Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Phytopathology ; 114(9): 2113-2120, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38870178

RESUMEN

Wheat blast, caused by Pyricularia oryzae (syn. Magnaporthe oryzae) pathotype Triticum (MoT), is a devastating disease that can result in up to 100% yield loss in affected fields. To find new resistance genes against wheat blast, we screened 199 accessions of Aegilops tauschii, the D genome progenitor of common wheat (Triticum aestivum), by seedling inoculation assays with Brazilian MoT isolate Br48 and found 14 resistant accessions. A synthetic hexaploid wheat line (Ldn/KU-2097) derived from a cross between the T. turgidum 'Langdon' (Ldn) and resistant A. tauschii accession KU-2097 exhibited resistance in seedlings and spikes against Br48. In an F2 population derived from 'Chinese Spring' × Ldn/KU-2097, resistant and susceptible individuals segregated in a 3:1 ratio, suggesting that the resistance from KU-2097 is controlled by a single dominant gene. We designated this gene Rmg10. Genetic mapping using an F2:3 population from the same cross mapped the RMG10 locus to the short arm of chromosome 2D. Rmg10 was ineffective against Bangladesh isolates but effective against Brazilian isolates. Field tests in Bolivia showed increased spike resistance in a synthetic octaploid wheat line produced from a cross between common wheat cultivar 'Gladius' and KU-2097. These results suggest that Rmg10 would be beneficial in farmers' fields in South America.


Asunto(s)
Aegilops , Resistencia a la Enfermedad , Enfermedades de las Plantas , Triticum , Triticum/microbiología , Triticum/genética , Triticum/inmunología , Aegilops/genética , Aegilops/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Ascomicetos/fisiología , Ascomicetos/genética , Genes de Plantas/genética , Mapeo Cromosómico , Plantones/microbiología , Plantones/genética , Plantones/inmunología
2.
Plant J ; 108(5): 1241-1255, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34583419

RESUMEN

Plants sense various pathogens and activate immunity responses through receptor-like kinases (RLKs). Cysteine-rich receptor-like kinases (CRKs) are involved in massive transduction pathways upon perception of a pathogen. However, the roles of CRKs in response to stripe rust are unclear. In the present study, we identified a CRK gene (designated TaCRK10) from wheat variety Xiaoyan 6 (XY6) that harbors high-temperature seedling-plant (HTSP) resistance to stripe rust caused by fungal pathogen Puccinia striiformis f. sp. tritici (Pst). The expression level of TaCRK10 was induced by Pst inoculation and high temperature treatment. Knockdown of TaCRK10 by virus-induced gene silencing resulted in attenuated wheat HTSP resistance to Pst, whereas there is no effect on Pst development and host responses under normal temperatures. Notably, overexpression of TaCRK10 in susceptible variety Fielder provided resistance only under normal temperatures at 14 days with reactive oxygen species accumulation and defense-related gene expression of the salicylic acid pathway. Moreover, TaCRK10 physically interacted with and phosphorylated a histone variant TaH2A.1, which belongs to the H2A.W group. Silencing of TaH2A.1 suppressed wheat resistance to Pst, indicating that TaH2A.1 plays a positive role in wheat resistance to Pst. Thus, TaCRK10 serves as an important sensor of Pst infection and high temperatures, and it activates wheat resistance to Pst through regulating nuclear processes. This knowledge helps elucidate the molecular mechanism of wheat HTSP resistance to Pst and promotes efforts in developing wheat varieties with resistance to stripe rust.


Asunto(s)
Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Puccinia/fisiología , Triticum/genética , Histonas/metabolismo , Calor , Fosforilación , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Plantones/genética , Plantones/inmunología , Plantones/microbiología , Plantones/fisiología , Triticum/inmunología , Triticum/microbiología , Triticum/fisiología
3.
Plant J ; 103(2): 561-583, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32170889

RESUMEN

Pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) initiate complex defense responses by reorganizing the biomolecular dynamics of the host cellular machinery. The extracellular matrix (ECM) acts as a physical scaffold that prevents recognition and entry of phytopathogens, while guard cells perceive and integrate signals metabolically. Although chitosan is a known MAMP implicated in plant defense, the precise mechanism of chitosan-triggered immunity (CTI) remains unknown. Here, we show how chitosan imparts immunity against fungal disease. Morpho-histological examination revealed stomatal closure accompanied by reductions in stomatal conductance and transpiration rate as early responses in chitosan-treated seedlings upon vascular fusariosis. Electron microscopy and Raman spectroscopy showed ECM fortification leading to oligosaccharide signaling, as documented by increased galactose, pectin and associated secondary metabolites. Multiomics approach using quantitative ECM proteomics and metabolomics identified 325 chitosan-triggered immune-responsive proteins (CTIRPs), notably novel ECM structural proteins, LYM2 and receptor-like kinases, and 65 chitosan-triggered immune-responsive metabolites (CTIRMs), including sugars, sugar alcohols, fatty alcohols, organic and amino acids. Identified proteins and metabolites are linked to reactive oxygen species (ROS) production, stomatal movement, root nodule development and root architecture coupled with oligosaccharide signaling that leads to Fusarium resistance. The cumulative data demonstrate that ROS, NO and eATP govern CTI, in addition to induction of PR proteins, CAZymes and PAL activities, besides accumulation of phenolic compounds downstream of CTI. The immune-related correlation network identified functional hubs in the CTI pathway. Altogether, these shifts led to the discovery of chitosan-responsive networks that cause significant ECM and guard cell remodeling, and translate ECM cues into cell fate decisions during fusariosis.


Asunto(s)
Quitosano/metabolismo , Cicer/inmunología , Matriz Extracelular/fisiología , Fusarium , Enfermedades de las Plantas/inmunología , Estomas de Plantas/fisiología , Metabolismo de los Hidratos de Carbono , Cicer/metabolismo , Cicer/microbiología , Interacciones Huésped-Patógeno , Metaboloma , Enfermedades de las Plantas/microbiología , Raíces de Plantas/inmunología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteoma , Plantones/inmunología , Plantones/microbiología
4.
BMC Plant Biol ; 21(1): 393, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34418972

RESUMEN

BACKGROUND: Mycotoxins are among the environmental stressors whose oxidative action is currently widely studied. The aim of this paper was to investigate the response of seedling leaves to zearalenone (ZEA) applied to the leaves (directly) and to the grains (indirectly) in tolerant and sensitive wheat cultivars. RESULTS: Biochemical analyses of antioxidant activity were performed for chloroplasts and showed a similar decrease in this activity irrespective of plant sensitivity and the way of ZEA application. On the other hand, higher amounts of superoxide radical (microscopic observations) were generated in the leaves of plants grown from the grains incubated in ZEA solution and in the sensitive cultivar. Electron paramagnetic resonance (EPR) studies showed that upon ZEA treatment greater numbers of Mn - aqua complexes were formed in the leaves of the tolerant wheat cultivar than in those of the sensitive one, whereas the degradation of Fe-protein complexes occurred independently of the cultivar sensitivity. CONCLUSION: The changes in the quantity of stable, organic radicals formed by stabilizing reactive oxygen species on biochemical macromolecules, indicated greater potential for their generation in leaf tissues subjected to foliar ZEA treatment. This suggested an important role of these radical species in protective mechanisms mainly against direct toxin action. The way the defense mechanisms were activated depended on the method of the toxin application.


Asunto(s)
Inmunidad de la Planta/genética , Hojas de la Planta/inmunología , Semillas/inmunología , Triticum/genética , Triticum/inmunología , Zearalenona/efectos adversos , Grano Comestible/genética , Grano Comestible/inmunología , Espectroscopía de Resonancia por Spin del Electrón , Variación Genética , Genotipo , Inmunidad de la Planta/fisiología , Hojas de la Planta/genética , Plantones/genética , Plantones/inmunología , Semillas/genética
5.
BMC Plant Biol ; 21(1): 59, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482731

RESUMEN

BACKGROUND: Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection. RESULTS: The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells. CONCLUSION: Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.


Asunto(s)
Arecaceae/genética , Ganoderma/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Factores de Transcripción/metabolismo , Transcriptoma , Secuencias de Aminoácidos , Arecaceae/inmunología , Arecaceae/microbiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Plantones/genética , Plantones/inmunología , Plantones/microbiología , Factores de Transcripción/genética
6.
BMC Plant Biol ; 21(1): 62, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33494714

RESUMEN

BACKGROUND: Mexico is considered the diversification center for chili species, but these crops are susceptible to infection by pathogens such as Colletotrichum spp., which causes anthracnose disease and postharvest decay in general. Studies have been carried out with isolated strains of Colletotrichum in Capsicum plants; however, under growing conditions, microorganisms generally interact with others, resulting in an increase or decrease of their ability to infect the roots of C. chinense seedlings and thus, cause disease. RESULTS: Morphological changes were evident 24 h after inoculation (hai) with the microbial consortium, which consisted primarily of C. ignotum. High levels of diacylglycerol pyrophosphate (DGPP) and phosphatidic acid (PA) were found around 6 hai. These metabolic changes could be correlated with high transcription levels of diacylglycerol-kinase (CchDGK1 and CchDG31) at 3, 6 and 12 hai and also to pathogen gene markers, such as CchPR1 and CchPR5. CONCLUSIONS: Our data constitute the first evidence for the phospholipids signalling events, specifically DGPP and PA participation in the phospholipase C/DGK (PI-PLC/DGK) pathway, in the response of Capsicum to the consortium, offering new insights on chilis' defense responses to damping-off diseases.


Asunto(s)
Capsicum/inmunología , Colletotrichum/fisiología , Consorcios Microbianos/fisiología , Fosfolípidos/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Transducción de Señal , Capsicum/genética , Capsicum/microbiología , Colletotrichum/aislamiento & purificación , Diacilglicerol Quinasa , Difosfatos/metabolismo , Glicerol/análogos & derivados , Glicerol/metabolismo , Interacciones Huésped-Patógeno , Ácidos Fosfatidicos/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Plantones/genética , Plantones/inmunología , Plantones/microbiología , Fosfolipasas de Tipo C/metabolismo
7.
Mol Genet Genomics ; 296(1): 155-164, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33118051

RESUMEN

Sugar beets are attacked by several pathogens that cause root damages. Rhizoctonia (Greek for "root killer") is one of them. Rhizoctonia root rot has become an increasing problem for sugar beet production and to decrease yield losses agronomical measures are adopted. Here, two partially resistant and two susceptible sugar beet genotypes were used for transcriptome analysis to discover new defense genes to this fungal disease, information to be implemented in molecular resistance breeding. Among 217 transcripts with increased expression at 2 days post-infection (dpi), three resistance-like genes were found. These genes were not significantly elevated at 5 dpi, a time point when increased expression of three Bet v I/Major latex protein (MLP) homologous genes BvMLP1, BvMLP2 and BvML3 was observed in the partially resistant genotypes. Quantitative RT-PCR analysis on diseased sugar beet seedlings validated the activity of BvMLP1 and BvMLP3 observed in the transcriptome during challenge by R. solani. The three BvMLP genes were cloned and overexpressed in Arabidopsis thaliana to further dissect their individual contribution. Transgenic plants were also compared to T-DNA mutants of orthologous MLP genes. Plants overexpressing BvMLP1 and BvMLP3 showed significantly less infection whereas additive effects were seen on Atmlp1/Atmlp3 double mutants. The data suggest that BvMLP1 and BvMLP3 may contribute to the reduction of the Rhizoctonia root rot disease in sugar beet. Impact on the defense reaction from other differential expressed genes observed in the study is discussed.


Asunto(s)
Beta vulgaris/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Rhizoctonia/patogenicidad , Transcriptoma/inmunología , Arabidopsis/genética , Arabidopsis/metabolismo , Beta vulgaris/inmunología , Beta vulgaris/microbiología , Clonación Molecular , Expresión Génica , Redes Reguladoras de Genes , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/inmunología , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizoctonia/crecimiento & desarrollo , Plantones/genética , Plantones/inmunología , Plantones/microbiología
8.
Plant Cell Environ ; 44(1): 323-338, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33037636

RESUMEN

Downy mildew in hop (Humulus lupulus L.) is caused by Pseudoperonospora humuli and generates significant losses in quality and yield. To identify the biochemical processes that confer natural downy mildew resistance (DMR), a metabolome- and genome-wide association study was performed. Inoculation of a high density genotyped F1 hop population (n = 192) with the obligate biotrophic oomycete P. humuli led to variation in both the levels of thousands of specialized metabolites and DMR. We observed that metabolites of almost all major phytochemical classes were induced 48 hr after inoculation. But only a small number of metabolites were found to be correlated with DMR and these were enriched with phenylpropanoids. These metabolites were also correlated with DMR when measured from the non-infected control set. A genome-wide association study revealed co-localization of the major DMR loci and the phenylpropanoid pathway markers indicating that the major contribution to resistance is mediated by these metabolites in a heritable manner. The application of three putative prophylactic phenylpropanoids led to a reduced degree of leaf infection in susceptible genotypes, confirming their protective activity either directly or as precursors of active compounds.


Asunto(s)
Resistencia a la Enfermedad/genética , Humulus/inmunología , Oomicetos , Peronospora , Cromatografía de Gases y Espectrometría de Masas , Humulus/genética , Humulus/metabolismo , Humulus/microbiología , Hojas de la Planta/metabolismo , Polimorfismo de Nucleótido Simple/genética , Plantones/inmunología , Plantones/microbiología
9.
Plant Cell Rep ; 40(8): 1415-1427, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34109470

RESUMEN

KEY MESSAGE: Foliar application of SA cross-talks and induce endogenous nitric oxide and reactive oxygen species to improve innate immunity and vigor of tomato plant against Fusarium oxysporum stress. The present investigation was aimed to demonstrate the efficacy of salicylic acid (SA), as a powerful elicitor or plant growth regulator (PGR) and its cross-talk with nitric oxide (NO) in tomato against the biotic stress caused by wilt pathogen, Fusarium oxysporum f. sp. lycopersici. Different defense-related enzymes and gene expression, phenol, flavonoid, and phenolic acid content along with NO generation and other physiological characters have been estimated after foliar application of SA. Total chlorophyll content was steadily maintained and the amount of death of cells was negligible after 72 h of SA treatment. Significant reduction of disease incidence was also recorded in SA treated sets. Simultaneously, NO generation was drastically improved at this stage, which has been justified by both spectrophotometrically and microscopically. A direct correlation between reactive oxygen species (ROS) generation and NO has been established. Production of defense enzymes, gene expressions, different phenolic acids was positively influenced by SA treatment. However, tomato plants treated with SA along with NO synthase (NOS) inhibitor or NO scavenger significantly reduce all those parameters tested. On the other hand, NO donor-treated plants showed the same inductive effect like SA. Furthermore, SA treated seeds of tomato also showed improved physiological parameters like higher seedling vigor index, shoot and root length, mean trichome density, etc. It is speculated that the cross-talk between SA and endogenous NO have tremendous ability to improve defense responses and growth of the tomato plant. It can be utilized in future sustainable agriculture for bimodal action.


Asunto(s)
Fusarium/patogenicidad , Óxido Nítrico/metabolismo , Ácido Salicílico/metabolismo , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Muerte Celular/efectos de los fármacos , Enzimas/metabolismo , Flavonoides/análisis , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Interacciones Huésped-Patógeno/fisiología , Lignina/metabolismo , Solanum lycopersicum/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Fenoles/análisis , Fenoles/metabolismo , Células Vegetales/efectos de los fármacos , Células Vegetales/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología , Plantones/efectos de los fármacos , Plantones/inmunología , Plantones/microbiología
10.
Mol Plant Microbe Interact ; 33(3): 394-401, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31851574

RESUMEN

An understanding of how biological diversity affects plant-microbe interactions is becoming increasingly important, particularly with respect to components of the pathogen effector arsenal and the plant immune system. Although technological improvements have greatly advanced our ability to examine molecular sequences and interactions, relatively few advances have been made that facilitate high-throughput, in vivo pathology screens. Here, we present a high-throughput, microplate-based, nondestructive seedling pathology assay, and apply it to identify Arabidopsis thaliana effector-triggered immunity (ETI) responses against Pseudomonas syringae type III secreted effectors. The assay was carried out in a 48-well microplate format with spray inoculation, and disease symptoms were quantitatively recorded in a semiautomated manner, thereby greatly reducing both time and costs. The assay requires only slight modifications of common labware and uses no proprietary software. We validated the assay by recapitulating known ETI responses induced by P. syringae in Arabidopsis. We also demonstrated that we can quantitatively differentiate responses from a diversity of plant genotypes grown in the same microplate. Finally, we showed that the results obtained from our assay can be used to perform genome-wide association studies to identify host immunity genes, recapitulating results that have been independently obtained with mature plants.


Asunto(s)
Arabidopsis/inmunología , Ensayos Analíticos de Alto Rendimiento , Inmunidad de la Planta , Pseudomonas syringae/patogenicidad , Plantones/inmunología , Proteínas Bacterianas , Enfermedades de las Plantas/microbiología
11.
BMC Plant Biol ; 20(1): 334, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678006

RESUMEN

BACKGROUND: Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), is a severe disease affecting cucumber (Cucumis sativus L.) production worldwide, but mechanisms underlying Fusarium wilt resistance in cucumber remain unknown. To better understand of the defense mechanisms elicited in response to Foc inoculation, RNA sequencing-based transcriptomic profiling of responses of the Fusarium wilt-resistant cucumber line 'Rijiecheng' at 0, 24, 48, 96, and 192 h after Foc inoculation was performed. RESULTS: We identified 4116 genes that were differentially expressed between 0 h and other time points after inoculation. All ethylene-related and pathogenesis-related genes from the differentially expressed genes were filtered out. Real-time PCR analysis showed that ethylene-related genes were induced in response to Foc infection. Importantly, after Foc infection and exogenous application of ethephon, a donor of ethylene, the ethylene-related genes were highly expressed. In response to exogenous ethephon treatment in conjunction with Foc inoculation, the infection resistance of cucumber seedlings was enhanced and endogenous ethylene biosynthesis increased dramatically. CONCLUSION: Collectively, ethylene signaling pathways play a positive role in regulating the defense response of cucumber to Foc infection. The results provide insight into the cucumber Fusarium wilt defense mechanisms and provide valuable information for breeding new cucumber cultivars with enhanced Fusarium wilt tolerance.


Asunto(s)
Cucumis sativus/genética , Etilenos/farmacología , Fusarium/fisiología , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/farmacología , Transducción de Señal/genética , Cucumis sativus/inmunología , Cucumis sativus/microbiología , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Plantones/genética , Plantones/inmunología , Plantones/fisiología
12.
PLoS Pathog ; 14(1): e1006756, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29293695

RESUMEN

Plant genomes encode large numbers of nucleotide-binding (NB) leucine-rich repeat (LRR) immune receptors (NLR) that mediate effector triggered immunity (ETI) and play key roles in protecting crops from diseases caused by devastating pathogens. Fitness costs are associated with plant NLR genes and regulation of NLR genes by micro(mi)RNAs and phased small interfering RNAs (phasiRNA) is proposed as a mechanism for reducing these fitness costs. However, whether NLR expression and NLR-mediated immunity are regulated during plant growth is unclear. We conducted genome-wide transcriptome analysis and showed that NLR expression gradually increased while expression of their regulatory small RNAs (sRNA) gradually decreased as plants matured, indicating that sRNAs could play a role in regulating NLR expression during plant growth. We further tested the role of miRNA in the growth regulation of NLRs using the tobacco mosaic virus (TMV) resistance gene N, which was targeted by miR6019 and miR6020. We showed that N-mediated resistance to TMV effectively restricted this virus to the infected leaves of 6-week old plants, whereas TMV infection was lethal in 1- and 3-week old seedlings due to virus-induced systemic necrosis. We further found that N transcript levels gradually increased while miR6019 levels gradually decreased during seedling maturation that occurs in the weeks after germination. Analyses of reporter genes in transgenic plants showed that growth regulation of N expression was post-transcriptionally mediated by MIR6019/6020 whereas MIR6019/6020 was regulated at the transcriptional level during plant growth. TMV infection of MIR6019/6020 transgenic plants indicated a key role for miR6019-triggered phasiRNA production for regulation of N-mediated immunity. Together our results demonstrate a mechanistic role for miRNAs in regulating innate immunity during plant growth.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Inmunidad Innata , Nicotiana/metabolismo , Inmunidad de la Planta , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Solanum lycopersicum/metabolismo , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Genes Reporteros , Genoma de Planta , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/inmunología , Solanum lycopersicum/virología , Proteínas NLR/genética , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/virología , ARN de Planta , Plantones/crecimiento & desarrollo , Plantones/inmunología , Plantones/metabolismo , Plantones/virología , Especificidad de la Especie , Nicotiana/crecimiento & desarrollo , Nicotiana/inmunología , Nicotiana/virología , Virus del Mosaico del Tabaco/genética , Virus del Mosaico del Tabaco/crecimiento & desarrollo , Virus del Mosaico del Tabaco/fisiología
13.
Proc Natl Acad Sci U S A ; 114(9): 2212-2217, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28179567

RESUMEN

Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21's activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión a Clorofila/genética , Proteasas de Cisteína/genética , Regulación de la Expresión Génica de las Plantas , Plantones/genética , Serpinas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Proteínas de Unión a Clorofila/química , Proteínas de Unión a Clorofila/metabolismo , Proteasas de Cisteína/química , Proteasas de Cisteína/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Cinética , Modelos Moleculares , Inmunidad de la Planta/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plantones/crecimiento & desarrollo , Plantones/inmunología , Plantones/metabolismo , Serpinas/química , Serpinas/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato
14.
Ecotoxicol Environ Saf ; 190: 110048, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31837570

RESUMEN

Phosphite (Phi), an analog of phosphate (Pi) anion, is emerging as a potential biostimulator, fungicide and insecticide. Here, we reported that Phi also significantly enhanced thermotolerance in potatoes under heat stress. Potato plants with and without Phi pretreatment were exposed to heat stress and their heat tolerance was examined by assessing the morphological characteristics, photosynthetic pigment content, photosystem II (PS II) efficiency, levels of oxidative stress, and level of DNA damage. In addition, RNA-sequencing (RNA-Seq) was adopted to investigate the roles of Phi signals and the underlying heat resistance mechanism. RNA-Seq revealed that Phi orchestrated plant immune responses against heat stress by reprograming global gene expressions. Results from physiological data combined with RNA-Seq suggested that the supply of Phi not only was essential for the better plant performance, but also improved thermotolerance of the plants by alleviating oxidative stress and DNA damage, and improved biosynthesis of osmolytes and defense metabolites when exposed to unfavorable thermal conditions. This is the first study to explore the role of Phi in thermotolerance in plants, and the work can be applied to other crops under the challenging environment.


Asunto(s)
Fosfitos/farmacología , Solanum tuberosum/efectos de los fármacos , Termotolerancia/efectos de los fármacos , Daño del ADN , Respuesta al Choque Térmico/efectos de los fármacos , Estrés Oxidativo , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , RNA-Seq , Plantones/efectos de los fármacos , Plantones/genética , Plantones/inmunología , Plantones/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Solanum tuberosum/metabolismo
15.
Plant Mol Biol ; 101(1-2): 149-162, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31267255

RESUMEN

KEY MESSAGE: Here we describe that the regulation of MdWRKY31 on MdHIR4 in transcription and translation levels associated with disease in apple. The phytohormone salicylic acid (SA) is a main factor in apple (Malus domestica) production due to its function in disease resistance. WRKY transcription factors play a vital role in response to stress. An RNA-seq analysis was conducted with 'Royal Gala' seedlings treated with SA to identify the WRKY regulatory mechanism of disease resistance in apple. The analysis indicated that MdWRKY31 was induced. A quantitative real-time polymerase chain reaction (qPCR) analysis demonstrated that the expression of MdWRKY31 was induced by SA and flg22. Ectopic expression of MdWRKY31 in Arabidopsis and Nicotiana benthamiana increased the resistance to flg22 and Pseudomonas syringae tomato (Pst DC3000). A yeast two-hybrid screen was conducted to further analyze the function of MdWRKY31. As a result, hypersensitive-induced reaction (HIR) protein MdHIR4 interacted with MdWRKY31. Biomolecular fluorescence complementation, yeast two-hybrid, and pull-down assays demonstrated the interaction. In our previous study, MdHIR4 conferred decreased resistance to Botryosphaeria dothidea (B. dothidea). A viral vector-based transformation assay indicated that MdWRKY31 evaluated the transcription of SA-related genes, including MdPR1, MdPR5, and MdNPR1 in an MdHIR4-dependent way. A GUS analysis demonstrated that the w-box, particularly w-box2, of the MdHIR4 promoter played a major role in the responses to SA and B. dothidea. Electrophoretic mobility shift assays, yeast one-hybrid assay, and chromatin immunoprecipitation-qPCR demonstrated that MdWRKY31 directly bound to the w-box2 motif in the MdHIR4 promoter. GUS staining activity and a protein intensity analysis further showed that MdWRKY31 repressed MdHIR4 expression. Taken together, our findings reveal that MdWRKY31 regulated plant resistance to B. dothidea through the SA signaling pathway by interacting with MdHIR4.


Asunto(s)
Resistencia a la Enfermedad , Malus/genética , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Ascomicetos/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Frutas/genética , Frutas/inmunología , Frutas/microbiología , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Malus/inmunología , Malus/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Pseudomonas syringae/fisiología , Plantones/genética , Plantones/inmunología , Plantones/microbiología , Transducción de Señal , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
16.
BMC Plant Biol ; 19(1): 4, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606121

RESUMEN

BACKGROUND: Plants, fungi, and bacteria form complex, mutually-beneficial communities within the soil environment. In return for photosynthetically derived sugars in the form of exudates from plant roots, the microbial symbionts in these rhizosphere communities provide their host plants access to otherwise inaccessible nutrients in soils and help defend the plant against biotic and abiotic stresses. One role that bacteria may play in these communities is that of Mycorrhizal Helper Bacteria (MHB). MHB are bacteria that facilitate the interactions between plant roots and symbiotic mycorrhizal fungi and, while the effects of MHB on the formation of plant-fungal symbiosis and on plant health have been well documented, the specific molecular mechanisms by which MHB drive gene regulation in plant roots leading to these benefits remain largely uncharacterized. RESULTS: Here, we investigate the effects of the bacterium Pseudomonas fluorescens SBW25 (SBW25) on aspen root transcriptome using a tripartite laboratory community comprised of Populus tremuloides (aspen) seedlings and the ectomycorrhizal fungus Laccaria bicolor (Laccaria). We show that SBW25 has MHB activity and promotes mycorrhization of aspen roots by Laccaria. Using transcriptomic analysis of aspen roots under multiple community compositions, we identify clusters of co-regulated genes associated with mycorrhization, the presence of SBW25, and MHB-associated functions, and we generate a combinatorial logic network that links causal relationships in observed patterns of gene expression in aspen seedling roots in a single Boolean circuit diagram. The predicted regulatory circuit is used to infer regulatory mechanisms associated with MHB activity. CONCLUSIONS: In our laboratory conditions, SBW25 increases the ability of Laccaria to form ectomycorrhizal interactions with aspen seedling roots through the suppression of aspen root antifungal defense responses. Analysis of transcriptomic data identifies that potential molecular mechanisms in aspen roots that respond to MHB activity are proteins with homology to pollen recognition sensors. Pollen recognition sensors integrate multiple environmental signals to down-regulate pollenization-associated gene clusters, making proteins with homology to this system an excellent fit for a predicted mechanism that integrates information from the rhizosphere to down-regulate antifungal defense response genes in the root. These results provide a deeper understanding of aspen gene regulation in response to MHB and suggest additional, hypothesis-driven biological experiments to validate putative molecular mechanisms of MHB activity in the aspen-Laccaria ectomycorrhizal symbiosis.


Asunto(s)
Micorrizas/crecimiento & desarrollo , Inmunidad de la Planta/genética , Raíces de Plantas/microbiología , Populus/microbiología , Pseudomonas fluorescens/metabolismo , Plantones/microbiología , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/genética , Laccaria/genética , Laccaria/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Pseudomonas fluorescens/genética , ARN Bacteriano/genética , ARN de Hongos/genética , ARN de Planta/genética , Plantones/inmunología , Plantones/metabolismo , Alineación de Secuencia , Simbiosis , Transcriptoma/genética
17.
Planta ; 250(4): 1281-1292, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31240396

RESUMEN

MAIN CONCLUSION: Cyanogenic glycosides present in the seeds of wild lima bean plants are associated with seedling defense but do not affect seed germination and seedling growth. Wild lima bean plants contain cyanogenic glycosides (CNGs) that are known to defend the plant against leaf herbivores. However, seed feeders appear to be unaffected despite the high levels of CNGs in the seeds. We investigated a possible role of CNGs in seeds as nitrogen storage compounds that influence plant growth, as well as seedling resistance to herbivores. Using seeds from four different wild lima bean natural populations that are known to vary in CNG levels, we tested two non-mutually exclusive hypotheses: (1) seeds with higher levels of CNGs produce seedlings that are more resistant against generalist herbivores and, (2) seeds with higher levels of CNGs germinate faster and produce plants that exhibit better growth. Levels of CNGs in the seeds were negatively correlated with germination rates and not correlated with seedling growth. However, levels of CNGs increased significantly soon after germination and seeds with the highest CNG levels produced seedlings with higher CNG levels in cotyledons. Moreover, the growth rate of the generalist herbivore Spodoptera littoralis was lower in cotyledons with high-CNG levels. We conclude that CNGs in lima bean seeds do not play a role in seed germination and seedling growth, but are associated with seedling defense. Our results provide insight into the potential dual function of plant secondary metabolites as defense compounds and storage molecules for growth and development.


Asunto(s)
Glicósidos/metabolismo , Phaseolus/química , Inmunidad de la Planta , Spodoptera/fisiología , Animales , Germinación , Herbivoria , Nitrógeno/metabolismo , Phaseolus/crecimiento & desarrollo , Phaseolus/inmunología , Phaseolus/parasitología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/inmunología , Hojas de la Planta/parasitología , Metabolismo Secundario , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/inmunología , Plantones/fisiología , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/inmunología , Semillas/parasitología
18.
PLoS Pathog ; 13(5): e1006376, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28475615

RESUMEN

Plant NLR (Nucleotide-binding domain and Leucine-rich Repeat) immune receptor proteins are encoded by Resistance (R) genes and confer specific resistance to pathogen races that carry the corresponding recognized effectors. Some NLR proteins function in pairs, forming receptor complexes for the perception of specific effectors. We show here that the Arabidopsis RPS4 and RRS1 NLR proteins are both required to make an authentic immune complex. Over-expression of RPS4 in tobacco or in Arabidopsis results in constitutive defense activation; this phenotype is suppressed in the presence of RRS1. RRS1 protein co-immunoprecipitates (co-IPs) with itself in the presence or absence of RPS4, but in contrast, RPS4 does not associate with itself in the absence of RRS1. In the presence of RRS1, RPS4 associates with defense signaling regulator EDS1 solely in the nucleus, in contrast to the extra-nuclear location found in the absence of RRS1. The AvrRps4 effector does not disrupt RPS4-EDS1 association in the presence of RRS1. In the absence of RRS1, AvrRps4 interacts with EDS1, forming nucleocytoplasmic aggregates, the formation of which is disturbed by the co-expression of PAD4 but not by SAG101. These data indicate that the study of an immune receptor protein complex in the absence of all components can result in misleading inferences, and reveals an NLR complex that dynamically interacts with the immune regulators EDS1/PAD4 or EDS1/SAG101, and with effectors, during the process by which effector recognition is converted to defense activation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Plantas/metabolismo , Receptores Inmunológicos/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Proteínas NLR/genética , Proteínas NLR/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Mapeo de Interacción de Proteínas , Receptores Inmunológicos/genética , Plantones/citología , Plantones/genética , Plantones/inmunología , Plantones/fisiología , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo
19.
Microb Pathog ; 135: 103648, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31356928

RESUMEN

Norovirus is a highly infectious human pathogen that causes acute foodborne diseases worldwide. As global diet patterns have begun to incorporate a higher consumption of fresh agricultural products, the internalization of norovirus into plants has emerged as a potential threat to human health. Here, we demonstrated that murine norovirus (MNV1) was internalized into Arabidopsis in multiple phases, and this internalization was correlated with Arabidopsis innate immunity responses. Under hydroponic conditions, continuous treatment of MNV1 retarded root growth and facilitated flower development of Arabidopsis without causing necrotic lesions. Examination of viral titers and RNA levels revealed that MNV1 was internalized into Arabidopsis in at least three different phases. In response to MNV1 treatment, the Arabidopsis defensive marker PR1 (a salicylic acid signaling marker) was transiently up-regulated at the early stage. PDF1.2, a jasmonic acid signaling marker, exhibited a gradual induction over time. Noticeably, Arabidopsis RNS1 (T2 ribonuclease) was rapidly induced by MNV1 and exhibited anti-correlation with the internalization of MNV1. Exposure to recombinant Arabidopsis RNS1 protein reduced the viral titers and degraded MNV1 RNA in vitro. In conclusion, the internalization of MNV1 into Arabidopsis was fluctuated by mutual interactions that were potentially regulated by Arabidopsis immune systems containing RNS1.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/virología , Norovirus/fisiología , Plantones/inmunología , Plantones/virología , Internalización del Virus , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Defensinas/metabolismo , Enfermedades Transmitidas por los Alimentos/virología , Inmunidad Innata , Ratones , Oxilipinas , Desarrollo de la Planta , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/virología , Proteínas Recombinantes , Ribonucleasas/genética , Ribonucleasas/metabolismo , Plantones/genética , Plantones/metabolismo , Regulación hacia Arriba , Carga Viral
20.
Plant J ; 92(3): 386-399, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28792629

RESUMEN

Arabidopsis heterotrimeric G-protein complex modulates pathogen-associated molecular pattern-triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the Gß- (agb1-2) or Gγ-subunits have an altered wall composition compared with wild-type plants. Here we performed a mutant screen to identify suppressors of agb1-2 (sgb) that restore susceptibility to pathogens to wild-type levels. Out of the four sgb mutants (sgb10-sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant-specific polysaccharide O-acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1-7) of ESK1 restore to wild-type levels the enhanced susceptibility of agb1-2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1-2 esk1-7 double mutant was not the result of the re-activation of deficient PTI responses in agb1-2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan-derived metabolites, and the accumulation of disease resistance-related secondary metabolites and different osmolites. These esk1-mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1-2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI-mediated resistance is partially compensated by the activation of specific cell-wall-triggered immune responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Xilanos/metabolismo , Ácido Abscísico/metabolismo , Acetilación , Acetiltransferasas , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ascomicetos/fisiología , Pared Celular/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de la Membrana , Modelos Biológicos , Mutación , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Pseudomonas syringae/fisiología , Plantones/genética , Plantones/inmunología , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA