RESUMEN
The cancer transcriptome is remarkably complex, including low-abundance transcripts, many not polyadenylated. To fully characterize the transcriptome of localized prostate cancer, we performed ultra-deep total RNA-seq on 144 tumors with rich clinical annotation. This revealed a linear transcriptomic subtype associated with the aggressive intraductal carcinoma sub-histology and a fusion profile that differentiates localized from metastatic disease. Analysis of back-splicing events showed widespread RNA circularization, with the average tumor expressing 7,232 circular RNAs (circRNAs). The degree of circRNA production was correlated to disease progression in multiple patient cohorts. Loss-of-function screening identified 11.3% of highly abundant circRNAs as essential for cell proliferation; for â¼90% of these, their parental linear transcripts were not essential. Individual circRNAs can have distinct functions, with circCSNK1G3 promoting cell growth by interacting with miR-181. These data advocate for adoption of ultra-deep RNA-seq without poly-A selection to interrogate both linear and circular transcriptomes.
Asunto(s)
Neoplasias de la Próstata/genética , ARN/genética , ARN/metabolismo , Perfilación de la Expresión Génica/métodos , Perfil Genético , Células HEK293 , Humanos , Masculino , MicroARNs/metabolismo , Próstata/metabolismo , Empalme del ARN/genética , ARN Circular , ARN no Traducido/genética , Análisis de Secuencia de ARN/métodos , TranscriptomaRESUMEN
Inflammation is a hallmark of cancer1. In patients with cancer, peripheral blood myeloid expansion, indicated by a high neutrophil-to-lymphocyte ratio, associates with shorter survival and treatment resistance across malignancies and therapeutic modalities2-5. Whether myeloid inflammation drives progression of prostate cancer in humans remain unclear. Here we show that inhibition of myeloid chemotaxis can reduce tumour-elicited myeloid inflammation and reverse therapy resistance in a subset of patients with metastatic castration-resistant prostate cancer (CRPC). We show that a higher blood neutrophil-to-lymphocyte ratio reflects tumour myeloid infiltration and tumour expression of senescence-associated mRNA species, including those that encode myeloid-chemoattracting CXCR2 ligands. To determine whether myeloid cells fuel resistance to androgen receptor signalling inhibitors, and whether inhibiting CXCR2 to block myeloid chemotaxis reverses this, we conducted an investigator-initiated, proof-of-concept clinical trial of a CXCR2 inhibitor (AZD5069) plus enzalutamide in patients with metastatic CRPC that is resistant to androgen receptor signalling inhibitors. This combination was well tolerated without dose-limiting toxicity and it decreased circulating neutrophil levels, reduced intratumour CD11b+HLA-DRloCD15+CD14- myeloid cell infiltration and imparted durable clinical benefit with biochemical and radiological responses in a subset of patients with metastatic CRPC. This study provides clinical evidence that senescence-associated myeloid inflammation can fuel metastatic CRPC progression and resistance to androgen receptor blockade. Targeting myeloid chemotaxis merits broader evaluation in other cancers.
Asunto(s)
Antagonistas de Receptores Androgénicos , Antineoplásicos , Quimiotaxis , Resistencia a Antineoplásicos , Células Mieloides , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Quimiotaxis/efectos de los fármacos , Progresión de la Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/patología , Antígeno Lewis X/metabolismo , Células Mieloides/efectos de los fármacos , Células Mieloides/patología , Metástasis de la Neoplasia , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
Defining the transition from benign to malignant tissue is fundamental to improving early diagnosis of cancer1. Here we use a systematic approach to study spatial genome integrity in situ and describe previously unidentified clonal relationships. We used spatially resolved transcriptomics2 to infer spatial copy number variations in >120,000 regions across multiple organs, in benign and malignant tissues. We demonstrate that genome-wide copy number variation reveals distinct clonal patterns within tumours and in nearby benign tissue using an organ-wide approach focused on the prostate. Our results suggest a model for how genomic instability arises in histologically benign tissue that may represent early events in cancer evolution. We highlight the power of capturing the molecular and spatial continuums in a tissue context and challenge the rationale for treatment paradigms, including focal therapy.
Asunto(s)
Células Clonales , Variaciones en el Número de Copia de ADN , Inestabilidad Genómica , Neoplasias , Análisis Espacial , Células Clonales/metabolismo , Células Clonales/patología , Variaciones en el Número de Copia de ADN/genética , Detección Precoz del Cáncer , Genoma Humano , Inestabilidad Genómica/genética , Genómica , Humanos , Masculino , Modelos Biológicos , Neoplasias/genética , Neoplasias/patología , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transcriptoma/genéticaRESUMEN
Tissue-resident macrophages contribute to the organogenesis of many tissues. Growth of the prostate is regulated by androgens during puberty, yet androgens are considered immune suppressive. In this study, we characterized the localization, androgen receptor expression and hematopoietic origin of prostate macrophages, and transiently ablated macrophages during postnatal prostate organogenesis in the mouse. We show that myeloid cells were abundant in the prostate during puberty. However, nuclear androgen receptor expression was not detected in most macrophages. We found Cx3cr1, a marker for macrophages, monocytes and dendritic cells, expressed in interstitial macrophages surrounding the prostate and associated with nerve fibers. Furthermore, we provide evidence for the co-existence of embryonic origin, self-renewing, tissue-resident macrophages and recruited macrophages of bone-marrow monocyte origin in the prostate during puberty. Our findings suggest that prostate macrophages promote neural patterning and may shed further light on our understanding of the role of the innate immune system in prostate pathology in response to inflammation and in cancer.
Asunto(s)
Receptor 1 de Quimiocinas CX3C , Macrófagos , Próstata , Receptores Androgénicos , Masculino , Animales , Próstata/metabolismo , Macrófagos/metabolismo , Ratones , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Ratones Endogámicos C57BL , Organogénesis , Monocitos/metabolismoRESUMEN
Prostate-specific membrane antigen (PSMA) as a transmembrane protein is overexpressed by prostate cancer (PC) cells and is accessible for binding antibodies or low-molecular-weight radioligands due to its extracellular portion. Successful targeting of PSMA began with the development of humanized J591 antibody. Due to their faster clearance compared to antibodies, small-molecule radioligands for targeted imaging and therapy of PC have been favored in recent development efforts. PSMA positron emission tomography (PET) imaging has higher diagnostic performance than conventional imaging for initial staging of high-risk PC and biochemical recurrence detection/localization. However, it remains to be demonstrated how to integrate PSMA PET imaging for therapy response assessment and as an outcome endpoint measure in clinical trials. With the recent approval of 177Lu-PSMA-617 by the US Food and Drug Administration for metastatic castration-resistant PC progressing after chemotherapy, the high value of PSMA-targeted therapy was confirmed. Compared to standard of care, PSMA-based radioligand therapy led to a better outcome and a higher quality of life. This review, focusing on the advanced PC setting, provides an overview of different approved and nonapproved PSMA-targeted imaging and therapeutic modalities and discusses the future of PSMA-targeted theranostics, also with an outlook on non-radiopharmaceutical-based PSMA-targeted therapies.
Asunto(s)
Neoplasias de la Próstata , Calidad de Vida , Estados Unidos , Masculino , Humanos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/terapia , Tomografía de Emisión de Positrones , Medicina de PrecisiónRESUMEN
Genome-wide association studies along with expression quantitative trait locus (eQTL) mapping have identified hundreds of single-nucleotide polymorphisms (SNPs) and their target genes in prostate cancer (PCa), yet functional characterization of these risk loci remains challenging. To screen for potential regulatory SNPs, we designed a CRISPRi library containing 9,133 guide RNAs (gRNAs) to cover 2,166 candidate SNP loci implicated in PCa and identified 117 SNPs that could regulate 90 genes for PCa cell growth advantage. Among these, rs60464856 was covered by multiple gRNAs significantly depleted in screening (FDR < 0.05). Pooled SNP association analysis in the PRACTICAL and FinnGen cohorts showed significantly higher PCa risk for the rs60464856 G allele (p value = 1.2 × 10-16 and 3.2 × 10-7, respectively). Subsequent eQTL analysis revealed that the G allele is associated with increased RUVBL1 expression in multiple datasets. Further CRISPRi and xCas9 base editing confirmed that the rs60464856 G allele leads to elevated RUVBL1 expression. Furthermore, SILAC-based proteomic analysis demonstrated allelic binding of cohesin subunits at the rs60464856 region, where the HiC dataset showed consistent chromatin interactions in prostate cell lines. RUVBL1 depletion inhibited PCa cell proliferation and tumor growth in a xenograft mouse model. Gene-set enrichment analysis suggested an association of RUVBL1 expression with cell-cycle-related pathways. Increased expression of RUVBL1 and activation of cell-cycle pathways were correlated with poor PCa survival in TCGA datasets. Our CRISPRi screening prioritized about one hundred regulatory SNPs essential for prostate cell proliferation. In combination with proteomics and functional studies, we characterized the mechanistic role of rs60464856 and RUVBL1 in PCa progression.
Asunto(s)
Próstata , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Alelos , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas Portadoras/genética , ADN Helicasas/genética , Detección Precoz del Cáncer , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteómica , CohesinasRESUMEN
Chromosomal rearrangements resulting in the fusion of TMPRSS2, an androgen-regulated gene, and the ETS family transcription factor ERG occur in over half of prostate cancers. However, the mechanism by which ERG promotes oncogenic gene expression and proliferation remains incompletely understood. Here, we identify a binding interaction between ERG and the mammalian SWI/SNF (BAF) ATP-dependent chromatin remodeling complex, which is conserved among other oncogenic ETS factors, including ETV1, ETV4, and ETV5. We find that ERG drives genome-wide retargeting of BAF complexes in a manner dependent on binding of ERG to the ETS DNA motif. Moreover, ERG requires intact BAF complexes for chromatin occupancy and BAF complex ATPase activity for target gene regulation. In a prostate organoid model, BAF complexes are required for ERG-mediated basal-to-luminal transition, a hallmark of ERG activity in prostate cancer. These observations suggest a fundamental interdependence between ETS transcription factors and BAF chromatin remodeling complexes in cancer.
Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/genética , Serina Endopeptidasas/genética , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular , Cromatina/química , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Organoides/metabolismo , Organoides/patología , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ets , Serina Endopeptidasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismoRESUMEN
Steroid 5α reductase 2 (SRD5A2) converts testosterone to dihydrotestosterone and is crucial for prostatic development. 5α reductase inhibitors (5ARI) reduce prostate size in benign prostate hyperplasia (BPH) and ameliorate lower urinary tract symptoms secondary to BPH. However, the mechanisms of 5ARI functioning are still not fully understood. Here, we used a Srd5a2-/- mouse model and employed single-cell RNA sequencing to explore the impact of SRD5A2 absence on prostate cellular heterogeneity. Significant alterations in luminal epithelial cell (LE) populations were observed, alongside an increased proportion and proliferative phenotype of estrogen receptor 1 (ESR1)+ LE2 cells, following an SRD5A2-independent ESR1 differentiation trajectory. LE2 cells exhibited enhanced estrogen response gene signatures, suggesting an alternative pathway for prostate growth when SRD5A2 is absent. Human prostate biopsy analysis revealed an inverse correlation between the expressions of SRD5A2 and LE2 markers (ESR1/PKCα), and an inverse correlation between SRD5A2 and the clinical efficiency of 5ARI. These findings provide insights into 5ARI resistance mechanisms and potential alternative therapies for BPH-related lower urinary tract symptoms. © 2024 The Pathological Society of Great Britain and Ireland.
Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Células Epiteliales , Receptor alfa de Estrógeno , Proteínas de la Membrana , Próstata , Hiperplasia Prostática , Animales , Humanos , Masculino , Ratones , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Inhibidores de 5-alfa-Reductasa/farmacología , Diferenciación Celular , Proliferación Celular , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Síntomas del Sistema Urinario Inferior/patología , Síntomas del Sistema Urinario Inferior/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Noqueados , Próstata/patología , Próstata/metabolismo , Hiperplasia Prostática/patología , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/genéticaRESUMEN
The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.
Asunto(s)
Hiperplasia Prostática , Animales , Humanos , Masculino , Ratones , Andrógenos/metabolismo , Mamíferos/metabolismo , Mitocondrias/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transducción de SeñalRESUMEN
Overexpression of androgen receptor (AR) is the primary cause of castration-resistant prostate cancer, although mechanisms upregulating AR transcription in this context are not well understood. Our RNA-seq studies revealed that SMAD3 knockdown decreased levels of AR and AR target genes, whereas SMAD4 or SMAD2 knockdown had little or no effect. ChIP-seq analysis showed that SMAD3 knockdown decreased global binding of AR to chromatin. Mechanistically, we show that SMAD3 binds to intron 3 of the AR gene to promote AR expression. Targeting these binding sites by CRISPRi reduced transcript levels of AR and AR targets. In addition, â¼50% of AR and SMAD3 ChIP-seq peaks overlapped, and SMAD3 may also cooperate with or co-activate AR for AR target expression. Functionally, AR re-expression in SMAD3-knockdown cells partially rescued AR target expression and cell growth defects. The SMAD3 peak in AR intron 3 overlapped with H3K27ac ChIP-seq and ATAC-seq peaks in datasets of prostate cancer. AR and SMAD3 mRNAs were upregulated in datasets of metastatic prostate cancer and CRPC compared with primary prostate cancer. A SMAD3 PROTAC inhibitor reduced levels of AR, AR-V7 and AR targets in prostate cancer cells. This study suggests that SMAD3 could be targeted to inhibit AR in prostate cancer.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Proteína smad3 , Humanos , Masculino , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismoRESUMEN
The kallikrein-related peptidase KLK2 has restricted expression in the prostate luminal epithelium, and its protein target is unknown. The present work reports the hydrolytic activities of KLK2 on libraries of fluorescence resonance energy-transfer peptides from which the sequence SYRIF was the most susceptible substrate for KLK2. The sequence SYRIF is present at the extracellular N-terminal segment (58SYRIF63Q) of IL-10R2. KLK2 was fully active at pH 8.0-8.2, found only in prostate inflammatory conditions, and strongly activated by sodium citrate and glycosaminoglycans, the quantities and structures controlled by prostate cells. Bone-marrow-derived macrophages (BMDM) have IL-10R2 expressed on the cell surface, which is significantly reduced after KLK2 treatment, as determined by flow cytometry (FACS analysis). The IL-10 inhibition of the inflammatory response to LPS/IFN-γ in BMDM cells due to decreased nitric oxide, TNF-α, and IL-12 p40 levels is significantly reduced upon treatment of these cells with KLK2. Similar experiments with KLK3 did not show these effects. These observations indicate that KLK2 proteolytic activity plays a role in prostate inflammation and makes KLK2 a promising target for prostatitis treatment.
Asunto(s)
Calicreínas , Humanos , Masculino , Calicreínas/metabolismo , Calicreínas/química , Arginina/metabolismo , Arginina/química , Próstata/metabolismo , Próstata/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Animales , Ratones , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Dominios Proteicos , Interleucina-10/metabolismo , Especificidad por SustratoRESUMEN
Biofluids contain molecules in circulation and from nearby organs that can be indicative of disease states. Characterizing the proteome of biofluids with DIA-MS is an emerging area of interest for biomarker discovery; yet, there is limited consensus on DIA-MS data analysis approaches for analyzing large numbers of biofluids. To evaluate various DIA-MS workflows, we collected urine from a clinically heterogeneous cohort of prostate cancer patients and acquired data in DDA and DIA scan modes. We then searched the DIA data against urine spectral libraries generated using common library generation approaches or a library-free method. We show that DIA-MS doubles the sample throughput compared to standard DDA-MS with minimal losses to peptide detection. We further demonstrate that using a sample-specific spectral library generated from individual urines maximizes peptide detection compared to a library-free approach, a pan-human library, or libraries generated from pooled, fractionated urines. Adding urine subproteomes, such as the urinary extracellular vesicular proteome, to the urine spectral library further improves the detection of prostate proteins in unfractionated urine. Altogether, we present an optimized DIA-MS workflow and provide several high-quality, comprehensive prostate cancer urine spectral libraries that can streamline future biomarker discovery studies of prostate cancer using DIA-MS.
Asunto(s)
Neoplasias de la Próstata , Proteoma , Proteómica , Humanos , Masculino , Neoplasias de la Próstata/orina , Neoplasias de la Próstata/diagnóstico , Proteoma/análisis , Proteómica/métodos , Próstata/metabolismo , Próstata/patología , Biblioteca de Péptidos , Biomarcadores de Tumor/orina , Espectrometría de Masas en Tándem/métodos , Flujo de TrabajoRESUMEN
Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS), a prevalent urological ailment, exerts a profound influence upon the well-being of the males. Autoimmunity driven by Th17 cells has been postulated as a potential factor in CP/CPPS pathogenesis. Nonetheless, elucidating the precise mechanisms governing Th17 cell recruitment to the prostate, triggering inflammation, remained an urgent inquiry. This study illuminated that CCL20 played a pivotal role in attracting Th17 cells to the prostate, thereby contributing to prostatitis development. Furthermore, it identified prostate stromal cells and immune cells as likely sources of CCL20. Additionally, this research unveiled that IL-17A, released by Th17 cells, could stimulate macrophages to produce CCL20 through the NF-κB/MAPK/PI3K pathway. The interplay between IL-17A and CCL20 establishes a positive feedback loop, which might serve as a critical mechanism underpinning the development of chronic prostatitis, thus adding complexity to its treatment challenges.
Asunto(s)
Enfermedades Autoinmunes , Quimiocina CCL20 , Quimiotaxis , Interleucina-17 , Prostatitis , Células Th17 , Masculino , Prostatitis/inmunología , Prostatitis/patología , Prostatitis/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Quimiocina CCL20/metabolismo , Quimiocina CCL20/genética , Animales , Interleucina-17/metabolismo , Interleucina-17/inmunología , Ratones , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Modelos Animales de Enfermedad , FN-kappa B/metabolismo , Transducción de Señal , Humanos , Ratones Endogámicos C57BL , Próstata/patología , Próstata/metabolismo , Próstata/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , AutoinmunidadRESUMEN
The ETS transcription factor ERG is aberrantly expressed in approximately 50% of prostate tumors due to chromosomal rearrangements such as TMPRSS2/ERG. The ability of ERG to drive oncogenesis in prostate epithelial cells requires interaction with distinct coactivators, such as the RNA-binding protein EWS. Here, we find that ERG has both direct and indirect interactions with EWS, and the indirect interaction is mediated by the poly-A RNA-binding protein PABPC1. PABPC1 directly bound both ERG and EWS. ERG expression in prostate cells promoted PABPC1 localization to the nucleus and recruited PABPC1 to ERG/EWS-binding sites in the genome. Knockdown of PABPC1 in prostate cells abrogated ERG-mediated phenotypes and decreased the ability of ERG to activate transcription. These findings define a complex including ERG and the RNA-binding proteins EWS and PABPC1 that represents a potential therapeutic target for ERG-positive prostate cancer and identify a novel nuclear role for PABPC1.
Asunto(s)
Proteína I de Unión a Poli(A) , Próstata , Proteínas Proto-Oncogénicas c-ets , Proteína EWS de Unión a ARN , Humanos , Masculino , Línea Celular Tumoral , Núcleo Celular/metabolismo , Genoma Humano/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Próstata/citología , Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Activación Transcripcional , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismoRESUMEN
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17ß-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Asunto(s)
Estrógenos/metabolismo , Genitales Masculinos/metabolismo , Receptores de Estrógenos/metabolismo , Reproducción , Animales , Aromatasa/genética , Aromatasa/metabolismo , Genitales Masculinos/patología , Genitales Masculinos/fisiopatología , Genotipo , Humanos , Masculino , Ratones Noqueados , Mutación , Fenotipo , Próstata/metabolismo , Próstata/patología , Próstata/fisiopatología , Enfermedades de la Próstata/metabolismo , Enfermedades de la Próstata/patología , Enfermedades de la Próstata/fisiopatología , Receptores de Estrógenos/deficiencia , Receptores de Estrógenos/genética , Transducción de SeñalRESUMEN
Perigonadal adipose tissue is a homogeneous white adipose tissue (WAT) in adult male mice without any brown adipose tissue (BAT). However, there are congenital differences in the gonads between male and female mice. Whether heterogeneity existed in perigonadal adipose tissues (ATs) in female mice remains unknown. This study reported a perigonadal brown-like AT located between abdominal lymph nodes and the uterine cervix in female mice, termed lymph node-cervical adipose tissue (LNCAT). Its counterpart, lymph node-prostatic adipose tissue (LNPAT), exhibited white phenotype in adult virgin male mice. When exposed to cold, LNCAT/LNPAT increased uncoupling protein 1 (UCP1) expression via activation of tyrosine hydroxylase (TH), in which abdominal lymph nodes were involved. Interestingly, the UCP1 expression in LNCAT/LNPAT varied under different reproductive stages. The UCP1 expression in LNCAT was upregulated at early pregnancy, declined at midlate pregnancy, and reverted in weaning dams. Mating behavior stimulated LNPAT browning in male mice. We found that androgen but not estrogen or progesterone inhibited UCP1 expression in LNCAT. Androgen administration reversed the castration-induced LNPAT browning. Our results identified a perigonadal brown-like AT in female mice and characterized its UCP1 expression patterns under various conditions.NEW & NOTEWORTHY A novel perigonadal brown-like AT (LNCAT) of female mice was identified. Abdominal lymph nodes were involved in cold-induced browning in this newly discovered adipose tissue. The UCP1 expression in LNCAT/LNPAT was also related to ages, sexes, and reproductive stages, in which androgen acted as an inhibitor role.
Asunto(s)
Tejido Adiposo Pardo , Cuello del Útero , Ganglios Linfáticos , Próstata , Proteína Desacopladora 1 , Animales , Masculino , Femenino , Ratones , Ganglios Linfáticos/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo Pardo/metabolismo , Cuello del Útero/metabolismo , Próstata/metabolismo , Embarazo , Tejido Adiposo Blanco/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo , Andrógenos/farmacología , Andrógenos/metabolismo , Conducta Sexual Animal/fisiologíaRESUMEN
Benign prostatic hyperplasia (BPH) is a common condition marked by the enlargement of the prostate gland, which often leads to significant urinary symptoms and a decreased quality of life. The development of clinically relevant animal models is crucial for understanding the pathophysiology of BPH and improving treatment options. This study aims to establish a patient-derived xenograft (PDX) model using benign prostatic tissues to explore the molecular and cellular mechanisms of BPH. PDXs were generated by implanting fresh BPH (transition zone) and paired normal (peripheral zone) prostate tissue from 8 patients under the renal capsule of immunodeficient male mice. Tissue weight, architecture, cellular proliferation, apoptosis, prostate-specific marker expression, and molecular profiles of PDXs were assessed after 1 week and 1, 2, or 3 months of implantation by immunohistochemistry, enzyme-linked immunosorbent assay, transcriptomics, and proteomics. Responses to finasteride, a standard-of-care therapy, were evaluated. PDXs maintained histologic and molecular characteristics of the parental human tissues. BPH, but not normal PDXs, demonstrated significant increases in weight and cellular proliferation, particularly at 1 month. Molecular profiling revealed specific gene and protein expression patterns correlating with BPH pathophysiology. Specifically, an increased immune and stress response was observed at 1 week, followed by increased expression of proliferation markers and BPH-specific stromal signaling molecules, such as BMP5 and CXCL13, at 1 month. Graft stabilization to preimplant characteristics was apparent between 2 and 3 months. Treatment with finasteride reduced proliferation, increased apoptosis, and induced morphologic changes consistent with therapeutic responses observed in human BPH. Our PDX model recapitulates the morphologic, histologic, and molecular features of human BPH, offering a significant advancement in modeling the complex interactions of cell types in BPH microenvironments. These PDXs respond to therapeutic intervention as expected, providing a valuable tool for preclinical testing of new therapeutics that will improve the well-being of BPH patients.
Asunto(s)
Próstata , Hiperplasia Prostática , Masculino , Humanos , Animales , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Próstata/metabolismo , Próstata/patología , Ratones , Modelos Animales de Enfermedad , Xenoinjertos , Anciano , Finasterida/farmacología , Finasterida/uso terapéutico , Ratones SCID , Persona de Mediana Edad , Proliferación CelularRESUMEN
INTRODUCTION: Overexpression of prostate-specific membrane antigen (PSMA) on the vasculature of triple-negative breast cancer (TNBC) presents a promising avenue for targeted endogenous radiotherapy with [177Lu]Lu-PSMA-I&T. This study aimed to assess and compare the therapeutic efficacy of a single dose with a fractionated dose of [177Lu]Lu-PSMA-I&T in an orthotopic model of TNBC. METHODS: Rj:NMRI-Foxn1nu/nu mice were used as recipients of MDA-MB-231 xenografts. The single dose group was treated with 1 × 60 ± 5 MBq dose of [177Lu]Lu-PSMA-I&T, while the fractionated dose group received 4 × a 15 ± 2 MBq dose of [177Lu]Lu-PSMA-I&T at 7 day intervals. The control group received 0.9% NaCl. Tumor progression was monitored using [18F]FDG-PET/CT. Ex vivo analysis encompassed immunostaining, TUNEL staining, H&E staining, microautoradiography, and autoradiography. RESULTS: Tumor volumes were significantly smaller in the single dose (p < 0.001) and fractionated dose (p < 0.001) groups. Tumor growth inhibition rates were 38% (single dose) and 30% (fractionated dose). Median survival was notably prolonged in the treated groups compared to the control groups (31d, 28d and 19d for single dose, fractionated dose and control, respectively). [177Lu]Lu-PSMA-I&T decreased the size of viable tumor areas. We further demonstrated, that [177Lu]Lu-PSMA-I&T binds specifically to the tumor-associated vasculature. CONCLUSION: This study highlights the potential of [177Lu]Lu-PSMA-I&T for endogenous radiotherapy of TNBC.
Asunto(s)
Radioisótopos , Neoplasias de la Mama Triple Negativas , Humanos , Masculino , Animales , Ratones , Radioisótopos/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Radiofármacos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Próstata/metabolismo , Línea Celular Tumoral , Dipéptidos/uso terapéuticoRESUMEN
INTRODUCTION: Prostate-specific membrane antigen (PSMA) is a US Food and Drug Administration-approved theranostic target for prostate cancer (PCa). Although PSMA is known to be glycosylated, the composition and functional roles of its N-linked glycoforms have not been fully characterized. METHODS: PSMA was isolated from pooled seminal plasma from low-risk grade Groups 1 and 2 PCa patients. Intact glycopeptides were analyzed by mass spectrometry to identify site-specific glycoforms. RESULTS: We observed a rich distribution of PSMA glycoforms in seminal plasma from low and low-intermediate-risk PCa patients. Some interesting generalities can be drawn based on the predicted topology of PSMA on the plasma membrane. The glycoforms at ASN-459, ASN-476, and ASN-638 residues that are located at the basal domain facing the plasma membrane in cells, are predominantly high mannose glycans. ASN-76 which is located in the interdomain region adjacent to the apical domain of the protein shows a mixture of high mannose glycans and complex glycans, whereas ASN-121, ASN-195 and ASN-336 that are located and are exposed at the apical domain of the protein predominantly possess complex sialylated and fucosylated N-linked glycans. These highly accessible glycosites display the greatest diversity in isoforms across the patient samples. CONCLUSIONS: Our study provides novel qualitative insights into PSMA glycoforms that are present in the seminal fluid of PCa patients. The presence of a rich diversity of glycoforms in seminal plasma provides untapped potential for glycoprotein biomarker discovery and as a clinical sample for noninvasive diagnostics of male urological disorders and diseases including PCa. Specifically, our glycomics approach will be critical in uncovering PSMA glycoforms with utility in staging and risk stratification of PCa.
Asunto(s)
Próstata , Neoplasias de la Próstata , Humanos , Masculino , Manosa/química , Polisacáridos/metabolismo , Próstata/metabolismo , SemenRESUMEN
BACKGROUND: As the second most common cancer in men and the leading cause of cancer-related death, prostate cancer (PCa) could potentially be treated by inducing ferroptosis. In this study, we aimed to investigate whether luteolin could induce ferroptosis in PCa cells through the transcription Factor EB (TFEB). METHODS: Different concentrations of luteolin were applied to treat normal prostate epithelial cells RWPE-1 and PCa cell lines DU145, PC-3, VCaP, and LNcaP. Ferrostatin-1 (Fer-1), Necrostain-1 (Nec-1), 3-methyladenine (3-MA), chloroquine (CQ), and the apoptosis inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (Z-VAD-FMK) were added to treat DU145 and PC-3 cells. Additionally, we knocked down TFEB and performed in vitro cell experiments. Finally, tumor-forming experiments in nude mice were conducted to verify luteolin mechanism in PCa after knocking down TFEB. RESULTS: There was no significant difference in RWPE-1 at 12, 24, and 48 h after treatment with 60 µM luteolin. However, a significant difference was observed between DU145 and PC-3 cells. Luteolin exhibited a promoting effect on PCa cell death. After treatment with luteolin, cell viability, and Ki67 expression were decreased, and AnV-PI-positive dead cells were increased. Fer-1, Nec-1, 3-MA, and Z-VAD-FMK reversed luteolin effects on DU145 and PC-3 cell viability, proliferation, and AnV-PI-positive dead cells. Among them, Fer-1 and 3-MA were more effective. Luteolin-induced increased autophagy and ferroptosis in DU145 and PC-3 cells. Moreover, luteolin promoted ferroptosis by inducing increased autophagy in DU145 and PC-3 cells. However, knockdown of TFEB reversed the ability of luteolin to induce lysosome degradation of ferritin. In addition, luteolin promoted PCa ferroptosis by inducing ferritinophagy in vivo. CONCLUSIONS: Luteolin-induced ferroptosis in PCa cells by promoting TFEB nuclear translocation and increasing ferritinophagy.