucidates that rpoS can affect tissue bacterial load and immune-related pathways, thereby impacting the survival rate of M. nipponense under V. mimicus infection. These findings validate the potential of rpoS as a promising target for the development of a live attenuated vaccine against V. mimicus.


Asunto(s)
Palaemonidae , Vibriosis , Vibrio mimicus , Animales , Palaemonidae/genética , Fosfatidilinositol 3-Quinasas/genética , Transcriptoma , Vibriosis/prevención & control , Inmunidad
11.
Fish Shellfish Immunol ; 146: 109376, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218421

RESUMEN

The limited tolerance of crustacean tissue physiology to a high-fat diet has captured the attention of researchers. Yet, investigations into the physiological response mechanisms of the crustacean intestinal barrier system to a high-fat diet are progressing slowly. Elucidating potential physiological mechanisms and determining the precise regulatory targets would be of great physiological and nutritional significance. This study established a high-fat diet-induced intestinal barrier damage model in Macrobrachium rosenbergii, and systematically investigated the functions of gut microbiota and its functional metabolites. The study achieved this by monitoring phenotypic indicators, conducting 16S rDNA sequencing, targeted metabolomics, and in vitro anaerobic fermentation of intestinal contents. Feeding prawns with control and high-fat diets for 8 weeks, the lipid level of 7 % in the CON diet and 12 % in the HF diet. Results showed that high-fat intake impaired the intestinal epithelial cells, intestinal barrier structure, and permeability of M. rosenbergii, activated the tight junction signaling pathway inhibiting factor NF-κB transcription factor Relish/myosin light chain kinase (MLCK), and suppressed the expression of downstream tight junction proteins zona occludens protein 1 (ZO-1) and Claudin. High-fat intake resulted in a significant increase in abundance of Aeromonas, Enterobacter, and Clostridium sensu stricto 3 genera, while Lactobacillus, Lactococcus, Bacteroides, and Ruminococcaceae UCG-010 genera were significantly decreased. Targeted metabolomics results of bile acids and short-chain fatty acids in intestinal contents and in vitro anaerobic fermentation products showed a marked rise in the abundance of DCA, 12-KetoLCA, 7,12-diketoLCA, and Isovaleric acid, and a significant reduction in the abundance of HDCA, CDCA, and Acetate in the HF group. Pearson correlation analysis revealed a substantial correlation between various genera (Clostridium sensu stricto 3, Lactobacillus, Bacteroides) and secondary metabolites (DCA, HDCA, 12-KetoLCA, Acetate), and the latter was significantly correlated with intestinal barrier function related genes (Relish, ZO-1, MLCK, vitamin D receptor, and ecdysone receptor). These findings indicate that gut microorganisms and their specific bile acids and short-chain fatty acid secondary metabolites play a crucial role in the process of high-fat-induced intestinal barrier damage of M. rosenbergii. Moreover, identifying and targeting these factors could facilitate precise regulation of high-fat nutrition for crustaceans.


Asunto(s)
Microbioma Gastrointestinal , Palaemonidae , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos y Sales Biliares , Ácidos Grasos Volátiles , Acetatos
12.
Fish Shellfish Immunol ; 144: 109286, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097095

RESUMEN

The forkhead box transcription factor O family protein (FOXO) acts as a transcription factor that regulates biological processes regarding DNA repair, immunity, cell cycle regulation, and other biological processes. In this study, EcFOXO was identified from the ridgetail white prawn, Exopalaemon carinicauda. EcFOXO protein contains multiple low-complexity regions and a forkhead (FH) domain. Phylogenetic tree showed that EcFOXO is clustered with crustacean FOXOs. The amino acid sequences of its FH domain are highly similar to the FH domain of FOXOs from other crustaceans. The expression of EcFOXO is altered after white spot syndrome virus (WSSV) stimulation in hepatopancreas and gills. The relationship between EcFOXO and EcRelish was explored by RNA interference (RNAi). Results showed that EcFOXO and EcRelish could positively regulate each other's expression. The expression levels of various antimicrobial peptides (AMPs) significantly reduced after interfering with EcFOXO or EcRelish. These results suggest a positive regulatory loop between EcFOXO and EcRelish, which participates in the innate immunity of ridgetail white prawn by regulating the expression of AMPs during WSSV infection. This study enriches the knowledge about the regulatory mechanism of FOXO in the innate immunity of crustaceans.


Asunto(s)
Palaemonidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Secuencia de Bases , Péptidos Antimicrobianos , Virus del Síndrome de la Mancha Blanca 1/fisiología , Filogenia , Secuencia de Aminoácidos
13.
Fish Shellfish Immunol ; 151: 109721, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917950

RESUMEN

C-type lectins (CTLs) are an important class of pattern recognition receptors (PRRs) that exhibit structural and functional diversity in invertebrates. Repetitive DNA sequences are ubiquitous in eukaryotic genomes, representing distinct modes of genome evolution and promoting new gene generation. Our study revealed a new CTL that is composed of two long tandem repeats, abundant threonine, and one carbohydrate recognition domain (CRD) in Exopalaemon carinicauda and has been designated EcTR-CTL. The full-length cDNA of EcTR-CTL was 1242 bp long and had an open reading frame (ORF) of 999 bp that encoded a protein of 332 amino acids. The genome structure of EcTR-CTL contains 4 exons and 3 introns. The length of each repeat unit in EcTR-CTL was 198 bp, which is different from the short tandem repeats reported previously in prawns and crayfish. EcTR-CTL was abundantly expressed in the intestine and hemocytes. After Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenge, the expression level of EcTR-CTL in the intestine was upregulated. Knockdown of EcTR-CTL downregulated the expression of anti-lipopolysaccharide factor, crustin, and lysozyme during Vibrio infection. The recombinant CRD of EcTR-CTL (rCRD) could bind to bacteria, lipopolysaccharides, and peptidoglycans. Additionally, rCRD can directly bind to WSSV. These findings indicate that 1) CTLs with tandem repeats may be ubiquitous in crustaceans, 2) EcTR-CTL may act as a PRR to participate in the innate immune defense against bacteria via nonself-recognition and antimicrobial peptide regulation, and 3) EcTR-CTL may play a positive or negative role in the process of WSSV infection by capturing virions.


Asunto(s)
Secuencia de Aminoácidos , Proteínas de Artrópodos , Inmunidad Innata , Lectinas Tipo C , Palaemonidae , Filogenia , Vibrio parahaemolyticus , Virus del Síndrome de la Mancha Blanca 1 , Animales , Palaemonidae/inmunología , Palaemonidae/genética , Vibrio parahaemolyticus/fisiología , Virus del Síndrome de la Mancha Blanca 1/fisiología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Inmunidad Innata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Lectinas Tipo C/química , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica , Alineación de Secuencia , Secuencia de Bases , Secuencias Repetidas en Tándem/genética
14.
Fish Shellfish Immunol ; 149: 109532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579977

RESUMEN

C-type lectins (CTLs) execute critical functions in multiple immune responses of crustaceans as a member of pattern recognition receptors (PRRs) family. In this study, a novel CTL was identified from the exoskeleton of the oriental river prawn Macrobrachium nipponense (MnLec3). The full-length cDNA of MnLec3 was 1150 bp with an open reading frame of 723 bp, encoding 240 amino acids. MnLec3 protein contained a signal peptide and one single carbohydrate-recognition domain (CRD). MnLec3 transcripts were widely distributed at the exoskeleton all over the body. Significant up-regulation of MnLec3 in exoskeleton after Aeromonas hydrophila challenged suggested the involvement of MnLec3 as well as the possible function of the exoskeleton in immune response. In vitro tests with recombinant MnLec3 protein (rMnLec3) manifested that it had polysaccharide binding activity, a wide spectrum of bacterial binding activity and agglutination activity only for tested Gram-negative bacteria (Escherichia coli, Vibrio anguillarum and A. hydrophila). Moreover, rMnLec3 significantly promoted phagocytic ability of hemocytes against A. hydrophila in vivo. What's more, MnLec3 interference remarkably impaired the survivability of the prawns when infected with A. hydrophila. Collectively, these results ascertained that MnLec3 derived from exoskeleton took an essential part in immune defense of the prawns against invading bacteria as a PRR.


Asunto(s)
Aeromonas hydrophila , Secuencia de Aminoácidos , Proteínas de Artrópodos , Regulación de la Expresión Génica , Hemocitos , Inmunidad Innata , Lectinas Tipo C , Palaemonidae , Fagocitosis , Filogenia , Alineación de Secuencia , Animales , Palaemonidae/inmunología , Palaemonidae/genética , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Lectinas Tipo C/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Hemocitos/inmunología , Inmunidad Innata/genética , Aeromonas hydrophila/fisiología , Alineación de Secuencia/veterinaria , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Secuencia de Bases , Exoesqueleto/inmunología , Exoesqueleto/química
15.
Fish Shellfish Immunol ; 144: 109279, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072137

RESUMEN

Toll/Toll-like receptor (TLR) is an important pattern recognition receptor that plays an important role in the immunity of animals. Six Toll genes were identified in Macrobrachium rosenbergii, namely, MrToll, MrToll1, MrToll2, MrToll3, MrToll4, and MrToll5. SMART analysis showed that all six Tolls have a transmembrane domain, a TIR domain, and different number of LRR domains. The phylogenetic tree showed that six Tolls were located in six different branches. Among these six Tolls, only MrToll4 contains the QHR motif, which is similar to insect Toll9. MrToll4 belongs to V-type/scc Toll with only one LRRCT domain. MrToll1 and MrToll5 are classical P-type/mcc Toll with two LRRCT domains and an LRRNT. MrTolls were distributed in the hemocytes, heart, hepatopancreas, gills, stomach, and intestine. During the infection of Enterobacter cloacae, the expression level of MrToll and MrToll1-4 was upregulated in the intestine of M. rosenbergii. RNA interference experiments showed that the expression of most antimicrobial peptide (AMP) genes was negatively regulated by MrTolls during E. cloacae infection. On the contrary, crustin (Cru) 3 and Cru4 were inhibited after the knockdown of MrToll, and Cru1 and Cru4 were significantly downregulated with the knockdown of MrToll4 during E. cloacae challenge. These results suggest that MrTolls may be involved in the regulation of AMP expression in the intestine during E. cloacae infection.


Asunto(s)
Palaemonidae , Animales , Enterobacter cloacae/genética , Filogenia , Secuencia de Bases , Secuencia de Aminoácidos , Receptores Toll-Like/genética , Péptidos Antimicrobianos , Proteínas de Artrópodos , Inmunidad Innata/genética
16.
Fish Shellfish Immunol ; 144: 109297, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110107

RESUMEN

This research evaluated the hepatopancreas, intestine, and muscle transcriptome alternation of Macrobrachium rosenbergii, and to confirm the relative glycerophospholipid, cytochrome P450 system, and fatty acid metabolism gene expression in sediments containing 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) of 60 ng/sediment (g) and 700 ng/sediment (g) for 90 days of culture. Transcriptome analysis revealed that the TCDD sediment affected the hepatopancreatic metabolism of xenobiotics in M. rosenbergii via the cytochrome P450 system, drug metabolism-other enzymes, drug metabolism-cytochrome P450, chemical carcinogenesis, and lysosome function. Intestinal analysis also showed a similar phenomenon, but this finding was not observed in the muscle tissue. qPCR analysis indicated that the expression levels of APTG4, LPGAT1, ACHE, GPX4, ECHS1, ATP5B, FABP, and ACC in the hepatopancreatic and intestinal tissues decreased, but those in the muscle tissues did not. In summary, TCDD sediment induced tissue metabolism, especially in the hepatopancreas and intestine. TCDD sediment mainly affected the digestive enzyme gene expression with concentration. These results indicated that the presence of TCDD in the sediment played a major role in the hepatopancreatic and intestinal metabolism system of M. rosenbergii.


Asunto(s)
Palaemonidae , Dibenzodioxinas Policloradas , Animales , Hepatopáncreas/metabolismo , Perfilación de la Expresión Génica , Agua Dulce , Músculos/metabolismo , Transcriptoma , Intestinos , Sistema Enzimático del Citocromo P-450/metabolismo
17.
Fish Shellfish Immunol ; 148: 109481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479568

RESUMEN

The family of TIR domain-containing receptors includes numerous proteins involved in innate immunity. In this study, a member of this family was characterized from the ovary of the oriental river prawn Macrobrachium nipponense and identified as interleukin-1 receptor (MnIL-1R). Meanwhile, to elucidate the conservation of IL-1R, its orthologous were identified in several crustacean species as well. In addition, the expression pattern of MnIL-1R in various adult tissues and post different pathogen-associated molecular patterns (PAMPs) challenge in ovary was analyzed with qRT-PCR technology. Finally, the roles of MnIL-1R in the ovary were analyzed by RNAi technology. The main results are as follows: (1) MnIL-1R comprises a 1785 bp ORF encoding 594 amino acids and is structurally composed of five domains: a signal peptide, two immunoglobulin (IG) domains, a transmembrane region, and a TIR-2 domain; (2) the TIR domain showed a high conservation among analyzed crustacean species; (3) MnIL-1R is widely detected in all tested tissues including ovary; (4) MnIL-1R showed a positive response to challenges with LPS, PGN, and polyI:C in the ovary; (5) its IG domain showed strong binding ability to LPS and PGN, confirming its role as a pattern recognition receptor; (6) the expression patterns of several members of the Toll signaling pathway (Myd88, TRAF-6, Dorsal, and Relish) was similar to that of MnIL-1R after challenges with LPS, PGN, and polyI:C in the ovary; (7) the silencing of MnIL-1R resulted in down-regulation of theses gene' (Myd88, TRAF-6, Dorsal, and Relish) expression level in the ovary. These results suggest that MnIL-1R can activate the Toll signaling pathway in the ovary by directly recognizing LPS and PGN through its IG domain, thereby contributing to the immune response in the ovary of M. nipponense.


Asunto(s)
Palaemonidae , Femenino , Animales , Secuencia de Aminoácidos , Secuencia de Bases , Ovario/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Inmunidad Innata/genética , Proteínas de Artrópodos
18.
Mol Biol Rep ; 51(1): 259, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302799

RESUMEN

BACKGROUND: The river prawn, Macrobrachium americanum (M. americanum), is one of the largest prawns of the genus in Latin America and is an amphidromous species distributed along the Pacific coast of America. This prawn has commercial value due to its size and taste, making it a good option for aquaculture production. Its culture has been attempted in ponds and concrete tanks, but no successful technique can still support commercial production. Understanding the mechanisms that regulate reproduction at the molecular level is very important. This knowledge can provide tools for manipulating transcripts, which could increase the number or size of animals in the culture. Our understanding of the mechanism that regulates the reproduction of M. americanum at the molecular level is limited. AIM: Perform and analyze the transcriptome assembly of the testes, vas deferens, and terminal ampulla of M. americanum. to provide new molecular information about its reproduction. METHODS AND RESULTS: The cDNA library was constructed and sequenced for each tissue to identify novel transcripts. A combined transcriptome with the three tissues was assembled using Trinity software. Unigenes were annotated using BLASTx and BLAST2GO. The transcriptome assembly generated 1,059,447 unigenes, of which 7222 genes had significant hits (e-value < 1 × 10-5) when compared against the Swiss-Prot database. Around 75 genes were related to sex determination, testis development, spermatogenesis, spermiogenesis, fertilization, maturation of testicular cells, neuropeptides, hormones, hormone receptors, and/or embryogenesis. CONCLUSIONS: These results provide new molecular information about M. americanum reproduction, representing a reference point for further genetic studies of this species.


Asunto(s)
Decápodos , Palaemonidae , Penaeidae , Animales , Masculino , Palaemonidae/genética , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética , Decápodos/genética , Biblioteca de Genes , Penaeidae/genética
19.
BMC Vet Res ; 20(1): 91, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459500

RESUMEN

BACKGROUND: Application of a virus-like particle (VLP) as a nanocontainer to encapsulate double stranded (ds)RNA to control viral infection in shrimp aquaculture has been extensively reported. In this study, we aimed at improving VLP's encapsulation efficiency which should lead to a superior fighting weapon with disastrous viruses. RESULTS: We constructed 2 variants of chimeric Macrobrachium rosenbergii nodavirus (MrNV)-like particles (V1- and V2-MrN-VLPs) and tested their efficiency to encapsulate VP37 double stranded RNA as well as WSSV protection in P. vannamei. Two types of short peptides, RNA-binding domain (RBD) and deca-arginine (10R) were successfully engineered into the interior surface of VLP, the site where the contact with VP37-dsRNA occurs. TEM and dynamic light scattering (DLS) analyses revealed that the chimeric VLPs remained their assembling property to be an icosahedral symmetric particle with a diameter of about 30 nm, similar to the original MrN-VLP particle. The superior encapsulation efficiency of VP37-dsRNA into V2-MrN-VLP was achieved, which was slightly better than that of V1-MrN-VLP but far better (1.4-fold) than its parental V0-MrN-VLP which the mole ratio of 7.5-10.5 for all VLP variants. The protection effect against challenging WSSV (as gauged from the level of VP37 gene and the remaining viral copy number in shrimp) was significantly improved in both V1- and V2-MrN-VLP compared with an original V0-MrN-VLP template. CONCLUSION: MrN-VLP (V0-) were re-engineered interiorly with RBD (V1-) and 10R (V2-) peptides which had an improved VP37-dsRNA encapsulation capability. The protection effect against WSSV infection through shrimp administration with dsRNA + V1-/V2-MrN VLPs was experimentally evident.


Asunto(s)
Palaemonidae , Penaeidae , Virosis , Virus del Síndrome de la Mancha Blanca 1 , Animales , Palaemonidae/genética , ARN Bicatenario , Virosis/veterinaria , Acuicultura , Péptidos/genética , Virus del Síndrome de la Mancha Blanca 1/genética
20.
J Invertebr Pathol ; 204: 108115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719180

RESUMEN

To explore the relationship between the intestinal flora of Exopalaemon Carinicauda and infection by Enterocytozoo Hepatopenaei (EHP), we analyzed the species and richness of gut microbiota in infected individuals in different EHP load groups [i.e., control (C), high load (H), and low load (L)] using gene sequencing after infection. The results showed that the abundance of intestinal flora in the high-load EHP group was significantly lower than that in the healthy group. Based on the UPGMA cluster tree and PCoA analysis, with comparisons to healthy shrimp, the gut microbiota of the EHP high load and low load groups were clustered into one branch, which indicated that EHP infection changed the composition of the gut microbiota of infected shrimps. The heat map analysis of species abundance clustering revealed that the dominant bacteria in the low EHP load group and the control group were beneficial genera such as Lactococcus, Ligilactobacillius, and Bifidobacterium, but the dominant bacteria in the high EHP load group were harmful genera such as Pseudomonas, Photobacterium, and Candidatus hepatincola. The functions of the intestinal flora predicted that most genes related to metabolism were more abundant in healthy shrimp, most genes related to metabolism and the organisms' system were more abundant in the low EHP load group, and most genes related to diseases and environmental information processing were more abundant in the high EHP load group. After separation and purification, the dominant bacteria (Bifidobacterium animalis in healthy shrimp and Lactococcus garvieae in the low EHP load group) and the non-dominant bacteria (Macrococus caseolyticus in the low EHP load group) were obtained. Each of these isolated strains were used together with EHP to infect E. carinicauda, and the results showed that Bifidobacterium animali and Lactococcus garvieae significantly reduced the EHP load in EHP-infected individuals. At the same time, the morphology and structure of the hepatopancreas and intestinal tissue of EHP-infected E. carinicauda were improved. No improvement was seen in tissue that was infected with Macrococus caseolyticus.


Asunto(s)
Enterocytozoon , Microbioma Gastrointestinal , Palaemonidae , Animales , Palaemonidae/microbiología , Enterocytozoon/genética , Enterocytozoon/fisiología , Penaeidae/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA