Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.511
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Rev Neurosci ; 22(8): 458-471, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34127843

RESUMEN

The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.


Asunto(s)
Analgesia , Neocórtex/fisiopatología , Percepción del Dolor/fisiología , Dolor/fisiopatología , Animales , Humanos , Vías Nerviosas/fisiopatología , Manejo del Dolor
2.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38453467

RESUMEN

Pain perception arises from the integration of prior expectations with sensory information. Although recent work has demonstrated that treatment expectancy effects (e.g., placebo hypoalgesia) can be explained by a Bayesian integration framework incorporating the precision level of expectations and sensory inputs, the key factor modulating this integration in stimulus expectancy-induced pain modulation remains unclear. In a stimulus expectancy paradigm combining emotion regulation in healthy male and female adults, we found that participants' voluntary reduction in anticipatory anxiety and pleasantness monotonically reduced the magnitude of pain modulation by negative and positive expectations, respectively, indicating a role of emotion. For both types of expectations, Bayesian model comparisons confirmed that an integration model using the respective emotion of expectations and sensory inputs explained stimulus expectancy effects on pain better than using their respective precision. For negative expectations, the role of anxiety is further supported by our fMRI findings that (1) functional coupling within anxiety-processing brain regions (amygdala and anterior cingulate) reflected the integration of expectations with sensory inputs and (2) anxiety appeared to impair the updating of expectations via suppressed prediction error signals in the anterior cingulate, thus perpetuating negative expectancy effects. Regarding positive expectations, their integration with sensory inputs relied on the functional coupling within brain structures processing positive emotion and inhibiting threat responding (medial orbitofrontal cortex and hippocampus). In summary, different from treatment expectancy, pain modulation by stimulus expectancy emanates from emotion-modulated integration of beliefs with sensory evidence and inadequate belief updating.


Asunto(s)
Anticipación Psicológica , Ansiedad , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Ansiedad/psicología , Ansiedad/fisiopatología , Adulto , Anticipación Psicológica/fisiología , Adulto Joven , Percepción del Dolor/fisiología , Dolor/psicología , Dolor/fisiopatología , Teorema de Bayes , Emociones/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/fisiología , Placer/fisiología , Mapeo Encefálico
3.
Nat Rev Neurosci ; 21(7): 353-365, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32440016

RESUMEN

Although most patients with chronic pain are women, the preclinical literature regarding pain processing and the pathophysiology of chronic pain has historically been derived overwhelmingly from the study of male rodents. This Review describes how the recent adoption by a number of funding agencies of policies mandating the incorporation of sex as a biological variable into preclinical research has correlated with an increase in the number of studies investigating sex differences in pain and analgesia. Trends in the field are analysed, with a focus on newly published findings of qualitative sex differences: that is, those findings that are suggestive of differential processing mechanisms in each sex. It is becoming increasingly clear that robust differences exist in the genetic, molecular, cellular and systems-level mechanisms of acute and chronic pain processing in male and female rodents and humans.


Asunto(s)
Manejo del Dolor , Percepción del Dolor/fisiología , Dolor , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino , Dolor/genética , Dolor/inmunología , Dolor/fisiopatología , Dolor/psicología
4.
Neuroimage ; 296: 120681, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38857818

RESUMEN

In response to Mazaheri et al.'s critique, we revisited our study (Valentini et al., 2022) on the relationship between peak alpha frequency (PAF) and pain. Their commentary prompted us to reassess our data to address the independence between slow and slowing alpha brain oscillations, as well as the predictivity of slow alpha oscillations in pain perception. Bayesian correlation analyses revealed mixed support for independence. Investigating predictivity, we found inconsistent associations between pre-PAF and unpleasantness ratings. We critically reflected on methodological and theoretical issues on the path to PAF validation as a pain biomarker. We emphasized the need for diversified methodology and analytical approaches as well as robust findings across research groups.


Asunto(s)
Ritmo alfa , Biomarcadores , Dolor , Humanos , Ritmo alfa/fisiología , Dolor/fisiopatología , Percepción del Dolor/fisiología , Electroencefalografía/métodos , Teorema de Bayes , Encéfalo/fisiología
5.
Haemophilia ; 30(3): 827-835, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600680

RESUMEN

BACKGROUND: Patients with haemophilia (PwH) suffer from chronic pain due to joint alterations induced by recurring haemorrhage. OBJECTIVES: This study aimed to investigate the relationship between structural alterations and pain perception at the ankle joint in PwH. PATIENTS/METHODS: Ankle joints of 79 PwH and 57 healthy controls (Con) underwent ultrasound examination (US) and assessment of pain sensitivity via pressure pain thresholds (PPT). US discriminated between joint activity (synovitis) and joint damage (cartilage and/or bone degeneration) applying the HEAD-US protocol. Based on US-findings, five subgroups were built: PwH with activity/damage, PwH with activity/no damage, PwH with no activity/no damage, controls with activity/no damage and controls with no activity/no damage. RESULTS: Joint activity and joint damage were significantly increased in ankles of PwH compared to Con (p ≤.001). Subgroup analysis revealed that structural alterations negatively impact pain perception. This is particularly evident when comparing PwH with both activity/damage to PwH with no activity/no damage at the tibiotalar joint (p = .001). At the fibulotalar joint, no significant differences were observed between PwH subgroups. Further analysis showed that both joint activity and joint damage result in an increase in pain sensitivity (p ≤.001). CONCLUSION: The data suggest a relation between joint activity, joint damage and pain perception in PwH. Even minor changes due to synovitis appear to affect pain perception, with the effect not intensifying at higher levels of inflammation. In terms of joint damage, severe degeneration leads to a sensitised pain state most robustly, whereas initial changes do not seem to significantly affect pain perception.


Asunto(s)
Articulación del Tobillo , Hemofilia A , Percepción del Dolor , Humanos , Hemofilia A/complicaciones , Hemofilia A/fisiopatología , Articulación del Tobillo/fisiopatología , Articulación del Tobillo/patología , Masculino , Adulto , Percepción del Dolor/fisiología , Femenino , Persona de Mediana Edad , Adulto Joven , Ultrasonografía , Umbral del Dolor
6.
Psychophysiology ; 61(6): e14542, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462579

RESUMEN

Video gaming, including violent video gaming, has become very common and lockdown measures of the COVID-19 pandemic even increased the prevalence rates. In this study, we examined if violent video gaming is associated with more adverse childhood experiences (ACE) and if it impairs pain processing and fear conditioning. We tested three groups of participants (violent video gamers, nonviolent video gamers, and non-gamers) and examined fear conditioning as well as pain perception during functional magnetic resonance imaging (fMRI). Violent video gamers displayed significantly higher pain thresholds as well as pain tolerance for electric stimulation, pressure pain stimulation, and cold pressor pain measurements than nonviolent video gamers and non-gamers. This relationship was moderated by adverse childhood experiences, especially physical neglect. Brain images acquired during the fear conditioning fMRI task showed that violent video gamers display significantly less differential brain activation to stimuli signaling pain versus no pain in the anterior cingulate cortex, the juxtapositional lobule cortex, and the paracingulate gyrus compared to non-gamers. There was also a significant negative correlation between adverse childhood experiences and activation in the precuneus and the intracalcarine cortex for signals of pain versus safety. The results of this study imply that violent video gaming is related to reduced processing of pain and signals of pain in a fear learning task, dependent of adverse childhood experiences. These mechanisms need to be examined in more detail and these data could be helpful in preventing the onset and adverse consequences of violent video gaming.


Asunto(s)
Experiencias Adversas de la Infancia , Miedo , Imagen por Resonancia Magnética , Juegos de Video , Humanos , Masculino , Miedo/fisiología , Adulto , Adulto Joven , Femenino , Percepción del Dolor/fisiología , Umbral del Dolor/fisiología , Violencia , Dimensión del Dolor , Condicionamiento Clásico/fisiología , Adolescente , COVID-19
7.
Cereb Cortex ; 33(3): 634-650, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35244170

RESUMEN

Tracking and predicting the temporal structure of nociceptive inputs is crucial to promote survival, as proper and immediate reactions are necessary to avoid actual or potential bodily injury. Neural activities elicited by nociceptive stimuli with different temporal structures have been described, but the neural processes responsible for translating nociception into pain perception are not fully elucidated. To tap into this issue, we recorded electroencephalographic signals from 48 healthy participants receiving thermo-nociceptive stimuli with 3 different durations and 2 different intensities. We observed that pain perception and several brain responses are modulated by stimulus duration and intensity. Crucially, we identified 2 sustained brain responses that were related to the emergence of painful percepts: a low-frequency component (LFC, < 1 Hz) originated from the insula and anterior cingulate cortex, and an alpha-band event-related desynchronization (α-ERD, 8-13 Hz) generated from the sensorimotor cortex. These 2 sustained brain responses were highly coupled, with the α-oscillation amplitude that fluctuated with the LFC phase. Furthermore, the translation of stimulus duration into pain perception was serially mediated by α-ERD and LFC. The present study reveals how brain responses elicited by nociceptive stimulation reflect the complex processes occurring during the translation of nociceptive information into pain perception.


Asunto(s)
Nocicepción , Dolor , Humanos , Nocicepción/fisiología , Percepción del Dolor/fisiología , Electroencefalografía , Giro del Cíngulo/fisiología
8.
Cereb Cortex ; 33(7): 3538-3547, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35965070

RESUMEN

Activation of the spinothalamic system does not always result in a subjective pain perception. While the cerebral network processing nociception is relatively well known, the one underlying its transition to conscious pain remains poorly described. We used intracranial electroencephalography in epileptic patients to investigate whether the amplitudes and functional connectivity of posterior and anterior insulae (PI and AI) and amygdala differ according to the subjective reports to laser stimuli delivered at a constant intensity set at nociceptive threshold. Despite the constant intensity of stimuli, all patients reported variable subjective perceptions from one stimulus to the other. Responses in the sensory PI remained stable throughout the experiment, hence reflecting accurately the stability of the stimulus. In contrast, both AI and amygdala responses showed significant enhancements associated with painful relative to nonpainful reports, in a time window corresponding to the conscious integration of the stimulus. Functional connectivity in the gamma band between these two regions increased significantly, both before and after stimuli perceived as painful. While the PI appears to transmit faithfully the actual stimulus intensity received via the spinothalamic tract, the AI and the amygdala appear to play a major role in the transformation of nociceptive signals into a painful perception.


Asunto(s)
Amígdala del Cerebelo , Epilepsia Refractaria , Nocicepción , Percepción del Dolor , Humanos , Amígdala del Cerebelo/diagnóstico por imagen , Electrocorticografía , Nocicepción/fisiología , Dolor , Percepción del Dolor/fisiología , Potenciales Evocados por Láser , Femenino , Adulto
9.
Cereb Cortex ; 33(7): 4145-4155, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36069972

RESUMEN

Pain perception can be modulated by several factors. Phenomena like temporal summation leads to increased perceived pain, whereas behavioral conditioning can result in analgesic responses. Furthermore, during repeated, identical noxious stimuli, pain intensity can vary greatly in some individuals. Understanding these variations is important, given the increase in investigations that assume stable baseline pain for accurate response profiles, such as studies of analgesic mechanisms. We utilized functional magnetic resonance imaging to examine the differences in neural circuitry between individuals displaying consistent pain ratings and those who experienced variable pain during a series of identical noxious stimuli. We investigated 63 healthy participants: 31 were assigned to a "consistent" group, and 32 were assigned to a "variable" group dependent on pain rating variability. Variable pain ratings were associated with reduced signal intensity in the dorsolateral prefrontal cortex (dlPFC). Furthermore, the dlPFC connectivity with the primary somatosensory cortex and temperoparietal junction was significantly reduced in variable participants. Our results suggest that investigators should consider variability of baseline pain when investigating pain modulatory paradigms. Additionally, individuals with consistent and variable pain ratings differ in their dlPFC activity and connectivity with pain-sensitive regions during noxious stimulation, possibly reflecting the differences in attentional processing and catastrophizing during pain.


Asunto(s)
Percepción del Dolor , Dolor , Humanos , Percepción del Dolor/fisiología , Dolor/diagnóstico por imagen , Dimensión del Dolor , Atención , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal/fisiología
10.
Psychiatry Clin Neurosci ; 78(5): 300-308, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403942

RESUMEN

AIM: Pain is reconstructed by brain activities and its subjectivity comes from an interplay of multiple factors. The current study aims to understand the contribution of genetic factors to the neural processing of pain. Focusing on the single-nucleotide polymorphism (SNP) of opioid receptor mu 1 (OPRM1) A118G (rs1799971) and catechol-O-methyltransferase (COMT) val158met (rs4680), we investigated how the two pain genes affect pain processing. METHOD: We integrated a genetic approach with functional neuroimaging. We extracted genomic DNA information from saliva samples to genotype the SNP of OPRM1 and COMT. We used a percept-related model, in which two different levels of perceived pain intensities ("low pain: mildly painful" vs "high pain: severely painful") were employed as experimental stimuli. RESULTS: Low pain involves a broader network relative to high pain. The distinct effects of pain genes were observed depending on the perceived pain intensity. The effects of low pain were found in supramarginal gyrus, angular gyrus, and anterior cingulate cortex (ACC) for OPRM1 and in middle temporal gyrus for COMT. For high pain, OPRM1 affected the insula and cerebellum, while COMT affected the middle occipital gyrus and ACC. CONCLUSION: OPRM1 primarily affects sensory and cognitive components of pain processing, while COMT mainly influences emotional aspects of pain processing. The interaction of the two pain genes was associated with neural patterns coding for high pain and neural activation in the ACC in response to pain. The proteins encoded by the OPRM1 and COMT may contribute to the firing of pain-related neurons in the human ACC, a critical center for subjective pain experience.


Asunto(s)
Catecol O-Metiltransferasa , Dolor , Polimorfismo de Nucleótido Simple , Receptores Opioides mu , Humanos , Catecol O-Metiltransferasa/genética , Receptores Opioides mu/genética , Masculino , Adulto , Femenino , Adulto Joven , Dolor/genética , Dolor/fisiopatología , Imagen por Resonancia Magnética , Percepción del Dolor/fisiología , Encéfalo/fisiopatología , Neuroimagen Funcional
11.
J Sports Sci ; 42(7): 574-588, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38726662

RESUMEN

Exercise-Induced Hypoalgesia (EIH) refers to an acute reduced pain perception after exercise. This systematic review and meta-analysis investigated the effect of a single aerobic exercise session on local and remote EIH in healthy individuals, examining the role of exercise duration, intensity, and modality. Pressure pain thresholds (PPT) are used as the main measure, applying the Cochrane risk of bias tool and GRADE approach for certainty of evidence assessment. Mean differences (MD; Newton/cm²) for EIH effects were analysed. Thirteen studies with 23 exercises and 14 control interventions are included (498 participants). Most studies used bicycling, with only two including running/walking and one including rowing. EIH occurred both locally (MD = 3.1) and remotely (MD = 1.8), with high-intensity exercise having the largest effect (local: MD = 7.5; remote: MD = 3.0) followed by moderate intensity (local: MD = 3.1; remote: MD = 3.0). Low-intensity exercise had minimal impact. Neither long nor short exercise duration induced EIH. Bicycling was found to be effective in eliciting EIH, in contrast to the limited research observed in other modalities. The overall evidence quality was moderate with many studies showing unclear risk biases.


Asunto(s)
Ejercicio Físico , Percepción del Dolor , Umbral del Dolor , Humanos , Ejercicio Físico/fisiología , Umbral del Dolor/fisiología , Percepción del Dolor/fisiología , Ciclismo/fisiología , Carrera/fisiología , Factores de Tiempo
12.
J Neurosci ; 42(14): 2963-2972, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35232762

RESUMEN

As a predominately positive emotion, nostalgia serves various adaptive functions, including a recently revealed analgesic effect. The current fMRI study aimed to explore the neural mechanisms underlying the nostalgia-induced analgesic effect on noxious thermal stimuli of different intensities. Human participants' (males and females) behavior results showed that the nostalgia paradigm significantly reduced participants' perception of pain, particularly at low pain intensities. fMRI analysis revealed that analgesia was related to decreased brain activity in pain-related brain regions, including the lingual and parahippocampal gyrus. Notably, anterior thalamic activation during the nostalgia stage predicted posterior parietal thalamus activation during the pain stage, suggesting that the thalamus might play a key role as a central functional linkage in the analgesic effect. Moreover, while thalamus-PAG functional connectivity was found to be related to nostalgic strength, periaqueductal gray-dorsolateral prefrontal cortex (PAG-dlPFC) functional connectivity was found to be associated with pain perception, suggesting possible analgesic modulatory pathways. These findings demonstrate the analgesic effect of nostalgia and, more importantly, shed light on its neural mechanism.SIGNIFICANCE STATEMENT Nostalgia is known to reduce individuals' perception of physical pain. The underlying brain mechanisms, however, are unclear. Our study found that the thalamus plays a key role as a functional linkage between nostalgia and pain, suggesting a possible analgesic modulatory mechanism of nostalgia. These findings have implications for the underlying brain mechanisms of psychological analgesia.


Asunto(s)
Analgesia , Mapeo Encefálico , Analgesia/métodos , Analgésicos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Dolor , Percepción del Dolor/fisiología
13.
Neuroimage ; 284: 120452, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37949258

RESUMEN

Pain empathy is a complex form of psychological inference that enables us to understand how others feel in the context of pain. Since pain empathy may be grounded in our own pain experiences, it exhibits huge inter-individual variability. However, the neural mechanisms behind the individual differences in pain empathy and its association with pain perception are still poorly understood. In this study, we aimed to characterize brain mechanisms associated with individual differences in pain empathy in adult participants (n = 24). The 32-channel electroencephalography (EEG) was recorded at rest and during a pain empathy task, and participants viewed static visual stimuli of the limbs submitted to painful and nonpainful stimulation to solicit empathy. The pain sensitivity of each participant was measured using a series of direct current stimulations. In our results, the N2 of Fz and the LPP of P3 and P4 were affected by painful pictures. We found that both delta and alpha bands in the frontal and parietal cortex were involved in the regulation of pain empathy. For the delta band, a close relationship was found between average power, either in the resting or task state, and individual differences in pain empathy. It suggested that the spectral power in Fz's delta band may reflect subjective pain empathy across individuals. For the alpha band, the functional connectivity between Fz and P3 under painful picture stimulation was correlated to individuals' pain sensitivity. It indicated that the alpha band may reflect individual differences in pain sensitivity and be involved in pain empathy processing. Our results suggested the distinct role of the delta and alpha bands of EEG signals in pain empathy processing and may deepen our understanding of the neural mechanisms underpinning pain empathy.


Asunto(s)
Empatía , Individualidad , Adulto , Humanos , Electroencefalografía , Dolor , Percepción del Dolor/fisiología
14.
Neuroimage ; 272: 120049, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36963739

RESUMEN

How pain emerges from human brain remains an unresolved question in pain neuroscience. Neuroimaging studies have suggested that all brain areas activated by painful stimuli were also activated by tactile stimuli, and vice versa. Nonetheless, pain-preferential spatial patterns of voxel-level activation in the brain have been observed when distinguishing painful and tactile brain activations using multivariate pattern analysis (MVPA). According to two hypotheses, the neural activity pattern preferentially encoding pain could exist at a global, coarse-grained, regional level, corresponding to the "pain connectome" hypothesis proposing that pain-preferential information may be encoded by the synchronized activity across multiple distant brain regions, and/or exist at a local, fine-grained, voxel level, corresponding to the "intermingled specialized/preferential neurons" hypothesis proposing that neurons responding specially or preferentially to pain could be present and intermingled with non-pain neurons within a voxel. Here, we systematically investigated the spatial scales of pain-distinguishing information in the human brain measured by fMRI using machine learning techniques, and found that pain-distinguishing information could be detected at both coarse-grained spatial scales across widely distributed brain regions and fine-grained spatial scales within many local areas. Importantly, the spatial distribution of pain-distinguishing information in the brain varies across individuals and such inter-individual variations may be related to a person's trait about pain perception, particularly the pain vigilance and awareness. These results provide new insights into the longstanding question of how pain is represented in the human brain and help the identification of characteristic neuroimaging measurements of pain.


Asunto(s)
Mapeo Encefálico , Conectoma , Humanos , Mapeo Encefálico/métodos , Encéfalo/fisiología , Dolor/diagnóstico por imagen , Percepción del Dolor/fisiología , Imagen por Resonancia Magnética/métodos
15.
J Neurophysiol ; 129(1): 262-270, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36541610

RESUMEN

Painful contact heat and laser stimulation offer an avenue to characterize nociceptive pathways involved in acute pain processing, by way of evoked potentials. Direct comparisons of radiant laser and contact heat are limited, particularly in context of examining time-frequency responses to stimulation. This is important in light of recent evidence to suggest that gamma band oscillations (GBOs) represent a functionally heterogeneous measure of pain. The purpose of the current study was to investigate differences in GBOs generated in response to laser and contact heat stimulation of the nondominant forearm. Following intensity matching to pain ratings, evoked electroencephalography (EEG) responses to laser and contact heat stimulation were examined in the time-frequency domain in the same participants (19 healthy adults) across two sessions. At ∼200 ms, both contact heat and laser stimulation resulted in significant, group-level event-related synchronization (ERS) in the low gamma band (i.e., 30-60 Hz) in central electrode locations (Cc, Cz, Ci). Laser stimulation also generated ERS in the 60-100 Hz range (i.e., high gamma), at ∼200 ms, while contact heat led to a significant period of desynchronization in the high gamma range between 400 and 600 ms. Both contact heat and laser GBOs were stronger on the central electrodes contralateral to the stimulated forearm, indicative of primary somatosensory cortex involvement. Based on our findings, and taken in conjunction with previous studies, laser and contact heat stimulation generate characteristically different responses in the brain, with only the former leading to high-frequency GBOs characteristic of painful stimuli.NEW & NOTEWORTHY Despite matching pain perception between noxious laser and contact heat stimuli, we report notable differences in gamma band oscillations (GBO), measured via electroencephalography. GBOs produced following contact heat more closely resembled that of nonnoxious stimuli, while GBOs following laser stimuli were in line with previous reports. Taken together, laser and contact heat stimulation generate characteristically different responses in the brain, with only the former leading to high-frequency GBOs characteristic of painful stimuli.


Asunto(s)
Dolor Agudo , Nocicepción , Adulto , Humanos , Calor , Percepción del Dolor/fisiología , Electroencefalografía , Rayos Láser
16.
Cerebellum ; 22(6): 1234-1242, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36482026

RESUMEN

Accumulating evidence demonstrates a role of the cerebellum in nociception. Some studies suggest that this is mediated via endogenous pain modulation. Here, we used t-DCS to test the effects of modulation of cerebellar function on nociception and endogenous pain modulation. Anodal, cathodal, and sham cerebellar t-DCS were investigated in a cross-over design in 21 healthy subjects. The nociceptive flexor (RIII) reflex, conditioning pain modulation (CPM), and offset analgesia (OA) paradigms were used to assess endogenous pain modulation. Somatosensory evoked potentials (SEPs) and pain ratings were used to assess supraspinal nociception and pain perception, respectively. No significant t-DCS effects were detected when including all t-DCS types and time points (baseline, 0, 30, 60 min post t-DCS) in the analysis. Exploratory analysis revealed an increased RIII reflex size immediately after cathodal t-DCS (compared to sham, P = 0.046, η2p = 0.184), in parallel with a trend for a decrease in electrical pain thresholds (P = 0.094, η2p = 0.134), and increased N120 SEP amplitudes 30 min after cathodal compared to anodal t-DCS (P = 0.007, η2p = 0.374). OA was increased after anodal compared to sham stimulation (P = 0.023, η2p = 0.232). Exploratory results suggested that cathodal (inhibitory) cerebellar t-DCS increased pain perception and reduced endogenous pain inhibition while anodal (excitatory) t-DCS increased endogenous pain inhibition. Results are principally compatible with activation of endogenous pain inhibition by cerebellar excitation. However, maybe due to limited t-DCS skull penetration, effects were small and unlikely to be clinically significant.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Estudios Cruzados , Dolor , Percepción del Dolor/fisiología , Cerebelo/fisiología , Reflejo Anormal
17.
PLoS Biol ; 18(4): e3000491, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32282798

RESUMEN

Nervous systems exploit regularities in the sensory environment to predict sensory input, adjust behavior, and thereby maximize fitness. Entrainment of neural oscillations allows retaining temporal regularities of sensory information, a prerequisite for prediction. Entrainment has been extensively described at the frequencies of periodic inputs most commonly present in visual and auditory landscapes (e.g., >0.5 Hz). An open question is whether neural entrainment also occurs for regularities at much longer timescales. Here, we exploited the fact that the temporal dynamics of thermal stimuli in natural environment can unfold very slowly. We show that ultralow-frequency neural oscillations preserved a long-lasting trace of sensory information through neural entrainment to periodic thermo-nociceptive input as low as 0.1 Hz. Importantly, revealing the functional significance of this phenomenon, both power and phase of the entrainment predicted individual pain sensitivity. In contrast, periodic auditory input at the same ultralow frequency did not entrain ultralow-frequency oscillations. These results demonstrate that a functionally significant neural entrainment can occur at temporal scales far longer than those commonly explored. The non-supramodal nature of our results suggests that ultralow-frequency entrainment might be tuned to the temporal scale of the statistical regularities characteristic of different sensory modalities.


Asunto(s)
Encéfalo/fisiología , Percepción del Dolor/fisiología , Dolor/fisiopatología , Estimulación Acústica , Adulto , Electroencefalografía , Femenino , Humanos , Rayos Láser , Masculino , Dolor/psicología , Dimensión del Dolor , Procesamiento de Señales Asistido por Computador
18.
Sensors (Basel) ; 23(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37837061

RESUMEN

Multiple attempts to quantify pain objectively using single measures of physiological body responses have been performed in the past, but the variability across participants reduces the usefulness of such methods. Therefore, this study aims to evaluate whether combining multiple autonomic parameters is more appropriate to quantify the perceived pain intensity of healthy subjects (HSs) and chronic back pain patients (CBPPs) during experimental heat pain stimulation. HS and CBPP received different heat pain stimuli adjusted for individual pain tolerance via a CE-certified thermode. Different sensors measured physiological responses. Machine learning models were trained to evaluate performance in distinguishing pain levels and identify key sensors and features for the classification task. The results show that distinguishing between no and severe pain is significantly easier than discriminating lower pain levels. Electrodermal activity is the best marker for distinguishing between low and high pain levels. However, recursive feature elimination showed that an optimal subset of features for all modalities includes characteristics retrieved from several modalities. Moreover, the study's findings indicate that differences in physiological responses to pain in HS and CBPP remain small.


Asunto(s)
Calor , Umbral del Dolor , Humanos , Voluntarios Sanos , Umbral del Dolor/fisiología , Percepción del Dolor/fisiología , Dolor de Espalda
19.
Pain Pract ; 23(3): 264-276, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36461643

RESUMEN

INTRODUCTION: Exercise is the most recommended treatment for chronic low back pain (CLBP) and is effective in reducing pain, but the mechanisms underlying its effects remain poorly understood. Exercise-induced hypoalgesia (EIH) may play a role and is thought to be driven by central pain modulation mechanisms. However, EIH appears to be disrupted in many chronic pain conditions and its presence in people with CLBP remains unclear. As people suffering from chronic pain often exhibit psychological factors and central sensitization symptoms influencing pain perception, EIH might be associated with these factors. OBJECTIVE: The aim of this study is to compare the level of EIH between participants with and without CLBP following back and wrist exercises and to assess the associations between EIH, psychological factors, and symptoms of central sensitization (using the central sensitization inventory - CSI) in CLBP. METHOD: Twenty-eight participants with CLBP and 23 without pain were recruited. Pressure pain thresholds (PPT) were measured at 4 sites (2 bony sites = capitate, S1|2 muscle sites = wrist flexors, lumbar erector spinae) before and after each of two exercises (wrist flexion and lumbar extension). Exercise-induced hypoalgesia was defined as percent change in PPT from pre- to post-exercise. Participants with CLBP also completed questionnaires to measure psychological factors (e.g., kinesiophobia, catastrophizing, anxiety, and self-efficacy) and symptoms of central sensitization (CSI), and correlations with EIH were calculated. RESULTS: After wrist exercise, EIH measured at the muscle sites was lower in the CLBP group compared with the pain-free group (p = 0.047) but no differences were found at bony sites (p = 0.49). No significant differences for EIH were observed following back exercise at muscle sites (p = 0.14) or at bony sites (p = 0.65). Exercise-induced hypoalgesia was not correlated with any psychological factors or with the CSI score. CONCLUSION: The lower EIH following wrist exercises may represent an alteration in pain modulation control in CLBP. However, psychological factors and central sensitization symptoms may not explain the differences observed.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Humanos , Sensibilización del Sistema Nervioso Central , Estudios de Casos y Controles , Contracción Isométrica/fisiología , Umbral del Dolor/fisiología , Percepción del Dolor/fisiología , Enfermedad Crónica , Hipoestesia
20.
J Neurosci ; 41(47): 9794-9806, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34697093

RESUMEN

Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants (N = 25, 12 male). Over 2 successive days, through blinded application of altered thermal stimuli, participants were deceptively conditioned to believe that two inert creams labeled lidocaine (placebo) and capsaicin (nocebo) were acting to modulate their pain relative to a third Vaseline (control) cream. In a subsequent test phase, fMRI image sets were collected while participants were given identical noxious stimuli to all three cream sites. Pain intensity ratings were collected and placebo and nocebo responses determined. Brainstem-specific fMRI analysis revealed altered activity in key pain modulatory nuclei, including a disparate recruitment of the periaqueductal gray (PAG)-rostral ventromedial medulla (RVM) pathway when both greater placebo and nocebo effects were observed. Additionally, we found that placebo and nocebo responses differentially activated the parabrachial nucleus but overlapped in engagement of the substantia nigra and locus coeruleus. These data reveal that placebo and nocebo effects are generated through differential engagement of the PAG-RVM pathway, which in concert with other brainstem sites likely influences the experience of pain by modulating activity at the level of the dorsal horn.SIGNIFICANCE STATEMENT Understanding endogenous pain modulatory mechanisms would support development of effective clinical treatment strategies for both acute and chronic pain. Specific brainstem nuclei have long been known to play a central role in nociceptive modulation; however, because of the small size and complex organization of the nuclei, previous neuroimaging efforts have been limited in directly identifying how these subcortical networks interact during the development of antinociceptive and pro-nociceptive effects. We used ultra-high-field fMRI to resolve brainstem structures and measure signal change during placebo analgesia and nocebo hyperalgesia. We define overlapping and disparate brainstem circuitry responsible for altering pain perception. These findings extend our understanding of the detailed organization and function of discrete brainstem nuclei involved in pain processing and modulation.


Asunto(s)
Tronco Encefálico/fisiología , Hiperalgesia/fisiopatología , Efecto Nocebo , Percepción del Dolor/fisiología , Placebos/farmacología , Adulto , Analgésicos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA