Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(47): 18952-7, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24190996

RESUMEN

Total and N-terminal isoform selective p73 knockout mice show a variety of central nervous system defects. Here we show that TAp73 is a transcriptional activator of p75 neurotrophin receptor (p75(NTR)) and that p75(NTR) mRNA and protein levels are strongly reduced in the central and peripheral nervous systems of p73 knockout mice. In parallel, primary cortical neurons from p73 knockout mice showed a reduction in neurite outgrowth and in nerve growth factor-mediated neuronal differentiation, together with reduced miniature excitatory postsynaptic current frequencies and behavioral defects. p73 null mice also have impairments in the peripheral nervous system with reduced thermal sensitivity, axon number, and myelin thickness. At least some of these morphological and functional impairments in p73 null cells can be rescued by p75(NTR) re-expression. Together, these data demonstrate that loss of p75(NTR) contributes to the neurological phenotype of p73 knockout mice.


Asunto(s)
Malformaciones del Sistema Nervioso/genética , Neuritas/patología , Proteínas Nucleares/genética , Receptores de Factor de Crecimiento Nervioso/deficiencia , Animales , Western Blotting , Encéfalo/metabolismo , Biología Computacional , Ratones , Ratones Noqueados , Potenciales Postsinápticos Miniatura/genética , Vaina de Mielina/metabolismo , Malformaciones del Sistema Nervioso/patología , Neuritas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Activación Transcripcional/genética
2.
J Neurosci ; 34(31): 10211-8, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25080583

RESUMEN

Mutations in AChR subunits, expressed as pentamers in neuromuscular junctions (NMJs), cause various types of congenital myasthenic syndromes. In AChR pentamers, the adult ε subunit gradually replaces the embryonic γ subunit as the animal develops. Because of this switch in subunit composition, mutations in specific subunits result in synaptic phenotypes that change with developmental age. However, a mutation in any AChR subunit is considered to affect the NMJs of all muscle fibers equally. Here, we report a zebrafish mutant of the AChR δ subunit that exhibits two distinct NMJ phenotypes specific to two muscle fiber types: slow or fast. Homozygous fish harboring a point mutation in the δ subunit form functional AChRs in slow muscles, whereas receptors in fast muscles are nonfunctional. To test the hypothesis that different subunit compositions in slow and fast muscles underlie distinct phenotypes, we examined the presence of ε/γ subunits in NMJs using specific antibodies. Both wild-type and mutant larvae lacked ε/γ subunits in slow muscle synapses. These findings in zebrafish suggest that some mutations in human congenital myasthenic syndromes may affect slow and fast muscle fibers differently.


Asunto(s)
Mutación/genética , Unión Neuromuscular/genética , Receptores Colinérgicos/genética , Acetilcolina/farmacología , Animales , Animales Modificados Genéticamente , Toxinas Botulínicas Tipo A/metabolismo , Proteínas Fluorescentes Verdes/genética , Humanos , Técnicas In Vitro , Larva , Leucina/genética , Locomoción/genética , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/genética , Músculo Esquelético/metabolismo , Técnicas de Placa-Clamp , Fenotipo , Prolina/genética , Natación/fisiología , Pez Cebra
3.
Mol Psychiatry ; 18(10): 1077-89, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23711981

RESUMEN

Autism spectrum disorders (ASDs) have been suggested to arise from abnormalities in the canonical and non-canonical Wnt signaling pathways. However, a direct connection between a human variant in a Wnt pathway gene and ASD-relevant brain pathology has not been established. Prickle2 (Pk2) is a post-synaptic non-canonical Wnt signaling protein shown to interact with post-synaptic density 95 (PSD-95). Here, we show that mice with disruption in Prickle2 display behavioral abnormalities including altered social interaction, learning abnormalities and behavioral inflexibility. Prickle2 disruption in mouse hippocampal neurons led to reductions in dendrite branching, synapse number and PSD size. Consistent with these findings, Prickle2 null neurons show decreased frequency and size of spontaneous miniature synaptic currents. These behavioral and physiological abnormalities in Prickle2 disrupted mice are consistent with ASD-like phenotypes present in other mouse models of ASDs. In 384 individuals with autism, we identified two with distinct, heterozygous, rare, non-synonymous PRICKLE2 variants (p.E8Q and p.V153I) that were shared by their affected siblings and inherited paternally. Unlike wild-type PRICKLE2, the PRICKLE2 variants found in ASD patients exhibit deficits in morphological and electrophysiological assays. These data suggest that these PRICKLE2 variants cause a critical loss of PRICKLE2 function. The data presented here provide new insight into the biological roles of Prickle2, its behavioral importance, and suggest disruptions in non-canonical Wnt genes such as PRICKLE2 may contribute to synaptic abnormalities underlying ASDs.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Dendritas/ultraestructura , Hipocampo/patología , Hipocampo/fisiopatología , Proteínas con Dominio LIM/deficiencia , Proteínas con Dominio LIM/fisiología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/fisiología , Potenciales Postsinápticos Miniatura , Mutación Missense , Neuronas/fisiología , Mutación Puntual , Vía de Señalización Wnt , Secuencia de Aminoácidos , Animales , Células Cultivadas , Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Trastornos Generalizados del Desarrollo Infantil/psicología , Condicionamiento Clásico , Conducta Exploratoria , Miedo , Femenino , Reacción Cataléptica de Congelación/fisiología , Humanos , Proteínas con Dominio LIM/genética , Masculino , Aprendizaje por Laberinto , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Potenciales Postsinápticos Miniatura/genética , Neuronas/patología , Fenotipo , Densidad Postsináptica/patología , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Conducta Social
4.
Mol Psychiatry ; 17(12): 1261-71, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22230884

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental autism spectrum disorder caused by mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Here, we describe the first characterization and neuronal differentiation of induced pluripotent stem (iPS) cells derived from Mecp2-deficient mice. Fully reprogrammed wild-type (WT) and heterozygous female iPS cells express endogenous pluripotency markers, reactivate the X-chromosome and differentiate into the three germ layers. We directed iPS cells to produce glutamatergic neurons, which generated action potentials and formed functional excitatory synapses. iPS cell-derived neurons from heterozygous Mecp2(308) mice showed defects in the generation of evoked action potentials and glutamatergic synaptic transmission, as previously reported in brain slices. Further, we examined electrophysiology features not yet studied with the RTT iPS cell system and discovered that MeCP2-deficient neurons fired fewer action potentials, and displayed decreased action potential amplitude, diminished peak inward currents and higher input resistance relative to WT iPS-derived neurons. Deficiencies in action potential firing and inward currents suggest that disturbed Na(+) channel function may contribute to the dysfunctional RTT neuronal network. These phenotypes were additionally confirmed in neurons derived from independent WT and hemizygous mutant iPS cell lines, indicating that these reproducible deficits are attributable to MeCP2 deficiency. Taken together, these results demonstrate that neuronally differentiated MeCP2-deficient iPS cells recapitulate deficits observed previously in primary neurons, and these identified phenotypes further illustrate the requirement of MeCP2 in neuronal development and/or in the maintenance of normal function. By validating the use of iPS cells to delineate mechanisms underlying RTT pathogenesis, we identify deficiencies that can be targeted for in vitro translational screens.


Asunto(s)
Potenciales de Acción/fisiología , Células Madre Pluripotentes Inducidas/citología , Proteína 2 de Unión a Metil-CpG/genética , Neuronas/fisiología , Síndrome de Rett/genética , Transmisión Sináptica/fisiología , Potenciales de Acción/genética , Animales , Diferenciación Celular/genética , Línea Celular , Modelos Animales de Enfermedad , Ácido Glutámico/fisiología , Proteína 2 de Unión a Metil-CpG/fisiología , Ratones , Ratones Mutantes , Potenciales Postsinápticos Miniatura/genética , Potenciales Postsinápticos Miniatura/fisiología , Fenotipo , Transmisión Sináptica/genética
5.
Neurobiol Dis ; 45(3): 851-61, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22178625

RESUMEN

We have generated a new mouse model for congenital myasthenic syndromes by inserting the missense mutation L221F into the ε subunit of the acetylcholine receptor by homologous recombination. This mutation has been identified in man to cause a mild form of slow-channel congenital myasthenic syndrome with variable penetrance. In our mouse model we observe as in human patients prolonged endplate currents. The summation of endplate potentials may account for a depolarization block at increasing stimulus frequencies, moderate reduced muscle strength and tetanic fade. Calcium and intracellular vesicle accumulation as well as junctional fold loss and organelle degeneration underlying a typical endplate myopathy, were identified. Moreover, a remodeling of neuromuscular junctions occurs in a muscle-dependent pattern expressing variable phenotypic effects. Altogether, this mouse model provides new insight into the pathophysiology of congenital myasthenia and serves as a new tool for deciphering signaling pathways induced by excitotoxicity at peripheral synapses.


Asunto(s)
Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Isoleucina/genética , Síndromes Miasténicos Congénitos/genética , Fenilalanina/genética , Receptores Nicotínicos/genética , Acetilcolinesterasa/metabolismo , Aminofenoles , Animales , Biofisica , Diafragma/fisiopatología , Diafragma/ultraestructura , Regulación de la Expresión Génica/genética , Fuerza de la Mano/fisiología , Humanos , Técnicas In Vitro , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/genética , Placa Motora/fisiopatología , Placa Motora/ultraestructura , Mutagénesis/genética , Síndromes Miasténicos Congénitos/patología , Proteínas de Neurofilamentos/metabolismo , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Unión Neuromuscular/ultraestructura , Técnicas de Placa-Clamp , Receptores Nicotínicos/metabolismo , Proteínas S100/metabolismo , Sinaptofisina/metabolismo , Factores de Tiempo
6.
J Neurosci ; 30(3): 876-84, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20089896

RESUMEN

The release of arginine vasopressin (AVP) from the magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) is crucial for body fluid homeostasis. The MNC activity is modulated by synaptic inputs and humoral factors. A recent study demonstrated that an N-terminal splice variant of the transient receptor potential vanilloid type 1 (TRPV1) is essential for osmosensory transduction in the SON. In the present study, we examined the effects of mannitol and angiotensin II on miniature EPSCs (mEPSCs) in the supraoptic MNCs using whole-cell patch-clamp recording in in vitro slice preparation. Mannitol (60 mm) and angiotensin II (0.1 microm) increased the frequency of mEPSCs without affecting the amplitude. These effects were attenuated by pre-exposure to a nonspecific TRPV channel blocker, ruthenium red (10 microm) and enhanced by pre-exposure to cannabinoid type1 receptor antagonist, AM251 (2 microm). Mannitol-induced potentiation of mEPSCs was not attenuated by angiotensin II receptor antagonist, losartan (10 microm), indicating independent pathways of mannitol and angiotensin II to the TRPV channels. The potentiation of mEPSCs by mannitol was not mimicked by a TRPV1 agonist, capsaicin, and also not attenuated by TRPV1 blockers, capsazepine (10 microm). PKC was involved in angiotensin II-induced potentiation of mEPSCs. The effects of mannitol and angiotensin II on the supraoptic MNCs in trpv1 knock-out mice were significantly attenuated compared with those in wild-type mice counterparts. The results suggest that hyperosmotic stimulation and angiotensin II independently modulate mEPSCs through capsaicin-insensitive TRPV1 channel in the presynaptic terminals of the SON.


Asunto(s)
Angiotensina II/farmacología , Diuréticos Osmóticos/farmacología , Manitol/farmacología , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/genética , Neuronas/efectos de los fármacos , Núcleo Supraóptico/citología , Canales Catiónicos TRPV/deficiencia , Vasoconstrictores/farmacología , Análisis de Varianza , Anilidas/farmacología , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Quelantes/farmacología , Cinamatos/farmacología , Interacciones Farmacológicas , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Inhibidores Enzimáticos/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Piperidinas/farmacología , Pirazinas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
7.
J Neurosci ; 30(36): 12005-19, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20826664

RESUMEN

Spinal muscular atrophy (SMA) is a common (approximately 1:6400) autosomal recessive neuromuscular disorder caused by a paucity of the survival of motor neuron (SMN) protein. Although widely recognized to cause selective spinal motor neuron loss when deficient, the precise cellular site of action of the SMN protein in SMA remains unclear. In this study we sought to determine the consequences of selectively depleting SMN in the motor neurons of model mice. Depleting but not abolishing the protein in motor neuronal progenitors causes an SMA-like phenotype. Neuromuscular weakness in the model mice is accompanied by peripheral as well as central synaptic defects, electrophysiological abnormalities of the neuromuscular junctions, muscle atrophy, and motor neuron degeneration. However, the disease phenotype is more modest than that observed in mice expressing ubiquitously low levels of the SMN protein, and both symptoms as well as early electrophysiological abnormalities that are readily apparent in neonates were attenuated in an age-dependent manner. We conclude that selective knock-down of SMN in motor neurons is sufficient but may not be necessary to cause a disease phenotype and that targeting these cells will be a requirement of any effective therapeutic strategy. This realization is tempered by the relatively mild SMA phenotype in our model mice, one explanation for which is the presence of normal SMN levels in non-neuronal tissue that serves to modulate disease severity.


Asunto(s)
Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Células Madre/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Conducta Animal , Recuento de Células/métodos , Colina O-Acetiltransferasa/metabolismo , Modelos Animales de Enfermedad , Electromiografía/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Contracción Isométrica/fisiología , Estimación de Kaplan-Meier , Proteínas Luminiscentes/genética , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Potenciales Postsinápticos Miniatura/genética , Actividad Motora/genética , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidad , Mutación/genética , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/patología , Factor de Transcripción 2 de los Oligodendrocitos , Técnicas de Placa-Clamp , Receptores Colinérgicos/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Sinapsis/patología , Sinapsis/fisiología , Transmisión Sináptica/genética
8.
J Neurochem ; 119(4): 826-38, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21883225

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a gradual loss of motoneurons. The majority of ALS cases are associated with a sporadic form whose etiology is unknown. Several pieces of evidence favor autoimmunity as a potential contributor to sporadic ALS pathology. To gain understanding concerning possible antigens interacting with IgGs from sporadic ALS patients (ALS-IgGs), we studied immunoreactivity against neuromuscular junction (NMJ), spinal cord and cerebellum of mice with and without the Ca(V) 2.1 pore-forming subunit of the P/Q-type voltage-gated calcium (Ca(2+)) channel. ALS-IgGs showed a strong reactivity against NMJs of wild-type diaphragms. ALS-IgGs also increased muscle miniature end-plate potential frequency, suggesting a functional role for ALS-IgGs on synaptic signaling. In support, in mice lacking the Ca(V) 2.1 subunit ALS-IgGs showed significantly reduced NMJ immunoreactivity and did not alter spontaneous acetylcholine release. This difference in reactivity was absent when comparing N-type Ca(2+) channel wild-type or null mice. These results are particularly relevant because motoneurons are known to be early pathogenic targets in ALS. Our findings add further evidence supporting autoimmunity as one of the possible mechanisms contributing to ALS pathology. They also suggest that serum autoantibodies in a subset of ALS patients would interact with NMJ proteins down-regulated when P/Q-type channels are absent.


Asunto(s)
Esclerosis Amiotrófica Lateral/sangre , Canales de Calcio Tipo N/metabolismo , Inmunoglobulina G/farmacología , Unión Neuromuscular/efectos de los fármacos , Anciano , Análisis de Varianza , Animales , Animales Recién Nacidos , Bungarotoxinas/farmacocinética , Canales de Calcio Tipo N/deficiencia , Línea Celular Transformada , Sistema Nervioso Central/metabolismo , Diafragma/citología , Femenino , Humanos , Inmunoprecipitación/métodos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/genética , Unión Neuromuscular/metabolismo , Sinaptofisina/metabolismo , Transfección/métodos , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
9.
J Neurosci ; 29(24): 7929-43, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19535604

RESUMEN

A-kinase anchoring protein (AKAP) 79/150 is a scaffold protein found in dendritic spines that recruits the cAMP-dependent protein kinase (PKA) and protein phosphatase 2B-calcineurin (CaN) to membrane-associated guanylate kinase (MAGUK)-linked AMPA receptors (AMPARs) to control receptor phosphorylation and synaptic plasticity. However, AKAP79/150 may also coordinate regulation of AMPAR activity with spine structure directly through MAGUK binding and membrane-cytoskeletal interactions of its N-terminal targeting domain. In cultured hippocampal neurons, we observed that rat AKAP150 expression was low early in development but then increased coincident with spine formation and maturation. Overexpression of human AKAP79 in immature or mature neurons increased the number of dendritic filopodia and spines and enlarged spine area. However, RNA interference knockdown of AKAP150 decreased dendritic spine area only in mature neurons. Importantly, AKAP79 overexpression in immature neurons increased AMPAR postsynaptic localization and activity. Neither the AKAP79 PKA nor CaN anchoring domain was required for increasing dendritic protrusion numbers, spine area, or AMPAR synaptic localization; however, an internal region identified as the MAGUK binding domain was found to be essential as shown by expression of a MAGUK binding mutant that formed mainly filopodia and decreased AMPAR synaptic localization and activity. Expression of the AKAP79 N-terminal targeting domain alone also increased filopodia numbers but not spine area. Overall, these results demonstrate a novel structural role for AKAP79/150 in which the N-terminal targeting domain induces dendritic filopodia and binding to MAGUKs promotes spine enlargement and AMPAR recruitment.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Guanilato-Quinasas/metabolismo , Neuronas/citología , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Calcineurina/genética , Calcineurina/metabolismo , Células Cultivadas , Espinas Dendríticas/metabolismo , Homólogo 4 de la Proteína Discs Large , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Guanilato-Quinasas/genética , Hipocampo/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Luminiscentes/genética , Proteínas de la Membrana/genética , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/genética , Mutación/fisiología , Neuronas/fisiología , Terminales Presinápticos/efectos de los fármacos , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Interferencia de ARN/fisiología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/genética , Factores de Tiempo , Transfección/métodos
10.
BMC Neurosci ; 10: 124, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19788723

RESUMEN

BACKGROUND: The magnitude and longevity of synaptic activity-induced changes in synaptic efficacy is quantified by measuring evoked responses whose potentiation requires gene transcription to persist for more than 2-3 hours. While miniature EPSCs (mEPSCs) are also increased in amplitude and/or frequency during long-term potentiation (LTP), it is not known how long such changes persist or whether gene transcription is required. RESULTS: We use whole-cell patch clamp recordings from dissociated hippocampal cultures to characterise for the first time the persistence and transcription dependency of mEPSC upregulation during synaptic potentiation. The persistence of recurrent action potential bursting in these cultures is transcription-, translation- and NMDA receptor-dependent thus providing an accessible model for long-lasting plasticity. Blockade of GABAA-receptors with bicuculline for 15 minutes induced action potential bursting in all neurons and was maintained in 50-60% of neurons for more than 6 hours. Throughout this period, the frequency but neither the amplitude of mEPSCs nor whole-cell AMPA currents was markedly increased. The transcription blocker actinomycin D abrogated, within 2 hours of burst induction, both action potential bursting and the increase in mEPSCs. Reversible blockade of action potentials during, but not after this 2 hour transcription period suppressed the increase in mEPSC frequency and the recovery of burst activity at a time point 6 hours after induction. CONCLUSION: These results indicate that increased mEPSC frequency persists well beyond the 2 hour transcription-independent phase of plasticity in this model. This long-lasting mEPSC upregulation is transcription-dependent and requires ongoing action potential activity during the initial 2 hour period but not thereafter. Thus mEPSC upregulation may underlie the long term, transcription-dependent persistence of action potential bursting. This provides mechanistic insight to link gene candidates already identified by gene chip analysis to long lasting plasticity in this in vitro model.


Asunto(s)
Potenciales Postsinápticos Excitadores/genética , Hipocampo/fisiología , Potenciales Postsinápticos Miniatura/genética , Plasticidad Neuronal/genética , Neuronas/fisiología , Transcripción Genética/fisiología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Western Blotting , Células Cultivadas , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Potenciales Postsinápticos Miniatura/fisiología , Red Nerviosa/metabolismo , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Factores de Tiempo
11.
Neuropharmacology ; 100: 56-65, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26142252

RESUMEN

Neuroligin 2 (Nlgn2) is a synaptic adhesion protein that plays a central role in the maturation and function of inhibitory synapses. Nlgn2 mutations have been associated with psychiatric disorders such as schizophrenia, and in mice, deletion of Nlgn2 results in a pronounced anxiety phenotype. To date, however, the molecular and cellular mechanisms linking Nlgn2 deletion to psychiatric phenotypes remain completely unknown. The aim of this study was therefore to define the role of Nlgn2 in anxiety-related neural circuits. To this end, we used a combination of behavioral, immunohistochemical, and electrophysiological approaches in Nlgn2 knockout (KO) mice to expand the behavioral characterization of these mice and to assess the functional consequences of Nlgn2 deletion in the amygdala. Moreover, we investigated the differential activation of anxiety-related circuits in Nlgn2 KO mice using a cFOS activation assay following exposure to an anxiogenic stimulus. We found that Nlgn2 is present at the majority of inhibitory synapses in the basal amygdala, where its deletion affects postsynaptic structures specifically at perisomatic sites and leads to impaired inhibitory synaptic transmission. Following exposure to an anxiogenic environment, Nlgn2 KO mice show a robust anxiety phenotype as well as exacerbated induction of cFOS expression specifically in CaMKII-positive projection neurons, but not in parvalbumin- or somatostatin-positive interneurons. Our data indicate that Nlgn2 deletion predominantly affects inhibitory synapses onto projection neurons in basal amygdala, resulting in decreased inhibitory drive onto these neurons and leading to their excessive activation under anxiogenic conditions. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Ansiedad/genética , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Potenciales Postsinápticos Inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/genética , Amígdala del Cerebelo/fisiopatología , Animales , Ansiedad/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Potenciales Postsinápticos Miniatura/genética , Actividad Motora/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Sinapsis/metabolismo
12.
J Comp Neurol ; 522(5): 1171-90, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24264880

RESUMEN

Mutations in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) are implicated in neuropsychiatric disorders including autism. Previous studies report that PTEN knockdown in neurons in vivo leads to increased spine density and synaptic activity. To better characterize synaptic changes in neurons lacking PTEN, we examined the effects of shRNA knockdown of PTEN in basolateral amygdala neurons on synaptic spine density and morphology by using fluorescent dye confocal imaging. Contrary to previous studies in the dentate gyrus, we find that knockdown of PTEN in basolateral amygdala leads to a significant decrease in total spine density in distal dendrites. Curiously, this decreased spine density is associated with increased miniature excitatory postsynaptic current frequency and amplitude, suggesting an increase in number and function of mature spines. These seemingly contradictory findings were reconciled by spine morphology analysis demonstrating increased mushroom spine density and size with correspondingly decreased thin protrusion density at more distal segments. The same analysis of PTEN conditional deletion in the dentate gyrus demonstrated that loss of PTEN does not significantly alter total density of dendritic protrusions in the dentate gyrus, but does decrease thin protrusion density and increases density of more mature mushroom spines. These findings suggest that, contrary to previous reports, PTEN knockdown may not induce de novo spinogenesis, but instead may increase synaptic activity by inducing morphological and functional maturation of spines. Furthermore, behavioral analysis of basolateral amygdala PTEN knockdown suggests that these changes limited only to the basolateral amygdala complex may not be sufficient to induce increased anxiety-related behaviors.


Asunto(s)
Amígdala del Cerebelo/citología , Espinas Dendríticas/fisiología , Hipocampo/citología , Mutación/genética , Neuronas/ultraestructura , Fosfohidrolasa PTEN/genética , Animales , Ansiedad/genética , Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Locomoción/genética , Ratones , Ratones Transgénicos , Potenciales Postsinápticos Miniatura/genética , Proteína Oncogénica v-akt/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Reflejo de Sobresalto/genética , Transducción Genética
13.
Exp Neurol ; 248: 286-98, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23797154

RESUMEN

In the slow channel congenital myasthenic syndrome mutations in genes encoding the muscle acetylcholine receptor give rise to prolonged ion channel activations. The resulting cation overload in the postsynaptic region leads to damage of synaptic structures, impaired neuromuscular transmission and fatigable muscle weakness. Previously we identified and characterised in detail the properties of the slow channel syndrome mutation εL221F. Here, using this mutation, we generate a transgenic mouse model for the slow channel syndrome that expresses mutant human ε-subunits harbouring an EGFP tag within the M3-M4 cytoplasmic region, driven by a ~1500 bp region of the CHRNB promoter. Fluorescent mutant acetylcholine receptors are assembled, cluster at the motor endplates and give rise to a disease model that mirrors the human condition. Mice demonstrate mild fatigable muscle weakness, prolonged endplate and miniature endplate potentials, and variable degeneration of the postsynaptic membrane. We use our model to investigate ephedrine as a potential treatment. Mice were assessed before and after six weeks on oral ephedrine (serum ephedrine concentration 89 ± 3 ng/ml) using an inverted screen test and in vivo electromyography. Treated mice demonstrated modest benefit for screen hang time, and in measures of compound muscle action potentials and mean jitter that did not reach statistical significance. Ephedrine and salbutamol show clear benefit when used in the treatment of DOK7 or COLQ congenital myasthenic syndromes. Our results highlight only a modest potential benefit of these ß2-adrenergic receptor agonists for the treatment of the slow channel syndrome.


Asunto(s)
Adrenérgicos/uso terapéutico , Efedrina/uso terapéutico , Síndromes Miasténicos Congénitos/fisiopatología , Unión Neuromuscular/fisiopatología , Adrenérgicos/farmacología , Animales , Modelos Animales de Enfermedad , Efedrina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/genética , Mutación , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Síndromes Miasténicos Congénitos/genética , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/genética , Receptores Colinérgicos/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Resultado del Tratamiento
14.
Neurobiol Aging ; 32(1): 157-67, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19233512

RESUMEN

Gangliosides are sialylated glycosphingolipids that are present in high density on neuronal membranes, especially at synapses, where they are assumed to play functional or modulating roles. Mice lacking GM2/GD2-synthase express only the simple gangliosides GD3 and GM3 and develop progressive motor behaviour deficits upon ageing, apparently due to failing complex ganglioside-dependent maintenance and/or repair processes or, alternatively, toxic GM3/GD3 accumulation. We investigated the function of neuromuscular junctions (NMJs) of aged (>9 month-old) GM2/GD2-synthase null-mutant mice, because synaptic dysfunction might develop with age and could potentially contribute to the late-onset motor phenotype. In addition, we studied NMJs of old mice lacking GD3-synthase (expressing only O- and a-series gangliosides), which do not show an overt neurological phenotype but may develop subclinical synaptic deficits. Detailed electrophysiological analyses showed subtle changes in presynaptic neurotransmitter release. Acetylcholine release at 40 Hz nerve stimulation at aged GM2/GD2-synthase null-mutant NMJs ran down slightly more pronounced than at wild-type NMJs, and spontaneous acetylcholine release rate at GD3-synthase null-mutant NMJs was somewhat higher than at wild-type, selectively at 25 °C bath temperature. Interestingly, we observed faster kinetics of postsynaptic electrophysiological responses at aged GD3-synthase null-mutant NMJs, not previously seen by us at NMJs of young GD3-synthase null-mutants or other types of (aged or young) ganglioside-deficient mice. These kinetic changes might reflect a change in postsynaptic acetylcholine receptor behaviour. Our data indicate that it is highly unlikely that transmission failure at NMJs contributes to the progressive motor defects of aged GM2/GD2-synthase null-mutants and that, despite some kinetic changes of synaptic signals, neuromuscular transmission remains successful in aged GD3-synthase null-mutant mice. Apparently, mutual redundancy of the different gangliosides in supporting presynaptic function, as observed previously by us in young mice, remains adequate upon ageing or, alternatively, gangliosides have only relatively little direct impact on neuromuscular synaptic function, even in aged mice.


Asunto(s)
Envejecimiento/fisiología , N-Acetilgalactosaminiltransferasas/deficiencia , Unión Neuromuscular/genética , Sialiltransferasas/deficiencia , Transmisión Sináptica/genética , Acetilcolina/metabolismo , Envejecimiento/genética , Análisis de Varianza , Animales , Calcio/metabolismo , Femenino , Fuerza de la Mano/fisiología , Soluciones Hipertónicas/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/genética , Potasio/farmacología , Transmisión Sináptica/efectos de los fármacos , Temperatura
15.
Neuron ; 66(2): 191-7, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20434996

RESUMEN

Fragile X syndrome (FXS), the most common genetic form of mental retardation and autism, is caused by loss-of-function mutations in an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP). Neurons from patients and the mouse Fmr1 knockout (KO) model are characterized by an excess of dendritic spines, suggesting a deficit in excitatory synapse elimination. In response to neuronal activity, myocyte enhancer factor 2 (MEF2) transcription factors induce robust synapse elimination. Here, we demonstrate that MEF2 activation fails to eliminate functional or structural excitatory synapses in hippocampal neurons from Fmr1 KO mice. Similarly, inhibition of endogenous MEF2 increases synapse number in wild-type but not Fmr1 KO neurons. MEF2-dependent synapse elimination is rescued in Fmr1 KO neurons by acute postsynaptic expression of wild-type but not RNA-binding mutants of FMRP. Our results reveal that active MEF2 and FMRP function together in an acute, cell-autonomous mechanism to eliminate excitatory synapses.


Asunto(s)
Espinas Dendríticas/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Factores Reguladores Miogénicos/metabolismo , Sinapsis/metabolismo , Animales , Espinas Dendríticas/genética , Potenciales Postsinápticos Excitadores/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Factores de Transcripción MEF2 , Ratones , Ratones Noqueados , Microscopía de Fluorescencia por Excitación Multifotónica , Potenciales Postsinápticos Miniatura/genética , Factores Reguladores Miogénicos/genética , Red Nerviosa/metabolismo , Plasticidad Neuronal/genética , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sinapsis/genética , Transcripción Genética/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA