Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(6): 1380-1392, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24906154

RESUMEN

Bromine is ubiquitously present in animals as ionic bromide (Br(-)) yet has no known essential function. Herein, we demonstrate that Br(-) is a required cofactor for peroxidasin-catalyzed formation of sulfilimine crosslinks, a posttranslational modification essential for tissue development and architecture found within the collagen IV scaffold of basement membranes (BMs). Bromide, converted to hypobromous acid, forms a bromosulfonium-ion intermediate that energetically selects for sulfilimine formation. Dietary Br deficiency is lethal in Drosophila, whereas Br replenishment restores viability, demonstrating its physiologic requirement. Importantly, Br-deficient flies phenocopy the developmental and BM defects observed in peroxidasin mutants and indicate a functional connection between Br(-), collagen IV, and peroxidasin. We establish that Br(-) is required for sulfilimine formation within collagen IV, an event critical for BM assembly and tissue development. Thus, bromine is an essential trace element for all animals, and its deficiency may be relevant to BM alterations observed in nutritional and smoking-related disease. PAPERFLICK:


Asunto(s)
Membrana Basal/metabolismo , Bromo/metabolismo , Drosophila/crecimiento & desarrollo , Oligoelementos/metabolismo , Animales , Membrana Basal/ultraestructura , Bromo/deficiencia , Línea Celular , Colágeno/metabolismo , Drosophila/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Iminas/metabolismo , Larva/ultraestructura , Ratones , Peroxidasa/genética , Peroxidasa/metabolismo , Peroxidasina
2.
Biochem Biophys Res Commun ; 689: 149237, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37984175

RESUMEN

Diabetic complications present a serious health problem. Functional damage to proteins due to post-translational modifications by glycoxidation reactions is a known factor contributing to pathology. Extracellular proteins are especially vulnerable to diabetic damage because robust antioxidant defenses are lacking outside the cell. We investigated glucose-induced inactivation of peroxidasin (PXDN), a heme protein catalyzing sulfilimine crosslinking of collagen IV that reinforce the basement membranes (BM). Experiments using physiological diabetic glucose levels were carried out to exclude several potential mechanisms of PXDN inactivation i.e., direct adduction of glucose, reactive carbonyl damage, steric hindrance, and osmotic stress. Further experiments established that PXDN activity was inhibited via heme degradation by reactive oxygen species. Activity of another extracellular heme protein, myeloperoxidase, was unaffected by glucose because its heme was resistant to glucose-induced oxidative degradation. Our findings point to specific mechanisms which may compromise BM structure and stability in diabetes and suggest potential modes of protection.


Asunto(s)
Diabetes Mellitus , Hemoproteínas , Hiperglucemia , Humanos , Peroxidasa/metabolismo , Especies Reactivas de Oxígeno , Hemo , Proteínas de la Matriz Extracelular/metabolismo , Glucosa , Peroxidasina
3.
Biochem Soc Trans ; 51(5): 1881-1895, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37801286

RESUMEN

Peroxidasin is a heme-containing peroxidase enzyme that plays a vital role in the cross-linking of collagen IV molecules in basement membranes. Collagen IV cross-links are essential for providing structure and mechanical stability throughout tissue development, homeostasis, and wound healing. During cancer progression, the basement membrane is degraded, and proteins typically found in the basement membrane, including peroxidasin and collagen IV, can be found spread throughout the tumour microenvironment where they interact with cancer cells and alter cell behaviour. Whilst peroxidasin is reported to be up-regulated in a number of different cancers, the role that it plays in disease progression and metastasis has only recently begun to be studied. This review highlights the current literature exploring the known roles of peroxidasin in normal tissues and cancer progression, regulators of peroxidasin expression, and the reported relationships between peroxidasin expression and patient outcome in cancer.


Asunto(s)
Neoplasias , Peroxidasa , Humanos , Peroxidasa/química , Peroxidasa/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Colágeno Tipo IV/química , Colágeno Tipo IV/metabolismo , Membrana Basal/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Peroxidasina
4.
Proc Natl Acad Sci U S A ; 117(27): 15827-15836, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571911

RESUMEN

Bromine and peroxidasin (an extracellular peroxidase) are essential for generating sulfilimine cross-links between a methionine and a hydroxylysine within collagen IV, a basement membrane protein. The sulfilimine cross-links increase the structural integrity of basement membranes. The formation of sulfilimine cross-links depends on the ability of peroxidasin to use bromide and hydrogen peroxide substrates to produce hypobromous acid (HOBr). Once a sulfilimine cross-link is created, bromide is released into the extracellular space and becomes available for reutilization. Whether the HOBr generated by peroxidasin is used very selectively for creating sulfilimine cross-links or whether it also causes oxidative damage to bystander molecules (e.g., generating bromotyrosine residues in basement membrane proteins) is unclear. To examine this issue, we used nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to define the distribution of bromine in mammalian tissues. We observed striking enrichment of bromine (79Br, 81Br) in basement membranes of normal human and mouse kidneys. In peroxidasin knockout mice, bromine enrichment of basement membranes of kidneys was reduced by ∼85%. Proteomic studies revealed bromination of tyrosine-1485 in the NC1 domain of α2 collagen IV from kidneys of wild-type mice; the same tyrosine was brominated in collagen IV from human kidney. Bromination of tyrosine-1485 was reduced by >90% in kidneys of peroxidasin knockout mice. Thus, in addition to promoting sulfilimine cross-links in collagen IV, peroxidasin can also brominate a bystander tyrosine. Also, the fact that bromine enrichment is largely confined to basement membranes implies that peroxidasin activity is largely restricted to basement membranes in mammalian tissues.


Asunto(s)
Membrana Basal/metabolismo , Bromo/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Peroxidasa/metabolismo , Animales , Biopsia , Bromatos/metabolismo , Bromuros , Células Cultivadas , Colágeno Tipo IV/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Iminas/metabolismo , Riñón/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteómica , Peroxidasina
5.
J Mammary Gland Biol Neoplasia ; 26(4): 321-338, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34964086

RESUMEN

The human breast is composed of terminal duct lobular units (TDLUs) that are surrounded by stroma. In the TDLUs, basement membrane separates the stroma from the epithelial compartment, which is divided into an inner layer of luminal epithelial cells and an outer layer of myoepithelial cells. Stem cells and progenitor cells also reside within the epithelium and drive a continuous cycle of gland remodelling that occurs throughout the reproductive period. D492 is an epithelial cell line originally isolated from the stem cell population of the breast and generates both luminal and myoepithelial cells in culture. When D492 cells are embedded into 3D reconstituted basement membrane matrix (3D-rBM) they form branching colonies mimicking the TDLUs of the breast, thereby providing a well-suited in vitro model for studies on branching morphogenesis and breast development. Peroxidasin (PXDN) is a heme-containing peroxidase that crosslinks collagen IV with the formation of sulfilimine bonds. Previous studies indicate that PXDN plays an integral role in basement membrane stabilisation by crosslinking collagen IV and as such contributes to epithelial integrity. Although PXDN has been linked to fibrosis and cancer in some organs there is limited information on its role in development, including in the breast. In this study, we demonstrate expression of PXDN in breast epithelium and stroma and apply the D492 cell line to investigate the role of PXDN in cell differentiation and branching morphogenesis in the human breast. Overexpression of PXDN induced basal phenotype in D492 cells, loss of plasticity and inhibition of epithelial-to-mesenchymal transition as is displayed by complete inhibition of branching morphogenesis in 3D culture. This is supported by results from RNA-sequencing which show significant enrichment in genes involved in epithelial differentiation along with significant negative enrichment of EMT factors. Taken together, we provide evidence for a novel role of PXDN in breast epithelial differentiation and mammary gland development.


Asunto(s)
Células Epiteliales , Células Madre , Colágeno/metabolismo , Células Epiteliales/metabolismo , Proteínas de la Matriz Extracelular , Humanos , Morfogénesis/fisiología , Peroxidasa , Fenotipo , Peroxidasina
6.
FASEB J ; 34(8): 10228-10241, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32543734

RESUMEN

Peroxidasin (PXDN) has been reported to crosslink the C-terminal non-collagenous domains of collagen IV (Col IV) by forming covalent sulfilimine bond. Here, we explored the physiological role of PXDN and its mechanism of action in endothelial cell survival and growth. Silencing of PXDN using siRNAs decreased cell proliferation without increase of the number of detached cells and decreased cell viability under serum-starved condition with increased fragmented nuclei and caspase 3/7 activity. Conditioned medium (CM) containing wild-type PXDN restored the proliferation of PXDN-depleted cells, but CM containing mutant PXDN with deletion of either N-terminal extracellular matrix (ECM) motifs or peroxidase domain failed to restore PXDN function. Accordingly, anti-PXDN antibody [raised against IgC2 (3-4) subdomain within ECM motifs] and peroxidase inhibitor phloroglucinol prevented the rescue of the PXDN-depleted cells by PXDN-containing CM. PXDN depletion resulted in loss of sulfilimine crosslinks, and decreased dense fibrillar network assembly of not only Col IV, but also fibronectin and laminin like in Col IV knockdown. Exogenous PXDN-containing CM restored ECM assembly as well as proliferation of PXDN-depleted cells. Accordingly, purified recombinant PXDN protein restored the proliferation and ECM assembly, and prevented cell death of the PXDN-depleted cells. PXDN depletion also showed reduced growth factors-induced phosphorylation of FAK and ERK1/2. In addition, siPXDN-transfected cell-derived matrix failed to provide full ECM-mediated activation of FAK and ERK1/2. These results indicate that both the ECM motifs and peroxidase activity are essential for the cellular function of PXDN and that PXDN is crucial for ECM assembly for survival and growth signaling.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Iminas/farmacología , Peroxidasa/metabolismo , Transducción de Señal/efectos de los fármacos , Membrana Basal/efectos de los fármacos , Membrana Basal/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo IV/metabolismo , Células Endoteliales/metabolismo , Fibronectinas/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Laminina/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Peroxidasas/metabolismo , Peroxidasina
7.
PLoS Pathog ; 14(5): e1007026, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29775486

RESUMEN

Innate immune recognition is classically mediated by the interaction of host pattern-recognition receptors and pathogen-associated molecular patterns; this triggers a series of downstream signaling events that facilitate killing and elimination of invading pathogens. In this report, we provide the first evidence that peroxidasin (PXDN; also known as vascular peroxidase-1) directly binds to gram-negative bacteria and mediates bactericidal activity, thus, contributing to lung host defense. PXDN contains five leucine-rich repeats and four immunoglobulin domains, which allows for its interaction with lipopolysaccharide, a membrane component of gram-negative bacteria. Bactericidal activity of PXDN is mediated via its capacity to generate hypohalous acids. Deficiency of PXDN results in a failure to eradicate Pseudomonas aeruginosa and increased mortality in a murine model of Pseudomonas lung infection. These observations indicate that PXDN mediates previously unrecognized host defense functions against gram-negative bacterial pathogens.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Peroxidasa/metabolismo , Peroxidasa/farmacología , Animales , Antibacterianos/inmunología , Antibacterianos/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/inmunología , Femenino , Bacterias Gramnegativas/inmunología , Inmunidad Innata/inmunología , Pulmón/inmunología , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/inmunología , Infecciones del Sistema Respiratorio/inmunología , Transducción de Señal , Peroxidasina
8.
Arch Biochem Biophys ; 681: 108267, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31953133

RESUMEN

Human peroxidasin 1 (hsPxd01) is a homotrimeric multidomain heme peroxidase embedded in the extracellular matrix. It catalyses the two-electron oxidation of bromide by hydrogen peroxide to hypobromous acid which mediates the formation of essential sulfilimine cross-links between methionine and hydroxylysine residues in collagen IV. This confers critical structural reinforcement to the extracellular matrix. This study presents for the first time transient kinetic measurements of the reactivity of hsPxd01 compound I and compound II with the endogenous one-electron donors nitrite, ascorbate, urate, tyrosine and serotonin using the sequential stopped-flow technique. At pH 7.4 and 25 °C compound I of hsPxd01 is reduced to compound II with apparent second-order rate constants ranging from (1.9 ± 0.1) × 104 M-1 s-1 (urate) to (4.8 ± 0.1) × 105 M-1 s-1 (serotonin). Reduction of compound II to the ferric state occurs with apparent second-order rate constants ranging from (4.3 ± 0.2) × 102 M-1 s-1 (tyrosine) to (7.7 ± 0.1) × 103 M-1 s-1 (serotonin). The relatively fast rates of compound I reduction suggest that these reactions may take place in vivo and modulate bromide oxidation due to formation of compound II. Urate is shown to inhibit the bromination activity of hsPxd01, whereas nitrite stimulates the formation of hypobromous acid. The results are discussed with respect to known kinetic data of homologous mammalian peroxidases and to the physiological role of human peroxidasin 1.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Peroxidasa/metabolismo , Electrones , Células HEK293 , Halogenación , Humanos , Peróxido de Hidrógeno/metabolismo , Cinética , Nitritos/metabolismo , Oxidación-Reducción , Serotonina/metabolismo , Tirosina/metabolismo , Ácido Úrico/metabolismo , Peroxidasina
9.
Am J Physiol Renal Physiol ; 316(2): F360-F371, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30565999

RESUMEN

Renal fibrosis is the pathological hallmark of chronic kidney disease (CKD) and manifests as glomerulosclerosis and tubulointerstitial fibrosis. Reactive oxygen species contribute significantly to renal inflammation and fibrosis, but most research has focused on superoxide and hydrogen peroxide (H2O2). The animal heme peroxidases myeloperoxidase (MPO), eosinophil peroxidase (EPX), and peroxidasin (PXDN) uniquely metabolize H2O2 into highly reactive and destructive hypohalous acids, such as hypobromous and hypochlorous acid. However, the role of these peroxidases and their downstream hypohalous acids in the pathogenesis of renal fibrosis is unclear. Our study defines the contribution of MPO, EPX, and PXDN to renal inflammation and tubulointerstitial fibrosis in the murine unilateral ureteral obstruction (UUO) model. Using a nonspecific inhibitor of animal heme peroxidases and peroxidase-specific knockout mice, we find that loss of EPX or PXDN, but not MPO, reduces renal fibrosis. Furthermore, we demonstrate that eosinophils, the source of EPX, accumulate in the renal interstitium after UUO. These findings point to EPX and PXDN as potential therapeutic targets for renal fibrosis and CKD and suggest that eosinophils modulate the response to renal injury.


Asunto(s)
Peroxidasa del Eosinófilo/metabolismo , Eosinófilos/enzimología , Proteínas de la Matriz Extracelular/metabolismo , Riñón/enzimología , Nefritis Intersticial/enzimología , Peroxidasa/metabolismo , Peroxidasas/metabolismo , Obstrucción Ureteral/enzimología , Animales , Movimiento Celular , Modelos Animales de Enfermedad , Peroxidasa del Eosinófilo/deficiencia , Peroxidasa del Eosinófilo/genética , Eosinófilos/patología , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Femenino , Fibrosis , Riñón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis Intersticial/etiología , Nefritis Intersticial/patología , Nefritis Intersticial/prevención & control , Peroxidasa/deficiencia , Peroxidasa/genética , Peroxidasas/deficiencia , Peroxidasas/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/patología , Peroxidasina
10.
J Am Soc Nephrol ; 29(11): 2619-2625, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30279272

RESUMEN

BACKGROUND: Goodpasture syndrome (GP) is a pulmonary-renal syndrome characterized by autoantibodies directed against the NC1 domains of collagen IV in the glomerular and alveolar basement membranes. Exposure of the cryptic epitope is thought to occur via disruption of sulfilimine crosslinks in the NC1 domain that are formed by peroxidasin-dependent production of hypobromous acid. Peroxidasin, a heme peroxidase, has significant structural overlap with myeloperoxidase (MPO), and MPO-ANCA is present both before and at GP diagnosis in some patients. We determined whether autoantibodies directed against peroxidasin are also detected in GP. METHODS: We used ELISA and competitive binding assays to assess the presence and specificity of autoantibodies in serum from patients with GP and healthy controls. Peroxidasin activity was fluorometrically measured in the presence of partially purified IgG from patients or controls. Clinical disease severity was gauged by Birmingham Vasculitis Activity Score. RESULTS: We detected anti-peroxidasin autoantibodies in the serum of patients with GP before and at clinical presentation. Enriched anti-peroxidasin antibodies inhibited peroxidasin-mediated hypobromous acid production in vitro. The anti-peroxidasin antibodies recognized peroxidasin but not soluble MPO. However, these antibodies did crossreact with MPO coated on the polystyrene plates used for ELISAs. Finally, peroxidasin-specific antibodies were also found in serum from patients with anti-MPO vasculitis and were associated with significantly more active clinical disease. CONCLUSIONS: Anti-peroxidasin antibodies, which would previously have been mischaracterized, are associated with pulmonary-renal syndromes, both before and during active disease, and may be involved in disease activity and pathogenesis in some patients.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Autoanticuerpos/sangre , Proteínas de la Matriz Extracelular/inmunología , Glomerulonefritis/inmunología , Hemorragia/inmunología , Enfermedades Pulmonares/inmunología , Peroxidasa/inmunología , Peroxidasas/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/etiología , Anticuerpos Anticitoplasma de Neutrófilos/sangre , Especificidad de Anticuerpos , Autoantígenos/inmunología , Niño , Estudios de Cohortes , Colágeno Tipo IV/inmunología , Proteínas de la Matriz Extracelular/antagonistas & inhibidores , Femenino , Glomerulonefritis/etiología , Hemorragia/etiología , Humanos , Enfermedades Pulmonares/etiología , Masculino , Persona de Mediana Edad , Modelos Inmunológicos , Peroxidasa/antagonistas & inhibidores , Peroxidasas/antagonistas & inhibidores , Adulto Joven , Peroxidasina
11.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234468

RESUMEN

Peroxidasin (PXDN), a human homolog of Drosophila PXDN, belongs to the family of heme peroxidases and has been found to promote oxidative stress in cardiovascular tissue, however, its role in prostate cancer has not been previously elucidated. We hypothesized that PXDN promotes prostate cancer progression via regulation of metabolic and oxidative stress pathways. We analyzed PXDN expression in prostate tissue by immunohistochemistry and found increased PXDN expression with prostate cancer progression as compared to normal tissue or cells. PXDN knockdown followed by proteomic analysis revealed an increase in oxidative stress, mitochondrial dysfunction and gluconeogenesis pathways. Additionally, Liquid Chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics confirmed that PXDN knockdown induced global reprogramming associated with increased oxidative stress and decreased nucleotide biosynthesis. We further demonstrated that PXDN knockdown led to an increase in reactive oxygen species (ROS) associated with decreased cell viability and increased apoptosis. Finally, PXDN knockdown decreased colony formation on soft agar. Overall, the data suggest that PXDN promotes progression of prostate cancer by regulating the metabolome, more specifically, by inhibiting oxidative stress leading to decreased apoptosis. Therefore, PXDN may be a biomarker associated with prostate cancer and a potential therapeutic target.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Estrés Oxidativo , Peroxidasa/metabolismo , Neoplasias de la Próstata/metabolismo , Apoptosis , Línea Celular Tumoral , Gluconeogénesis , Humanos , Masculino , Metabolómica , Neoplasias de la Próstata/patología , Proteómica , Peroxidasina
12.
Trends Biochem Sci ; 39(7): 305-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24924147

RESUMEN

Stabilization of extracellular matrix by protein crosslinking is a universal and essential process in multicellular organisms. Recent findings revealed that peroxidasin, a unique heme-peroxidase, produces hypohalides to support matrix synthesis. Unexpectedly, the highly reactive and potentially damaging hypohalides mediate the formation of sulfilimine bonds between adjacent collagen IV protomers. This crosslink is a fundamental feature of basal membranes, defining peroxidasin-dependent oxidant generation and sulfilimine crosslink formation as an elemental mechanism of tissue biogenesis.


Asunto(s)
Membrana Basal/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Peroxidasa/metabolismo , Animales , Colágeno Tipo IV/química , Humanos , Compuestos de Azufre/química , Peroxidasina
13.
J Biol Chem ; 292(11): 4583-4592, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28154175

RESUMEN

Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Peroxidasa/metabolismo , Bromuros/metabolismo , Dominio Catalítico , Cloruros/metabolismo , Colágeno Tipo IV/metabolismo , Proteínas de la Matriz Extracelular/química , Compuestos Férricos/metabolismo , Halogenación , Humanos , Peróxido de Hidrógeno/metabolismo , Yoduros/metabolismo , Cinética , Oxidación-Reducción , Peroxidasa/química , Dominios Proteicos , Especificidad por Sustrato , Tiocianatos/metabolismo , Peroxidasina
14.
Arch Biochem Biophys ; 646: 120-127, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29626421

RESUMEN

Peroxidasin is a heme peroxidase that catalyses the oxidation of bromide by hydrogen peroxide to form an essential sulfilimine cross-link between methionine and hydroxylysine residues in collagen IV. We investigated cross-linking by peroxidasin embedded in extracellular matrix isolated from cultured epithelial cells and its sensitivity to alternative substrates and peroxidase inhibitors. Peroxidasin showed peroxidase activity as measured with hydrogen peroxide and Amplex red. Using a specific mass spectrometry assay that measures NADH bromohydrin, we showed definitively that the enzyme releases hypobromous acid (HOBr). Less than 1 µM of the added hydrogen peroxide was used by peroxidasin. The remainder was consumed by catalase activity that was associated with the matrix. Results from NADH bromohydrin measurements indicates that low micromolar HOBr generated by peroxidasin was sufficient for maximum sulfilimine cross-linking, whereas 100 µM reagent HOBr or taurine bromamine was less efficient. This implies selectivity for the enzymatic process. Physiological concentrations of thiocyanate and urate partially inhibited cross-link formation. 4-Aminobenzoic acid hydrazide, a commonly used myeloperoxidase inhibitor, also inhibited peroxidasin, whereas acetaminophen and a 2-thioxanthine were much less effective. In conclusion, HOBr is produced by peroxidasin in the extracellular matrix. It appears to be directed at the site of collagen IV sulfilimine formation but the released HOBr may also undergo other reactions.


Asunto(s)
Bromatos/química , Bromuros/química , Proteínas de la Matriz Extracelular/química , Matriz Extracelular/química , Peróxido de Hidrógeno/química , Peroxidasa/química , Animales , Bromatos/análisis , Línea Celular Tumoral , Colágeno Tipo IV/química , Proteínas de la Matriz Extracelular/antagonistas & inhibidores , Proteínas de la Matriz Extracelular/genética , Técnicas de Inactivación de Genes , Iminas/química , Espectrometría de Masas , Ratones , NAD/química , Peroxidasa/antagonistas & inhibidores , Peroxidasa/genética , Peroxidasina
15.
J Biol Chem ; 291(46): 24009-24016, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27697841

RESUMEN

The basement membrane (BM) is a form of extracellular matrix that underlies cell layers in nearly all animal tissues. Type IV collagen, a major constituent of BMs, is critical for tissue development and architecture. The enzyme peroxidasin (Pxdn), an extracellular matrix-associated protein, catalyzes the formation of structurally reinforcing sulfilimine cross-links within the collagen IV network, an event essential to basement membrane integrity. Although the catalytic function of Pxdn is known, the regulation of its activity remains unclear. In this work we show through N-terminal sequencing, pharmacologic studies, and mutational analysis that proprotein convertases (PCs) proteolytically process human Pxdn at Arg-1336, a location relatively close to its C terminus. PC processing enhances the enzymatic activity of Pxdn and facilitates the formation of sulfilimine cross-links in collagen IV. Thus, PC processing of Pxdn is a key regulatory step that contributes to its function and, therefore, supports BM integrity and homeostasis.


Asunto(s)
Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Peroxidasa/metabolismo , Proproteína Convertasas/metabolismo , Colágeno Tipo IV/genética , Proteínas de la Matriz Extracelular/genética , Células HEK293 , Humanos , Peroxidasa/genética , Proproteína Convertasas/genética , Dominios Proteicos , Peroxidasina
16.
Am J Physiol Renal Physiol ; 313(3): F596-F602, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28424209

RESUMEN

Basement membranes (BMs), a specialized form of extracellular matrix, underlie nearly all cell layers and provide structural support for tissues and interact with cell surface receptors to determine cell behavior. Both macromolecular composition and stiffness of the BM influence cell-BM interactions. Collagen IV is a major constituent of the BM that forms an extensively cross-linked oligomeric network. Its deficiency leads to BM mechanical instability, as observed with glomerular BM in Alport syndrome. These findings have led to the hypothesis that collagen IV and its cross-links determine BM stiffness. A sulfilimine bond (S = N) between a methionine sulfur and a lysine nitrogen cross-links collagen IV and is formed by the matrix enzyme peroxidasin. In peroxidasin knockout mice with reduced collagen IV sulfilimine cross-links, we find a reduction in renal tubular BM stiffness. Thus this work provides the first direct experimental evidence that collagen IV sulfilimine cross-links contribute to BM mechanical properties and provides a foundation for future work on the relationship of BM mechanics to cell function in renal disease.


Asunto(s)
Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Iminas/metabolismo , Riñón/metabolismo , Animales , Membrana Basal/patología , Fenómenos Biomecánicos , Colágeno Tipo IV/química , Reactivos de Enlaces Cruzados/química , Módulo de Elasticidad , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Genotipo , Iminas/química , Riñón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Peroxidasa/deficiencia , Peroxidasa/genética , Fenotipo , Conformación Proteica , Resistencia a la Tracción , Peroxidasina
17.
Proc Natl Acad Sci U S A ; 111(1): 331-6, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344311

RESUMEN

Basement membrane, a specialized ECM that underlies polarized epithelium of eumetazoans, provides signaling cues that regulate cell behavior and function in tissue genesis and homeostasis. A collagen IV scaffold, a major component, is essential for tissues and dysfunctional in several diseases. Studies of bovine and Drosophila tissues reveal that the scaffold is stabilized by sulfilimine chemical bonds (S = N) that covalently cross-link methionine and hydroxylysine residues at the interface of adjoining triple helical protomers. Peroxidasin, a heme peroxidase embedded in the basement membrane, produces hypohalous acid intermediates that oxidize methionine, forming the sulfilimine cross-link. We explored whether the sulfilimine cross-link is a fundamental requirement in the genesis and evolution of epithelial tissues by determining its occurrence and evolutionary origin in Eumetazoa and its essentiality in zebrafish development; 31 species, spanning 11 major phyla, were investigated for the occurrence of the sulfilimine cross-link by electrophoresis, MS, and multiple sequence alignment of de novo transcriptome and available genomic data for collagen IV and peroxidasin. The results show that the cross-link is conserved throughout Eumetazoa and arose at the divergence of Porifera and Cnidaria over 500 Mya. Also, peroxidasin, the enzyme that forms the bond, is evolutionarily conserved throughout Metazoa. Morpholino knockdown of peroxidasin in zebrafish revealed that the cross-link is essential for organogenesis. Collectively, our findings establish that the triad-a collagen IV scaffold with sulfilimine cross-links, peroxidasin, and hypohalous acids-is a primordial innovation of the ECM essential for organogenesis and tissue evolution.


Asunto(s)
Membrana Basal/metabolismo , Evolución Biológica , Iminas/química , Compuestos de Azufre/química , Secuencia de Aminoácidos , Animales , Colágeno Tipo IV/química , Reactivos de Enlaces Cruzados/química , Drosophila melanogaster , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/química , Hemo/química , Espectrometría de Masas , Datos de Secuencia Molecular , Péptidos/química , Peroxidasa/química , Peroxidasas/química , Estructura Terciaria de Proteína , Análisis de Secuencia de ARN , Homología de Secuencia de Aminoácido , Pez Cebra , Peroxidasina
18.
J Biol Chem ; 290(35): 21741-8, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26178375

RESUMEN

The collagen IV sulfilimine cross-link and its catalyzing enzyme, peroxidasin, represent a dyad critical for tissue development, which is conserved throughout the animal kingdom. Peroxidasin forms novel sulfilimine bonds between opposing methionine and hydroxylysine residues to structurally reinforce the collagen IV scaffold, a function critical for basement membrane and tissue integrity. However, the molecular mechanism underlying cross-link formation remains unclear. In this work, we demonstrate that the catalytic domain of peroxidasin and its immunoglobulin (Ig) domains are required for efficient sulfilimine bond formation. Thus, these molecular features underlie the evolutionarily conserved function of peroxidasin in tissue development and integrity and distinguish peroxidasin from other peroxidases, such as myeloperoxidase (MPO) and eosinophil peroxidase (EPO).


Asunto(s)
Colágeno Tipo IV/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/metabolismo , Iminas/metabolismo , Inmunoglobulinas/química , Peroxidasa/química , Peroxidasa/metabolismo , Evolución Molecular , Matriz Extracelular/metabolismo , Células HEK293 , Hemo/metabolismo , Humanos , Modelos Biológicos , Peroxidasas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Peroxidasina
19.
Hum Mol Genet ; 23(21): 5597-614, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24895407

RESUMEN

Mutations in Peroxidasin (PXDN) cause severe inherited eye disorders in humans, such as congenital cataract, corneal opacity and developmental glaucoma. The role of peroxidasin during eye development is poorly understood. Here, we describe the first Pxdn mouse mutant which was induced by ENU (N-ethyl-N-nitrosourea) and led to a recessive phenotype. Sequence analysis of cDNA revealed a T3816A mutation resulting in a premature stop codon (Cys1272X) in the peroxidase domain. This mutation causes severe anterior segment dysgenesis and microphthalmia resembling the manifestations in patients with PXDN mutations. The proliferation and differentiation of the lens is disrupted in association with aberrant expression of transcription factor genes (Pax6 and Foxe3) in mutant eyes. Additionally, Pxdn is involved in the consolidation of the basement membrane and lens epithelium adhesion in the ocular lens. Lens material including γ-crystallin is extruded into the anterior and posterior chamber due to local loss of structural integrity of the lens capsule as a secondary damage to the anterior segment development leading to congenital ocular inflammation. Moreover, Pxdn mutants exhibited an early-onset glaucoma and progressive retinal dysgenesis. Transcriptome profiling revealed that peroxidasin affects the transcription of developmental and eye disease-related genes at early eye development. These findings suggest that peroxidasin is necessary for cell proliferation and differentiation and for basement membrane consolidation during eye development. Our studies provide pathogenic mechanisms of PXDN mutation-induced congenital eye diseases.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Ojo/embriología , Ojo/metabolismo , Organogénesis/genética , Peroxidasa/genética , Animales , Adhesión Celular , Proliferación Celular , Análisis Mutacional de ADN , Matriz Extracelular/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Estudios de Asociación Genética , Ligamiento Genético , Genotipo , Cristalino/embriología , Cristalino/metabolismo , Masculino , Ratones , Mutación , Disco Óptico/embriología , Disco Óptico/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Retina/embriología , Retina/metabolismo , Retina/patología , Peroxidasina
20.
Am J Hum Genet ; 89(3): 464-73, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21907015

RESUMEN

Anterior segment dysgenesis describes a group of heterogeneous developmental disorders that affect the anterior chamber of the eye and are associated with an increased risk of glaucoma. Here, we report homozygous mutations in peroxidasin (PXDN) in two consanguineous Pakistani families with congenital cataract-microcornea with mild to moderate corneal opacity and in a consanguineous Cambodian family with developmental glaucoma and severe corneal opacification. These results highlight the diverse ocular phenotypes caused by PXDN mutations, which are likely due to differences in genetic background and environmental factors. Peroxidasin is an extracellular matrix-associated protein with peroxidase catalytic activity, and we confirmed localization of the protein to the cornea and lens epithelial layers. Our findings imply that peroxidasin is essential for normal development of the anterior chamber of the eye, where it may have a structural role in supporting cornea and lens architecture as well as an enzymatic role as an antioxidant enzyme in protecting the lens, trabecular meshwork, and cornea against oxidative damage.


Asunto(s)
Catarata/genética , Opacidad de la Córnea/genética , Proteínas de la Matriz Extracelular/genética , Predisposición Genética a la Enfermedad/genética , Glaucoma/genética , Modelos Moleculares , Peroxidasa/genética , Animales , Secuencia de Bases , Catarata/patología , Córnea/metabolismo , Córnea/patología , Opacidad de la Córnea/patología , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/metabolismo , Glaucoma/patología , Humanos , Ratones , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación/genética , Linaje , Peroxidasa/química , Peroxidasa/metabolismo , Análisis de Secuencia de ADN , Peroxidasina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA