Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.393
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(7): 1632-1643, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315480

RESUMEN

Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/química , Péptidos/farmacología , Ponzoñas/farmacología , Animales , Células CHO , Calcio/metabolismo , Línea Celular , Cricetulus , AMP Cíclico/metabolismo , Exenatida , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxintomodulina/química , Oxintomodulina/metabolismo , Péptidos/química , Ratas , Transducción de Señal , Ponzoñas/química
2.
Immunity ; 52(5): 782-793.e5, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32272082

RESUMEN

Splenic red pulp macrophages (RPMs) contribute to erythrocyte homeostasis and are required for iron recycling. Heme induces the expression of SPIC transcription factor in monocyte-derived macrophages and promotes their differentiation into RPM precursors, pre-RPMs. However, the requirements for differentiation into mature RPMs remain unknown. Here, we have demonstrated that interleukin (IL)-33 associated with erythrocytes and co-cooperated with heme to promote the generation of mature RPMs through activation of the MyD88 adaptor protein and ERK1/2 kinases downstream of the IL-33 receptor, IL1RL1. IL-33- and IL1RL1-deficient mice showed defective iron recycling and increased splenic iron deposition. Gene expression and chromatin accessibility studies revealed a role for GATA transcription factors downstream of IL-33 signaling during the development of pre-RPMs that retained full potential to differentiate into RPMs. Thus, IL-33 instructs the development of RPMs as a response to physiological erythrocyte damage with important implications to iron recycling and iron homeostasis.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Hierro/metabolismo , Macrófagos/inmunología , Transducción de Señal/inmunología , Bazo/metabolismo , Animales , Eritrocitos/inmunología , Eritrocitos/metabolismo , Hemo/inmunología , Hemo/metabolismo , Homeostasis/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Macrófagos/metabolismo , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor 88 de Diferenciación Mieloide/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Bazo/citología
3.
Cell ; 156(4): 678-90, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24529373

RESUMEN

Erk1/2 activation contributes to mouse ES cell pluripotency. We found a direct role of Erk1/2 in modulating chromatin features required for regulated developmental gene expression. Erk2 binds to specific DNA sequence motifs typically accessed by Jarid2 and PRC2. Negating Erk1/2 activation leads to increased nucleosome occupancy and decreased occupancy of PRC2 and poised RNAPII at Erk2-PRC2-targeted developmental genes. Surprisingly, Erk2-PRC2-targeted genes are specifically devoid of TFIIH, known to phosphorylate RNA polymerase II (RNAPII) at serine-5, giving rise to its initiated form. Erk2 interacts with and phosphorylates RNAPII at its serine 5 residue, which is consistent with the presence of poised RNAPII as a function of Erk1/2 activation. These findings underscore a key role for Erk1/2 activation in promoting the primed status of developmental genes in mouse ES cells and suggest that the transcription complex at developmental genes is different than the complexes formed at other genes, offering alternative pathways of regulation.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIH/metabolismo , Animales , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Activación Enzimática , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nucleosomas/metabolismo , Fosforilación , Complejo Represivo Polycomb 2/metabolismo
4.
Plant Cell ; 35(1): 598-616, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36269178

RESUMEN

RNA-binding proteins (RBPs) participate in a diverse set of biological processes in plants, but their functions and underlying mechanisms in plant-pathogen interactions are largely unknown. We previously showed that Arabidopsis thaliana BPA1-LIKE PROTEIN3 (BPL3) belongs to a conserved plant RBP family and negatively regulates reactive oxygen species (ROS) accumulation and cell death under biotic stress. In this study, we demonstrate that BPL3 suppresses FORKED-LIKE7 (FL7) transcript accumulation and raises levels of the cis-natural antisense long non-coding RNA (lncRNA) of FL7 (nalncFL7). FL7 positively regulated plant immunity to Phytophthora capsici while nalncFL7 negatively regulated resistance. We also showed that BPL3 directly binds to and stabilizes nalncFL7. Moreover, nalncFL7 suppressed accumulation of FL7 transcripts. Furthermore, FL7 interacted with HIGHLY ABA-INDUCED PP2C1 (HAI1), a type 2C protein phosphatase, and inhibited HAI1 phosphatase activity. By suppressing HAI1 activity, FL7 increased the phosphorylation levels of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6, thus enhancing immunity responses. BPL3 and FL7 are conserved in all plant species tested, but the BPL3-nalncFL7-FL7 cascade was specific to the Brassicaceae. Thus, we identified a conserved BPL3-nalncFL7-FL7 cascade that coordinates plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunidad de la Planta , ARN Largo no Codificante , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inmunidad de la Planta/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
5.
Plant Cell ; 35(8): 2887-2909, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37132483

RESUMEN

The phytohormone ethylene plays an important role in promoting the softening of climacteric fruits, such as apples (Malus domestica); however, important aspects of the underlying regulatory mechanisms are not well understood. In this study, we identified apple MITOGEN-ACTIVATED PROTEIN KINASE 3 (MdMAPK3) as an important positive regulator of ethylene-induced apple fruit softening during storage. Specifically, we show that MdMAPK3 interacts with and phosphorylates the transcription factor NAM-ATAF1/2-CUC2 72 (MdNAC72), which functions as a transcriptional repressor of the cell wall degradation-related gene POLYGALACTURONASE1 (MdPG1). The increase in MdMAPK3 kinase activity was induced by ethylene, which promoted the phosphorylation of MdNAC72 by MdMAPK3. Additionally, MdPUB24 functions as an E3 ubiquitin ligase to ubiquitinate MdNAC72, resulting in its degradation via the 26S proteasome pathway, which was enhanced by ethylene-induced phosphorylation of MdNAC72 by MdMAPK3. The degradation of MdNAC72 increased the expression of MdPG1, which in turn promoted apple fruit softening. Notably, using variants of MdNAC72 that were mutated at specific phosphorylation sites, we observed that the phosphorylation state of MdNAC72 affected apple fruit softening during storage. This study thus reveals that the ethylene-MdMAPK3-MdNAC72-MdPUB24 module is involved in ethylene-induced apple fruit softening, providing insights into climacteric fruit softening.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Frutas/metabolismo , Fosforilación , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
J Biol Chem ; 300(1): 105566, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103643

RESUMEN

Macrophages play critical roles in inflammation and tissue homeostasis, and their functions are regulated by various autocrine, paracrine, and endocrine factors. We have previously shown that CTRP6, a secreted protein of the C1q family, targets both adipocytes and macrophages to promote obesity-linked inflammation. However, the gene programs and signaling pathways directly regulated by CTRP6 in macrophages remain unknown. Here, we combine transcriptomic and phosphoproteomic analyses to show that CTRP6 activates inflammatory gene programs and signaling pathways in mouse bone marrow-derived macrophages (BMDMs). Treatment of BMDMs with CTRP6 upregulated proinflammatory, and suppressed the antiinflammatory, gene expression. We also showed that CTRP6 activates p44/42-MAPK, p38-MAPK, and NF-κB signaling pathways to promote inflammatory cytokine secretion from BMDMs, and that pharmacologic inhibition of these signaling pathways markedly attenuated the effects of CTRP6. Pretreatment of BMDMs with CTRP6 also sensitized and potentiated the BMDMs response to lipopolysaccharide (LPS)-induced inflammatory signaling and cytokine secretion. Consistent with the metabolic phenotype of proinflammatory macrophages, CTRP6 treatment induced a shift toward aerobic glycolysis and lactate production, reduced oxidative metabolism, and elevated mitochondrial reactive oxygen species production in BMDMs. Importantly, in accordance with our in vitro findings, BMDMs from CTRP6-deficient mice were less inflammatory at baseline and showed a marked suppression of LPS-induced inflammatory gene expression and cytokine secretion. Finally, loss of CTRP6 in mice also dampened LPS-induced inflammation and hypothermia. Collectively, our findings suggest that CTRP6 regulates and primes the macrophage response to inflammatory stimuli and thus may have a role in modulating tissue inflammatory tone in different physiological and disease contexts.


Asunto(s)
Adipoquinas , Perfilación de la Expresión Génica , Inflamación , Lipopolisacáridos , Macrófagos , Fosfoproteínas , Proteómica , Animales , Ratones , Adipoquinas/deficiencia , Adipoquinas/genética , Adipoquinas/metabolismo , Células de la Médula Ósea/citología , Citocinas/metabolismo , Glucólisis , Hipotermia/complicaciones , Inflamación/complicaciones , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Ácido Láctico/biosíntesis , Lipopolisacáridos/inmunología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo
7.
Circ Res ; 132(1): 10-29, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36475698

RESUMEN

BACKGROUND: Organ fibrosis due to excessive production of extracellular matrix by resident fibroblasts is estimated to contribute to >45% of deaths in the Western world, including those due to cardiovascular diseases such as heart failure. Here, we screened for small molecule inhibitors with a common ability to suppress activation of fibroblasts across organ systems. METHODS: High-content imaging of cultured cardiac, pulmonary, and renal fibroblasts was used to identify nontoxic compounds that blocked induction of markers of activation in response to the profibrotic stimulus, transforming growth factor-ß1. SW033291, which inhibits the eicosanoid-degrading enzyme, 15-hydroxyprostaglandin dehydrogenase, was chosen for follow-up studies with cultured adult rat ventricular fibroblasts and human cardiac fibroblasts (CF), and for evaluation in mouse models of cardiac fibrosis and diastolic dysfunction. Additional mechanistic studies were performed with CFs treated with exogenous eicosanoids. RESULTS: Nine compounds, including SW033291, shared a common ability to suppress transforming growth factor-ß1-mediated activation of cardiac, pulmonary, and renal fibroblasts. SW033291 dose-dependently inhibited transforming growth factor-ß1-induced expression of activation markers (eg, α-smooth muscle actin and periostin) in adult rat ventricular fibroblasts and normal human CFs, and reduced contractile capacity of the cells. Remarkably, the 15-hydroxyprostaglandin dehydrogenase inhibitor also reversed constitutive activation of fibroblasts obtained from explanted hearts from patients with heart failure. SW033291 blocked cardiac fibrosis induced by angiotensin II infusion and ameliorated diastolic dysfunction in an alternative model of systemic hypertension driven by combined uninephrectomy and deoxycorticosterone acetate administration. Mechanistically, SW033291-mediated stimulation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling was required for the compound to block CF activation. Of the 12 exogenous eicosanoids that were tested, only 12(S)-hydroxyeicosatetraenoic acid, which signals through the G protein-coupled receptor, GPR31, recapitulated the suppressive effects of SW033291 on CF activation. CONCLUSIONS: Inhibition of degradation of eicosanoids, arachidonic acid-derived fatty acids that signal through G protein-coupled receptors, is a potential therapeutic strategy for suppression of pathological organ fibrosis. In the heart, we propose that 15-hydroxyprostaglandin dehydrogenase inhibition triggers CF-derived autocrine/paracrine signaling by eicosanoids, including 12(S)-hydroxyeicosatetraenoic acid, to stimulate extracellular signal-regulated kinase 1/2 and block conversion of fibroblasts into activated cells that secrete excessive amounts of extracellular matrix and contribute to heart failure pathogenesis.


Asunto(s)
Insuficiencia Cardíaca , Ratones , Ratas , Humanos , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocardio/metabolismo , Insuficiencia Cardíaca/metabolismo , Fibroblastos/metabolismo , Fibrosis , Células Cultivadas
8.
PLoS Genet ; 18(9): e1010405, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121853

RESUMEN

In order to successfully induce disease, the fungal pathogen Candida albicans regulates exposure of antigens like the cell wall polysaccharide ß(1,3)-glucan to the host immune system. C. albicans covers (masks) ß(1,3)-glucan with a layer of mannosylated glycoproteins, which aids in immune system evasion by acting as a barrier to recognition by host pattern recognition receptors. Consequently, enhanced ß(1,3)-glucan exposure (unmasking) makes fungal cells more visible to host immune cells and facilitates more robust fungal clearance. However, an understanding of how C. albicans regulates its exposure levels of ß(1,3)-glucan is needed to leverage this phenotype. Signal transduction pathways and their corresponding effector genes mediating these changes are only beginning to be defined. Here, we report that the phosphatase calcineurin mediates unmasking of ß(1,3)-glucan in response to inputs from the Cek1 MAPK pathway and in response to caspofungin exposure. In contrast, calcineurin reduces ß-glucan exposure in response to high levels of extracellular calcium. Thus, depending on the input, calcineurin acts as a switchboard to regulate ß(1,3)-glucan exposure levels. By leveraging these differential ß(1,3)-glucan exposure phenotypes, we identified two novel effector genes in the calcineurin regulon, FGR41 and C1_11990W_A, that encode putative cell wall proteins and mediate masking/unmasking. Loss of either effector caused unmasking and attenuated virulence during systemic infection in mice. Furthermore, immunosuppression restored the colonization decrease seen in mice infected with the fgr41Δ/Δ mutant to wild-type levels, demonstrating a reliance on the host immune system for virulence attenuation. Thus, calcineurin and its downstream regulon are general regulators of unmasking.


Asunto(s)
Candida albicans , Proteínas Fúngicas/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , beta-Glucanos , Animales , Calcineurina/genética , Calcineurina/metabolismo , Calcio/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Caspofungina/farmacología , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Glucanos/metabolismo , Ratones , beta-Glucanos/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074920

RESUMEN

Increased intercellular tension is associated with enhanced cell proliferation and tissue growth. Here, we present evidence for a force-transduction mechanism that links mechanical perturbations of epithelial (E)-cadherin (CDH1) receptors to the force-dependent activation of epidermal growth factor receptor (EGFR, ERBB1)-a key regulator of cell proliferation. Here, coimmunoprecipitation studies first show that E-cadherin and EGFR form complexes at the plasma membrane that are disrupted by either epidermal growth factor (EGF) or increased tension on homophilic E-cadherin bonds. Although force on E-cadherin bonds disrupts the complex in the absence of EGF, soluble EGF is required to mechanically activate EGFR at cadherin adhesions. Fully quantified spectral imaging fluorescence resonance energy transfer further revealed that E-cadherin and EGFR directly associate to form a heterotrimeric complex of two cadherins and one EGFR protein. Together, these results support a model in which the tugging forces on homophilic E-cadherin bonds trigger force-activated signaling by releasing EGFR monomers to dimerize, bind EGF ligand, and signal. These findings reveal the initial steps in E-cadherin-mediated force transduction that directly link intercellular force fluctuations to the activation of growth regulatory signaling cascades.


Asunto(s)
Cadherinas/metabolismo , Receptores ErbB/metabolismo , Mecanotransducción Celular , Transducción de Señal , Adhesión Celular , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Humanos , Uniones Intercelulares/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Fosforilación , Unión Proteica , Multimerización de Proteína , Transducción de Señal/efectos de los fármacos
10.
J Biol Chem ; 299(2): 102842, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36581205

RESUMEN

The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-myc , Proteínas Proto-Oncogénicas p21(ras) , Survivin , Humanos , Línea Celular Tumoral , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias Pancreáticas/patología , Proteína Fosfatasa 2/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Survivin/genética , Survivin/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Neoplasias Pancreáticas
11.
J Biol Chem ; 299(9): 105072, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474104

RESUMEN

Eukaryotic protein kinases (EPKs) adopt an active conformation following phosphorylation of a particular activation loop residue. Most EPKs spontaneously autophosphorylate this residue. While structure-function relationships of the active conformation are essentially understood, those of the "prone-to-autophosphorylate" conformation are unclear. Here, we propose that a site within the αC-helix of EPKs, occupied by Arg in the mitogen-activated protein kinase (MAPK) Erk1/2 (Arg84/65), impacts spontaneous autophosphorylation. MAPKs lack spontaneous autoactivation, but we found that converting Arg84/65 of Erk1/2 to various residues enables spontaneous autophosphorylation. Furthermore, Erk1 molecules mutated in Arg84 are oncogenic. Arg84/65 thus obstructs the adoption of the "prone-to-autophosphorylate" conformation. All MAPKs harbor an Arg that is equivalent to Arg84/65 of Erks, whereas Arg is rarely found at the equivalent position in other EPKs. We observed that Arg84/65 of Erk1/2 interacts with the DFG motif, suggesting that autophosphorylation may be inhibited by the Arg84/65-DFG interactions. Erk1/2s mutated in Arg84/65 autophosphorylate not only the TEY motif, known as critical for catalysis, but also on Thr207/188. Our MS/MS analysis revealed that a large proportion of the Erk2R65H population is phosphorylated on Thr188 or on Tyr185 + Thr188, and a small fraction is phosphorylated on the TEY motif. No molecules phosphorylated on Thr183 + Thr188 were detected. Thus, phosphorylation of Thr183 and Thr188 is mutually exclusive suggesting that not only TEY-phosphorylated molecules are active but perhaps also those phosphorylated on Tyr185 + Thr188. The effect of mutating Arg84/65 may mimic a physiological scenario in which allosteric effectors cause Erk1/2 activation by autophosphorylation.


Asunto(s)
Arginina , Proteína Quinasa 1 Activada por Mitógenos , Proteína Quinasa 3 Activada por Mitógenos , Fosforilación , Arginina/metabolismo , Humanos , Animales , Ratones , Línea Celular , Células HEK293 , Activación Enzimática/genética , Mutación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Estructura Terciaria de Proteína , Modelos Moleculares , Cristalización , Secuencia de Aminoácidos
12.
Am J Physiol Heart Circ Physiol ; 326(1): H180-H189, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37999644

RESUMEN

During select pathological conditions, the heart can hypertrophy and remodel in either a dilated or concentric ventricular geometry, which is associated with lengthening or widening of cardiomyocytes, respectively. The mitogen-activated protein kinase kinase 1 (MEK1) and extracellular signal-related kinase 1 and 2 (ERK1/2) pathway has been implicated in these differential types of growth such that cardiac overexpression of activated MEK1 causes profound concentric hypertrophy and cardiomyocyte thickening, while genetic ablation of the genes encoding ERK1/2 in the mouse heart causes dilation and cardiomyocyte lengthening. However, the mechanisms by which this kinase signaling pathway controls cardiomyocyte directional growth as well as its downstream effectors are poorly understood. To investigate this, we conducted an unbiased phosphoproteomic screen in cultured neonatal rat ventricular myocytes treated with an activated MEK1 adenovirus, the MEK1 inhibitor U0126, or an eGFP adenovirus control. Bioinformatic analysis identified cytoskeletal-related proteins as the largest subset of differentially phosphorylated proteins. Phos-tag and traditional Western blotting were performed to confirm that many cytoskeletal proteins displayed changes in phosphorylation with manipulations in MEK1-ERK1/2 signaling. From this, we hypothesized that the actin cytoskeleton would be changed in vivo in the mouse heart. Indeed, we found that activated MEK1 transgenic mice and gene-deleted mice lacking ERK1/2 protein had enhanced non-sarcomeric actin expression in cardiomyocytes compared with wild-type control hearts. Consistent with these results, cytoplasmic ß- and γ-actin were increased at the subcortical intracellular regions of adult cardiomyocytes. Together, these data suggest that MEK1-ERK1/2 signaling influences the non-sarcomeric cytoskeletal actin network, which may be important for facilitating the growth of cardiomyocytes in length and/or width.NEW & NOTEWORTHY Here, we performed an unbiased analysis of the total phosphoproteome downstream of MEK1-ERK1/2 kinase signaling in cardiomyocytes. Pathway analysis suggested that proteins of the non-sarcomeric cytoskeleton were the most differentially affected. We showed that cytoplasmic ß-actin and γ-actin isoforms, regulated by MEK1-ERK1/2, are localized to the subcortical space at both lateral membranes and intercalated discs of adult cardiomyocytes suggesting how MEK1-ERK1/2 signaling might underlie directional growth of adult cardiomyocytes.


Asunto(s)
Actinas , Miocitos Cardíacos , Ratones , Ratas , Animales , Miocitos Cardíacos/metabolismo , Actinas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Transducción de Señal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Citoesqueleto/metabolismo , Ratones Transgénicos , Hipertrofia/metabolismo , Hipertrofia/patología , Proteínas del Citoesqueleto/metabolismo , Células Cultivadas
13.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34519339

RESUMEN

Notch-Delta signaling regulates many developmental processes, including tissue homeostasis and maintenance of stem cells. Upon interaction of juxtaposed cells via Notch and Delta proteins, intracellular domains of both transmembrane proteins are cleaved and translocate to the nucleus. Notch intracellular domain activates target gene expression; however, the role of the Delta intracellular domain remains elusive. Here, we show the biological function of Delta like 1 intracellular domain (D1ICD) by modulating its production. We find that the sustained production of D1ICD abrogates cell proliferation but enhances neurogenesis in the developing dorsal root ganglia (DRG), whereas inhibition of D1ICD production promotes cell proliferation and gliogenesis. D1ICD acts as an integral component of lateral inhibition mechanism by inhibiting Notch activity. In addition, D1ICD promotes neurogenesis in a Notch signaling-independent manner. We show that D1ICD binds to Erk1/2 in neural crest stem cells and inhibits the phosphorylation of Erk1/2. In summary, our results indicate that D1ICD regulates DRG development by modulating not only Notch signaling but also the MAP kinase pathway.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Sistema de Señalización de MAP Quinasas , Neurogénesis , Receptores Notch/metabolismo , Animales , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proliferación Celular , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células 3T3 NIH , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Unión Proteica
14.
Biol Reprod ; 110(1): 154-168, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37815939

RESUMEN

Phoenixin is a neuropeptide with a well-established role in the central regulation of reproductive processes; however, knowledge regarding its role in the ovary is limited. One of the main active phoenixin isoforms is phoenixin-14, which acts through G protein-coupled receptor 173. Our research hypothesis was that phoenixin-14 is expressed in porcine corpus luteum and exerts luteotropic action by affecting the endocrine function of luteal cells through G protein-coupled receptor 173 and protein kinase signaling. Luteal cells were cultured to investigate the effect of phoenixin-14 (1-1000 nM) on endocrine function. We showed that phoenixin-14 and G protein-coupled receptor 173 are produced locally in porcine corpus luteum and their levels change during the estrous cycle. We detected phoenixin-14 immunostaining in the cytoplasm and G protein-coupled receptor 173 in the cell membrane. Plasma phoenixin levels were highest during the early luteal phase. Interestingly, insulin, luteinizing hormone, progesterone, and prostaglandins decreased phoenixin-14 levels in luteal cells. Phoenixin-14 increased progesterone, estradiol, and prostaglandin E2 secretion, but decreased prostaglandin F2α, upregulated the expression of steroidogenic enzymes, and downregulated receptors for luteinizing hormone and prostaglandin. Also, phoenixin-14 increased the expression of G protein-coupled receptor 173 and the phosphorylation of extracellular signal-regulated kinase 1/2, protein kinase B, inhibited the phosphorylation of protein kinase A, and had mixed effect on AMP-activated protein kinase alpha and protein kinase C. G protein-coupled receptor 173 and extracellular signal-regulated kinase 1/2 mediated the effect of phoenixin-14 on endocrine function of luteal cells. Our results suggest that phoenixin is produced by porcine luteal cells and can be a new regulator of their function.


Asunto(s)
Células Lúteas , Femenino , Animales , Porcinos , Células Lúteas/metabolismo , Progesterona/farmacología , Cuerpo Lúteo/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Hormona Luteinizante/farmacología , Hormona Luteinizante/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
15.
Am J Pathol ; 193(5): 624-637, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740185

RESUMEN

Advanced-stage prostate tumors metastasize to the bone, often causing death. The protein kinase D (PKD) family has been implicated in prostate cancer development; however, its role in prostate cancer metastasis remains elusive. This study examined the contribution of PKD, particularly PKD2 and PKD3 (PKD2/3), to the metastatic potential of prostate cancer cells and the effect of PKD inhibition on prostate cancer bone metastasis in vivo. Depletion of PKD2/3 by siRNAs or inhibition by the PKD inhibitor CRT0066101 in AR-positive and AR-negative castration-resistant prostate cancer cells potently inhibited colony formation and cell migration. Depletion or inhibition of PKD2/3 significantly blocked tumor cell invasion and suppressed the expression of genes related to bone metastasis in the highly invasive PC3-ML cells. The reduced invasive activity resulting from PKD2/3 depletion was in part mediated by the transcription factor Runx2, as its silencing decreased PKD2/3-mediated metastatic gene expression through the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 signaling axis. Furthermore, inhibition of PKD by CRT0066101 potently decreased the frequency of bone micrometastases in a mouse model of bone metastasis based on intracardiac injection of PC3-ML cells. These results indicate that PKD2/3 plays an important role in the bone metastasis of prostate cancer cells, and its inhibition may be beneficial for the treatment of advanced prostate cancer.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Proteína Quinasa C/metabolismo , Proteína Quinasa D2 , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo
16.
Am J Pathol ; 193(12): 1936-1952, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37673330

RESUMEN

Renal fibrosis is a pathologic process that leads to irreversible renal failure without effective treatment. Epithelial-to-mesenchymal transition (EMT) plays a key role in this process. The current study found that aberrant expression of IL-11 is critically involved in tubular EMT. IL-11 and its receptor subunit alpha-1 (IL-11Rα1) were significantly induced in renal tubular epithelial cells (RTECs) in unilateral ureteral obstruction (UUO) kidneys, co-localized with transforming growth factor-ß1. IL-11 knockdown ameliorated UUO-induced renal fibrosis in vivo and transforming growth factor-ß1-induced EMT in vitro. IL-11 intervention directly induced the transdifferentiation of RTECs to the mesenchymal phenotype and increased the synthesis of profibrotic mediators. The EMT response induced by IL-11 was dependent on the sequential activation of STAT3 and extracellular signal-regulated kinase 1/2 signaling pathways and the up-regulation of metadherin in RTECs. Micheliolide (MCL) competitively inhibited the binding of IL-11 with IL-11Rα1, suppressing the activation of STAT3 and extracellular signal-regulated kinase 1/2-metadherin pathways, ultimately inhibiting renal tubular EMT and interstitial fibrosis induced by IL-11. In addition, treatment with dimethylaminomicheliolide, a pro-drug of MCL for in vivo use, significantly ameliorated renal fibrosis exacerbated by IL-11 in the UUO model. These findings suggest that IL-11 is a promising target in renal fibrosis and that MCL/dimethylaminomicheliolide exerts its antifibrotic effect by suppressing IL-11/IL-11Rα1 interaction and blocking its downstream effects.


Asunto(s)
Transición Epitelial-Mesenquimal , Enfermedades Renales , Obstrucción Ureteral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis , Interleucina-11/metabolismo , Interleucina-11/farmacología , Interleucina-11/uso terapéutico , Riñón/patología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Enfermedades Renales/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/farmacología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología , Animales , Ratones
17.
Cardiovasc Diabetol ; 23(1): 202, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867293

RESUMEN

The specific pathophysiological pathways through which diabetes exacerbates myocardial ischemia/reperfusion (I/R) injury remain unclear; however, dysregulation of immune and inflammatory cells, potentially driven by abnormalities in their number and function due to diabetes, may play a significant role. In the present investigation, we simulated myocardial I/R injury by inducing ischemia through ligation of the left anterior descending coronary artery in mice for 40 min, followed by reperfusion for 24 h. Previous studies have indicated that protein kinase Cß (PKCß) is upregulated under hyperglycemic conditions and is implicated in the development of various diabetic complications. The Y4 RNA fragment is identified as the predominant small RNA component present in the extracellular vesicles of cardio sphere-derived cells (CDCs), exhibiting notable anti-inflammatory properties in the contexts of myocardial infarction and cardiac hypertrophy. Our investigation revealed that the administration of Y4 RNA into the ventricular cavity of db/db mice following myocardial I/R injury markedly enhanced cardiac function. Furthermore, Y4 RNA was observed to facilitate M2 macrophage polarization and interleukin-10 secretion through the suppression of PKCß activation. The mechanism by which Y4 RNA affects PKCß by regulating macrophage activation within the inflammatory environment involves the inhibition of ERK1/2 phosphorylation In our study, the role of PKCß in regulating macrophage polarization during myocardial I/R injury was investigated through the use of PKCß knockout mice. Our findings indicate that PKCß plays a crucial role in modulating the inflammatory response associated with macrophage activation in db/db mice experiencing myocardial I/R, with a notable exacerbation of this response observed upon significant upregulation of PKCß expression. In vitro studies further elucidated the protective mechanism by which Y4 RNA modulates the PKCß/ERK1/2 signaling pathway to induce M2 macrophage activation. Overall, our findings suggest that Y4 RNA plays an anti-inflammatory role in diabetic I/R injury, suggesting a novel therapeutic approach for managing myocardial I/R injury in diabetic individuals.


Asunto(s)
Modelos Animales de Enfermedad , Macrófagos , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica , Proteína Quinasa C beta , Transducción de Señal , Animales , Proteína Quinasa C beta/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/genética , Macrófagos/metabolismo , Macrófagos/enzimología , Masculino , Interleucina-10/metabolismo , Interleucina-10/genética , Ratones , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Células Cultivadas , Fenotipo , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Activación de Macrófagos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Función Ventricular Izquierda , Fosforilación
18.
PLoS Biol ; 19(3): e3001063, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33684096

RESUMEN

The function of Sprouty2 (Spry2) in T cells is unknown. Using 2 different (inducible and T cell-targeted) knockout mouse strains, we found that Spry2 positively regulated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling by modulating the activity of LCK. Spry2-/- CD4+ T cells were unable to activate LCK, proliferate, differentiate into T helper cells, or produce cytokines. Spry2 deficiency abrogated type 2 inflammation and airway hyperreactivity in a murine model of asthma. Spry2 expression was higher in blood and airway CD4+ T cells from patients with asthma, and Spry2 knockdown impaired human T cell proliferation and cytokine production. Spry2 deficiency up-regulated the lipid raft protein caveolin-1, enhanced its interaction with CSK, and increased CSK interaction with LCK, culminating in augmented inhibitory phosphorylation of LCK. Knockdown of CSK or dislodgment of caveolin-1-bound CSK restored ERK1/2 activation in Spry2-/- T cells, suggesting an essential role for Spry2 in LCK activation and T cell function.


Asunto(s)
Asma/fisiopatología , Proteína Tirosina Quinasa CSK/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Proteínas de la Membrana/metabolismo , Adulto , Animales , Asma/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Activación de Linfocitos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología
19.
J Immunol ; 208(5): 1146-1154, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35110422

RESUMEN

Porphyromonas gingivalis is commonly known as one of the major pathogens contributing to periodontitis, and its persistent infection may increase the risk for the disease. The proinflammatory mediators, including IL-6, TNF-α, and cyclooxygenase-2 (COX-2)/PGE2, are closely associated with progression of periodontitis. In this study, we focused on the cysteine protease "gingipains," lysine-specific gingipain, arginine-specific gingipain (Rgp) A, and RgpB, produced by P. gingivalis, and used the wild-type strain and several gene-deletion mutants (rgpA, rgpB, kgp, and fimA) to elucidate the involvement of gingipains in COX-2 expression and PGE2 production. We infected human monocytes, which are THP-1 cells and primary monocytes, with these bacterial strains and found that gingipains were involved in induction of COX-2 expression and PGE2 production. We have shown that the protease activity of gingipains was crucial for these events by using gingipain inhibitors. Furthermore, activation of ERK1/2 and IκB kinase was required for gingipain-induced COX-2 expression/PGE2 production, and these kinases activated two transcription factors, c-Jun/c-Fos (AP-1) and NF-κB p65, respectively. In particular, these data suggest that gingipain-induced c-Fos expression via ERK is essential for AP-1 formation with c-Jun, and activation of AP-1 and NF-κB p65 plays a central role in COX-2 expression/PGE2 production. Thus, we show the (to our knowledge) novel finding that gingipains with the protease activity from P. gingivalis induce COX-2 expression and PGE2 production via activation of MEK/ERK/AP-1 and IκB kinase/NF-κB p65 in human monocytes. Hence it is likely that gingipains closely contribute to the inflammation of periodontal tissues.


Asunto(s)
Ciclooxigenasa 2/biosíntesis , Dinoprostona/biosíntesis , Cisteína-Endopeptidasas Gingipaínas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Periodontitis/patología , Porphyromonas gingivalis/metabolismo , Proteínas Bacterianas/genética , Línea Celular , Cisteína Endopeptidasas/genética , Proteínas Fimbrias/genética , Cisteína-Endopeptidasas Gingipaínas/genética , Humanos , Quinasa I-kappa B/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Monocitos/microbiología , Periodontitis/microbiología , Células THP-1 , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción ReIA/metabolismo
20.
J Immunol ; 208(4): 941-954, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35082159

RESUMEN

TPL-2 kinase plays an important role in innate immunity, activating ERK1/2 MAPKs in myeloid cells following TLR stimulation. We investigated how TPL-2 controls transcription in TLR4-stimulated mouse macrophages. TPL-2 activation of ERK1/2 regulated expression of genes encoding transcription factors, cytokines, chemokines, and signaling regulators. Bioinformatics analysis of gene clusters most rapidly induced by TPL-2 suggested that their transcription was mediated by the ternary complex factor (TCF) and FOS transcription factor families. Consistently, TPL-2 induced ERK1/2 phosphorylation of the ELK1 TCF and the expression of TCF target genes. Furthermore, transcriptomic analysis of TCF-deficient macrophages demonstrated that TCFs mediate approximately half of the transcriptional output of TPL-2 signaling, partially via induced expression of secondary transcription factors. TPL-2 signaling and TCFs were required for maximal TLR4-induced FOS expression. Comparative analysis of the transcriptome of TLR4-stimulated Fos -/- macrophages indicated that TPL-2 regulated a significant fraction of genes by controlling FOS expression levels. A key function of this ERK1/2-TCF-FOS pathway was to mediate TPL-2 suppression of type I IFN signaling, which is essential for host resistance against intracellular bacterial infection.


Asunto(s)
Interferón beta/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Animales , Regulación de la Expresión Génica , Interferón beta/metabolismo , Lipopolisacáridos/inmunología , Quinasas Quinasa Quinasa PAM/genética , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Transcripción TCF/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA