Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(37): E8642-E8651, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150414

RESUMEN

We used fluorescence spectroscopy and EM to determine how binding of ATP, nucleation-promoting factors, actin monomers, and actin filaments changes the conformation of Arp2/3 complex during the process that nucleates an actin filament branch. We mutated subunits of Schizosaccharomyces pombe Arp2/3 complex for labeling with fluorescent dyes at either the C termini of Arp2 and Arp3 or ArpC1 and ArpC3. We measured Förster resonance energy transfer (FRET) efficiency (ETeff) between the dyes in the presence of the various ligands. We also computed class averages from electron micrographs of negatively stained specimens. ATP binding made small conformational changes of the nucleotide-binding cleft of the Arp2 subunit. WASp-VCA, WASp-CA, and WASp-actin-VCA changed the ETeff between the dyes on the Arp2 and Arp3 subunits much more than between dyes on ArpC1 and ArpC3. Ensemble FRET detected an additional structural change that brought ArpC1 and ArpC3 closer together when Arp2/3 complex bound actin filaments. VCA binding to Arp2/3 complex causes a conformational change that favors binding to the side of an actin filament, which allows further changes required to nucleate a daughter filament.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/genética , Adenosina Trifosfato/química , Transferencia Resonante de Energía de Fluorescencia , Microscopía Electrónica de Transmisión , Mutación , Unión Proteica , Conformación Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteína del Síndrome de Wiskott-Aldrich/química
2.
Proc Natl Acad Sci U S A ; 115(7): E1409-E1418, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29386393

RESUMEN

Arp2/3 complex nucleates branched actin filaments important for cellular motility and endocytosis. WASP family proteins are Arp2/3 complex activators that play multiple roles in branching nucleation, but little is known about the structural bases of these WASP functions, owing to an incomplete understanding of how WASP binds Arp2/3 complex. Recent data show WASP binds two sites, and biochemical and structural studies led to models in which the WASP C segment engages the barbed ends of the Arp3 and Arp2 subunits while the WASP A segment binds the back side of the complex on Arp3. However, electron microscopy reconstructions showed density for WASP inconsistent with these models on the opposite (front) side of Arp2/3 complex. Here we use chemical cross-linking and mass spectrometry (XL-MS) along with computational docking and structure-based mutational analysis to map the two WASP binding sites on the complex. Our data corroborate the barbed end and back side binding models and show one WASP binding site on Arp3, on the back side of the complex, and a second site on the bottom of the complex, spanning Arp2 and ARPC1. The XL-MS-identified cross-links rule out the front side binding model and show that the A segment of WASP binds along the bottom side of the ARPC1 subunit, instead of at the Arp2/ARPC1 interface, as suggested by FRET experiments. The identified binding sites support the Arp3 tail release model to explain WASP-mediated activating conformational changes in Arp2/3 complex and provide insight into the roles of WASP in branching nucleation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/química , Secuencia de Aminoácidos , Sitios de Unión , Unión Proteica , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia , Proteína del Síndrome de Wiskott-Aldrich/química
3.
BMC Med Genet ; 21(1): 124, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503528

RESUMEN

BACKGROUND: The X-linked recessive primary immunodeficiency disease (PIDD) Wiskott-Aldrich syndrome (WAS) is identified by an extreme susceptibility to infections, eczema and thrombocytopenia with microplatelets. The syndrome, the result of mutations in the WAS gene which encodes the Wiskott-Aldrich protein (WASp), has wide clinical phenotype variation, ranging from classical WAS to X-linked thrombocytopaenia and X-linked neutropaenia. In many cases, the diagnosis of WAS in first affected males is delayed, because patients may not present with the classic signs and symptoms, which may intersect with other thrombocytopenia causes. CASE PRESENTATION: Here, we describe a three-year-old HIV negative boy presenting with recurrent infections, skin rashes, features of autoimmunity and atopy. However, platelets were initially reported as normal in numbers and morphology as were baseline immune investigations. An older male sibling had died in infancy from suspected immunodeficiency. Uncertainty of diagnosis and suspected severe PIDD prompted urgent further molecular investigation. Whole exome sequencing identified c. 397 G > A as a novel hemizygous missense mutation located in exon 4 of WAS. CONCLUSION: With definitive molecular diagnosis, we could target treatment and offer genetic counselling and prenatal diagnostic testing to the family. The identification of novel variants is important to confirm phenotype variations of a syndrome.


Asunto(s)
Mutación/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/genética , Secuencia de Aminoácidos , Secuencia de Bases , Femenino , Humanos , Lactante , Masculino , Volúmen Plaquetario Medio , Linaje , Sudáfrica , Síndrome de Wiskott-Aldrich/sangre , Proteína del Síndrome de Wiskott-Aldrich/química
4.
Biophys J ; 116(7): 1216-1227, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30878202

RESUMEN

Because of their large conformational heterogeneity, structural characterization of intrinsically disordered proteins (IDPs) is very challenging using classical experimental methods alone. In this study, we use NMR and small-angle x-ray scattering (SAXS) data with multiple molecular dynamics (MD) simulations to describe the conformational ensemble of the fully disordered verprolin homology domain of the neural Aldrich syndrome protein involved in the regulation of actin polymerization. First, we studied several back-calculation software of SAXS scattering intensity and optimized the adjustable parameters to accurately calculate the SAXS intensity from an atomic structure. We also identified the most appropriate force fields for MD simulations of this IDP. Then, we analyzed four conformational ensembles of neural Aldrich syndrome protein verprolin homology domain, two generated with the program flexible-meccano with or without NMR-derived information as input and two others generated by MD simulations with two different force fields. These four conformational ensembles were compared to available NMR and SAXS data for validation. We found that MD simulations with the AMBER-03w force field and the TIP4P/2005s water model are able to correctly describe the conformational ensemble of this 67-residue IDP at both local and global level.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteína del Síndrome de Wiskott-Aldrich/química , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Dominios Proteicos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
5.
J Biol Chem ; 293(39): 15136-15151, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104412

RESUMEN

Wiskott-Aldrich syndrome protein (WASP) activates the actin-related protein 2/3 homolog (Arp2/3) complex and regulates actin polymerization in a physiological setting. Cell division cycle 42 (Cdc42) is a key activator of WASP, which binds Cdc42 through a Cdc42/Rac-interactive binding (CRIB)-containing region that defines a subset of Cdc42 effectors. Here, using site-directed mutagenesis and binding affinity determination and kinetic assays, we report the results of an investigation into the energetic contributions of individual WASP residues to both the Cdc42-WASP binding interface and the kinetics of complex formation. Our results support the previously proposed dock-and-coalesce binding mechanism, initiated by electrostatic steering driven by WASP's basic region and followed by a coalescence phase likely driven by the conserved CRIB motif. The WASP basic region, however, appears also to play a role in the final complex, as its mutation affected both on- and off-rates, suggesting a more comprehensive physiological role for this region centered on the C-terminal triad of positive residues. These results highlight the expanding roles of the basic region in WASP and other CRIB-containing effector proteins in regulating complex cellular processes and coordinating multiple input signals. The data presented improve our understanding of the Cdc42-WASP interface and also add to the body of information available for Cdc42-effector complex formation, therapeutic targeting of which has promise for Ras-driven cancers. Our findings suggest that combining high-affinity peptide-binding sequences with short electrostatic steering sequences could increase the efficacy of peptidomimetic candidates designed to interfere with Cdc42 signaling in cancer.


Asunto(s)
Neoplasias/genética , Proteína del Síndrome de Wiskott-Aldrich/química , Síndrome de Wiskott-Aldrich/genética , Proteína de Unión al GTP cdc42/química , Actinas/química , Actinas/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Humanos , Cinética , Neoplasias/química , Neoplasias/patología , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal , Síndrome de Wiskott-Aldrich/patología , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína de Unión al GTP cdc42/genética , Proteínas ras/química , Proteínas ras/genética
6.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514372

RESUMEN

Cellular regulation or signaling processes are mediated by many proteins which often have one or several intrinsically disordered regions (IDRs). These IDRs generally serve as binders to different proteins with high specificity. In many cases, IDRs undergo a disorder-to-order transition upon binding, following a mechanism between two possible pathways, the induced fit or the conformational selection. Since these mechanisms contribute differently to the kinetics of IDR associations, it is important to investigate them in order to gain insight into the physical factors that determine the biomolecular recognition process. The verprolin homology domain (V) of the Neural Wiskott-Aldrich Syndrome Protein (N-WASP), involved in the regulation of actin polymerization, is a typical example of IDR. It is composed of two WH2 motifs, each being able to bind one actin molecule. In this study, we investigated the early steps of the recognition process of actin by the WH2 motifs of N-WASP domain V. Using docking calculations and molecular dynamics simulations, our study shows that actin is first recognized by the N-WASP domain V regions which have the highest propensity to form transient α -helices. The WH2 motif consensus sequences "LKKV" subsequently bind to actin through large conformational changes of the disordered domain V.


Asunto(s)
Actinas/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Probabilidad , Dominios Proteicos , Multimerización de Proteína , Factores de Tiempo
7.
Immunol Rev ; 256(1): 10-29, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24117810

RESUMEN

The actin cytoskeleton network forms a key link between T-cell antigen receptor (TCR) stimulation and T-cell effector functions, providing a structural basis for T-cell morphological changes and signal transduction. Accumulating evidence positions the Wiskott-Aldrich syndrome protein (WASp), a scaffolding protein that promotes actin polymerization, at the center of actin cytoskeleton-dependent T-cell function. During the past decade, we and others have utilized multidisciplinary technologies, including live-cell imaging, biochemical, and biophysical analyses, to gain insight into the mechanisms by which WASp and other cytoskeletal proteins control actin homeostasis. Following TCR engagement, WASp is rapidly activated and recruited to TCR microclusters, as part of multiprotein complexes, where it promotes actin remodeling. Late in the activation process, WASp is internalized and eventually degraded. In this review, we describe the dynamic interactions of WASp with signaling proteins, which regulate its activation and recruitment to the TCR and to actin-rich sites. Finally, we present the molecular mechanism of WASp downregulation. Some of the signaling proteins that mediate WASp activation eventually lead to its degradation. Thus, we focus here on the regulation of WASp expression and function and the mechanisms whereby they control actin machinery and T-cell effector functions.


Asunto(s)
Linfocitos T/inmunología , Linfocitos T/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Animales , Homeostasis , Humanos , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/metabolismo , Unión Proteica , Transporte de Proteínas , Proteína del Síndrome de Wiskott-Aldrich/química
8.
Proteins ; 84(5): 674-85, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26879470

RESUMEN

Intrinsically disordered proteins (IDPs) are often involved in signaling and regulatory functions, through binding to cellular targets. Many IDPs undergo disorder-to-order transitions upon binding. Both the binding mechanisms and the magnitudes of the binding rate constants can have functional importance. Previously we have found that the coupled binding and folding of any IDP generally follows a sequential mechanism that we term dock-and-coalesce, whereby one segment of the IDP first docks to its subsite on the target surface and the remaining segments subsequently coalesce around their respective subsites. Here we applied our TransComp method within the framework of the dock-and-coalesce mechanism to dissect the binding kinetics of two Rho-family GTPases, Cdc42 and TC10, with two intrinsically disordered effectors, WASP and Pak1. TransComp calculations identified the basic regions preceding the GTPase binding domains (GBDs) of the effectors as the docking segment. For Cdc42 binding with both WASP and Pak1, the calculated docking rate constants are close to the observed overall binding rate constants, suggesting that basic-region docking is the rate-limiting step and subsequent conformational coalescence of the GBDs on the Cdc42 surface is fast. The possibility that conformational coalescence of the WASP GBD on the TC10 surface is slow warrants further experimental investigation. The account for the differences in binding rate constants among the three GTPase-effector systems and mutational effects therein yields deep physical and mechanistic insight into the binding processes. Our approach may guide the selection of mutations that lead to redesigned binding pathways.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteína del Síndrome de Wiskott-Aldrich , Proteína de Unión al GTP cdc42 , Quinasas p21 Activadas , Sitios de Unión , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/química , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/química , Quinasas p21 Activadas/metabolismo
9.
J Biol Chem ; 289(11): 7897-906, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24482227

RESUMEN

We have shown previously that tyrosine phosphorylation of Wiskott-Aldrich syndrome protein (WASP) is important for diverse macrophage functions including phagocytosis, chemotaxis, podosome dynamics, and matrix degradation. However, the specific tyrosine kinase mediating WASP phosphorylation is still unclear. Here, we provide evidence that Hck, which is predominantly expressed in leukocytes, can tyrosine phosphorylate WASP and regulates WASP-mediated macrophage functions. We demonstrate that tyrosine phosphorylation of WASP in response to stimulation with CX3CL1 or via Fcγ receptor ligation were severely reduced in Hck(-/-) bone marrow-derived macrophages (BMMs) or in RAW/LR5 macrophages in which Hck expression was silenced using RNA-mediated interference (Hck shRNA). Consistent with reduced WASP tyrosine phosphorylation, phagocytosis, chemotaxis, and matrix degradation are reduced in Hck(-/-) BMMs or Hck shRNA cells. In particular, WASP phosphorylation was primarily mediated by the p61 isoform of Hck. Our studies also show that Hck and WASP are required for passage through a dense three-dimensional matrix and transendothelial migration, suggesting that tyrosine phosphorylation of WASP by Hck may play a role in tissue infiltration of macrophages. Consistent with a role for this pathway in invasion, WASP(-/-) BMMs do not invade into tumor spheroids with the same efficiency as WT BMMs and cells expressing phospho-deficient WASP have reduced ability to promote carcinoma cell invasion. Altogether, our results indicate that tyrosine phosphorylation of WASP by Hck is required for proper macrophage functions.


Asunto(s)
Macrófagos/citología , Proteínas Proto-Oncogénicas c-hck/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Animales , Células de la Médula Ósea/citología , Línea Celular , Movimiento Celular , Quimiotaxis , Quimiotaxis de Leucocito , Colágeno/química , Cruzamientos Genéticos , Células Endoteliales/citología , Macrófagos/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Isoformas de Proteínas/química , Interferencia de ARN , Migración Transendotelial y Transepitelial , Tirosina/química
10.
Biochim Biophys Acta ; 1842(4): 623-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24440360

RESUMEN

Wiskott-Aldrich Syndrome (WAS) is caused by mutations in Wiskott-Aldrich Syndrome Protein (WASP) and majority of the mutations are found in the WASP Homology 1 (WH1) domain which mediates interaction with WIP (WASP Interacting Protein), a WASP chaperone. Two point mutations together in the proline rich region (PRR) domain of WASP (S339Y/P373S) have been reported to cause WAS however the molecular defect has not been characterized. Expression of these mutants separately (WASPR(S339Y), WASPR(P373S)) or together (WASPR(SP/YS)) did not rescue the chemotaxis defect or membrane projection defect of Jurkat(WKD) T-cells (WASP knockdown). This is not due to the inability of WASP-PRR mutants to form functional WASP-WIP complex in growth rescue experiments in las17Δ yeast strain. Expression of WASPR(S339Y) but not WASPR(P373S) or WASPR(SP/YS) rescued the IL-2 expression defect of Jurkat(WKD) T-cells, suggesting that Pro373Ser mutation alone is sufficient to inhibit WASP functions in T-cell activation. The diffused localization of WASP-PRR mutants in activated Jurkat T-cells suggests that Ser339 and Pro373 are critical for WASP localization. WASP-PRR mutations either together or individually did not abolish interaction of WASP with sixteen WASP binding proteins including Hck, however they caused reduction in Hck mediated tyrosine phosphorylation of WASP which is critical for WASP activity. The auto-inhibitory conformation of WASP(P373S) mutant was not relieved by the binding of Toca-1 or Nck1. Thus, our results suggest that Pro373Ser mutation reduces Tyr291 phosphorylation and prevents conformational changes required for WASP activity in chemotaxis and T-cell activation. Thus Pro3373Ser is probably responsible for all the defects associated with WAS in the patients.


Asunto(s)
Mutación , Linfocitos T/inmunología , Proteína del Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/genética , Proteínas Portadoras/fisiología , Quimiotaxis de Leucocito , Humanos , Sinapsis Inmunológicas , Interleucina-2/genética , Células Jurkat , Activación de Linfocitos , Fosforilación , Conformación Proteica , Proteína del Síndrome de Wiskott-Aldrich/química
11.
Blood ; 121(1): 72-84, 2013 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23160469

RESUMEN

Wiskott Aldrich syndrome (WAS), an X-linked immunodeficiency, results from loss-of-function mutations in the human hematopoietic cytoskeletal regulator gene WAS. Many missense mutations in the Ena Vasp homology1 (EVH1) domain preserve low-level WAS protein (WASp) expression and confer a milder clinical phenotype. Although disrupted binding to WASp-interacting protein (WIP) leads to enhanced WASp degradation in vivo, the intrinsic function of EVH1-mutated WASp is poorly understood. In the present study, we show that, despite mediating enhanced actin polymerization compared with wild-type WASp in vitro, EVH1 missense mutated proteins did not support full biologic function in cells, even when levels were restored by forced overexpression. Podosome assembly was aberrant and associated with dysregulated lamellipodia formation and impaired persistence of migration. At sites of residual podosome-associated actin polymerization, localization of EVH1-mutated proteins was preserved even after deletion of the entire domain, implying that WIP-WASp complex formation is not absolutely required for WASp localization. However, retention of mutant proteins in podosomes was significantly impaired and associated with reduced levels of WASp tyrosine phosphorylation. Our results indicate that the EVH1 domain is important not only for WASp stability, but also for intrinsic biologic activity in vivo.


Asunto(s)
Células Dendríticas/patología , Mutación Missense , Proteína del Síndrome de Wiskott-Aldrich/genética , Actinas/metabolismo , Animales , Biopolímeros , Proteínas Portadoras/metabolismo , Movimiento Celular , Células Cultivadas , Proteínas del Citoesqueleto , Células Dendríticas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosforilación , Polimerizacion , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Estructura Terciaria de Proteína , Seudópodos/patología , Proteínas Recombinantes de Fusión/fisiología , Eliminación de Secuencia , Organismos Libres de Patógenos Específicos , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/deficiencia , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/fisiología
12.
Int Immunol ; 26(6): 341-52, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24402308

RESUMEN

Mutations in the gene encoding the Wiskott-Aldrich syndrome protein (WASP) are responsible for Wiskott-Aldrich syndrome and WASP is a major actin regulator in the cytoplasm. Although rare gain-of-function mutations in the WASP gene are known to result in X-linked neutropenia (XLN), the molecular pathogenesis of XLN is not fully understood. In this study, we showed that all reported constitutively activating mutants (L270P, S272P and I294T) of WASP were hyperphosphorylated by Src family tyrosine kinases and demonstrated higher actin polymerization activities compared with wild-type (WT) WASP. Further analysis showed a tendency of activating WASP mutants to localize in the nucleus compared with WT or the Y291F mutant of WASP. In addition, we found that WASP could form a complex with nuclear RNA-binding protein, 54 kDa (p54nrb) and RNA polymerase II (RNAP II). ChIP assays revealed that WASP associated with DNA, although the affinity was relatively weaker than RNAP II. To determine whether gene transcription was affected by WASP mutation in myeloid cells, we performed microarray analysis and found different expression profiles between WT and L270P WASP-transfected K562 cells. Among the genes affected, granulocyte colony-stimulating factor receptor, Runx1, and protein tyrosine phosphatase receptor c were included. ChIP on chip analysis of genomic DNA showed WT and L270P WASP had a highly similar DNA-binding pattern but differed in binding affinity at the same locus. Therefore, our results suggest that the open conformation of WASP regulates its nuclear localization and plays requisite roles in regulating gene transcription that would contribute to the outcome in the nucleus of myeloid cells.


Asunto(s)
Núcleo Celular/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Células Mieloides/fisiología , Neutropenia/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/genética , Actinas/metabolismo , Proteínas de Unión al ADN , Humanos , Células K562 , Análisis por Micromatrices , Mutación/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Factores de Transcripción de Octámeros/metabolismo , Unión Proteica/genética , Conformación Proteica , Transporte de Proteínas/genética , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/metabolismo , Activación Transcripcional/genética , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/genética
13.
J Cell Sci ; 125(Pt 1): 67-80, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22250195

RESUMEN

Neural Wiskott-Aldrich syndrome protein (N-WASP) is involved in tight regulation of actin polymerization and dynamics. N-WASP activity is regulated by intramolecular interaction, binding to small GTPases and tyrosine phosphorylation. Here, we report on a novel regulatory mechanism; we demonstrate that N-WASP interacts with dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A). In vitro kinase assays indicate that Dyrk1A directly phosphorylates the GTPase-binding domain (GBD) of N-WASP at three sites (Thr196, Thr202 and Thr259). Phosphorylation of the GBD by Dyrk1A promotes the intramolecular interaction of the GBD and verprolin, cofilin and acidic (VCA) domains of N-WASP, and subsequently inhibits Arp2/3-complex-mediated actin polymerization. Overexpression of either Dyrk1A or a phospho-mimetic N-WASP mutant inhibits filopodia formation in COS-7 cells. By contrast, the knockdown of Dyrk1A expression or overexpression of a phospho-deficient N-WASP mutant promotes filopodia formation. Furthermore, the overexpression of a phospho-mimetic N-WASP mutant significantly inhibits dendritic spine formation in primary hippocampal neurons. These findings suggest that Dyrk1A negatively regulates actin filament assembly by phosphorylating N-WASP, which ultimately promotes the intramolecular interaction of its GBD and VCA domains. These results provide insight on the mechanisms contributing to diverse actin-based cellular processes such as cell migration, endocytosis and neuronal differentiation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Fosfotreonina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/química , Animales , Células COS , Chlorocebus aethiops , Dendritas/metabolismo , GTP Fosfohidrolasas/metabolismo , Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/genética , Seudópodos/metabolismo , Ratas , Proteína del Síndrome de Wiskott-Aldrich/antagonistas & inhibidores , Proteína de Unión al GTP cdc42/metabolismo , Quinasas DyrK
14.
Nature ; 454(7207): 1009-13, 2008 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-18650809

RESUMEN

During infection, enterohaemorrhagic Escherichia coli (EHEC) takes over the actin cytoskeleton of eukaryotic cells by injecting the EspF(U) protein into the host cytoplasm. EspF(U) controls actin by activating members of the Wiskott-Aldrich syndrome protein (WASP) family. Here we show that EspF(U) binds to the autoinhibitory GTPase binding domain (GBD) in WASP proteins and displaces it from the activity-bearing VCA domain (for verprolin homology, central hydrophobic and acidic regions). This interaction potently activates WASP and neural (N)-WASP in vitro and induces localized actin assembly in cells. In the solution structure of the GBD-EspF(U) complex, EspF(U) forms an amphipathic helix that binds the GBD, mimicking interactions of the VCA domain in autoinhibited WASP. Thus, EspF(U) activates WASP by competing directly for the VCA binding site on the GBD. This mechanism is distinct from that used by the eukaryotic activators Cdc42 and SH2 domains, which globally destabilize the GBD fold to release the VCA. Such diversity of mechanism in WASP proteins is distinct from other multimodular systems, and may result from the intrinsically unstructured nature of the isolated GBD and VCA elements. The structural incompatibility of the GBD complexes with EspF(U) and Cdc42/SH2, plus high-affinity EspF(U) binding, enable EHEC to hijack the eukaryotic cytoskeletal machinery effectively.


Asunto(s)
Proteínas Portadoras/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Células Cultivadas , Escherichia coli Enterohemorrágica/química , Escherichia coli Enterohemorrágica/genética , Proteínas de Escherichia coli/química , Fibroblastos/citología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(33): E472-9, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21676863

RESUMEN

Actin related protein 2/actin related protein 3 (Arp2/3) complex nucleates new actin filaments in eukaryotic cells in response to signals from proteins in the Wiskott-Aldrich syndrome protein (WASP) family. The conserved VCA domain of WASP proteins activates Arp2/3 complex by inducing conformational changes and delivering the first actin monomer of the daughter filament. Previous models of activation have invoked a single VCA acting at a single site on Arp2/3 complex. Here we show that activation most likely involves engagement of two distinct sites on Arp2/3 complex by two VCA molecules, each delivering an actin monomer. One site is on Arp3 and the second is on ARPC1 and Arp2. The VCAs at these sites have distinct roles in activation. Our findings reconcile apparently conflicting literature on VCA activation of Arp2/3 complex and lead to a new model for this process.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Polimerizacion , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/química , Actinas/metabolismo , Sitios de Unión , Humanos , Complejos Multiproteicos/química , Unión Proteica , Multimerización de Proteína , Proteína del Síndrome de Wiskott-Aldrich/química
16.
Proc Natl Acad Sci U S A ; 108(33): E463-71, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21676862

RESUMEN

Actin-related protein (Arp) 2/3 complex mediates the formation of actin filament branches during endocytosis and at the leading edge of motile cells. The pathway of branch formation is ambiguous owing to uncertainty regarding the stoichiometry and location of VCA binding sites on Arp2/3 complex. Isothermal titration calorimetry showed that the CA motif from the C terminus of fission yeast WASP (Wsp1p) bound to fission yeast and bovine Arp2/3 complex with a stoichiometry of 2 to 1 and very different affinities for the two sites (K(d)s of 0.13 and 1.6 µM for fission yeast Arp2/3 complex). Equilibrium binding, kinetic, and cross-linking experiments showed that (i) CA at high-affinity site 1 inhibited Arp2/3 complex binding to actin filaments, (ii) low-affinity site 2 had a higher affinity for CA when Arp2/3 complex was bound to actin filaments, and (iii) Arp2/3 complex had a much higher affinity for free CA than VCA cross-linked to an actin monomer. Crystal structures showed the C terminus of CA bound to the low-affinity site 2 on Arp3 of bovine Arp2/3 complex. The C helix is likely to bind to the barbed end groove of Arp3 in a position for VCA to deliver the first actin subunit to the daughter filament.


Asunto(s)
Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Bovinos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteína 2 Relacionada con la Actina/química , Proteína 3 Relacionada con la Actina/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Polimerizacion , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Termodinámica , Proteína del Síndrome de Wiskott-Aldrich/química
17.
J Mol Biol ; 435(8): 168035, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863659

RESUMEN

Human WASP and N-WASP are homologous proteins that require the binding of multiple regulators, including the acidic lipid PIP2 and the small GTPase Cdc42, to relieve autoinhibition before they can stimulate the initiation of actin polymerization. Autoinhibition involves intramolecular binding of the C-terminal acidic and central motifs to an upstream basic region and GTPase binding domain. Little is known about how a single intrinsically disordered protein, WASP or N-WASP, binds multiple regulators to achieve full activation. Here we used molecular dynamics simulations to characterize the binding of WASP and N-WASP with PIP2 and Cdc42. In the absence of Cdc42, both WASP and N-WASP strongly associate with PIP2-containing membranes, through their basic region and also possibly through a tail portion of the N-terminal WH1 domain. The basic region also participates in Cdc42 binding, especially for WASP; consequently Cdc42 binding significantly compromises the ability of the basic region in WASP, but not N-WASP, to bind PIP2. PIP2 binding to the WASP basic region is restored only when Cdc42 is prenylated at the C-terminus and tethered to the membrane. This distinction in the activation of WASP and N-WASP may contribute to their different functional roles.


Asunto(s)
Prenilación de Proteína , Proteína del Síndrome de Wiskott-Aldrich , Proteína de Unión al GTP cdc42 , Humanos , Actinas/química , Actinas/metabolismo , Proteína de Unión al GTP cdc42/química , Proteína de Unión al GTP cdc42/metabolismo , Unión Proteica , Proteína Neuronal del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Polimerizacion , Simulación de Dinámica Molecular
18.
Methods ; 54(1): 39-55, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21256217

RESUMEN

Gleaning information regarding the molecular physiology of macromolecular complexes requires knowledge of their component stoichiometries. In this work, a relatively new means of analyzing sedimentation velocity (SV) data from the analytical ultracentrifuge is examined in detail. The method depends on collecting concentration profile data simultaneously using multiple signals, like Rayleigh interferometry and UV spectrophotometry. If the cosedimenting components of a complex are spectrally distinguishable, continuous sedimentation-coefficient distributions specific for each component can be calculated to reveal the molar ratio of the complex's components. When combined with the hydrodynamic information available from the SV data, a stoichiometry can be derived. Herein, the spectral properties of sedimenting species are systematically explored to arrive at a predictive test for whether a set of macromolecules can be spectrally resolved in a multisignal SV (MSSV) experiment. Also, a graphical means of experimental design and criteria to judge the success of the spectral discrimination in MSSV are introduced. A detailed example of the analysis of MSSV experiments is offered, and the possibility of deriving equilibrium association constants from MSSV analyses is explored. Finally, successful implementations of MSSV are reviewed.


Asunto(s)
Complejos Multiproteicos/química , Ultracentrifugación/métodos , Complejo 2-3 Proteico Relacionado con la Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Simulación por Computador , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Cinética , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
19.
Proc Natl Acad Sci U S A ; 106(37): 15738-43, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19805221

RESUMEN

The Wiskott-Aldrich syndrome protein (WASp) is a key cytoskeletal regulator in hematopoietic cells. Covalent modification of a conserved tyrosine by phosphorylation has emerged as an important potential determinant of activity, although the physiological significance remains uncertain. In a murine knockin model, mutation resulting in inability to phosphorylate Y293 (Y293F) mimicked many features of complete WASp-deficiency. Although a phosphomimicking mutant Y293E conferred enhanced actin-polymerization, the cellular phenotype was similar due to functional dysregulation. Furthermore, steady-state levels of Y293E-WASp were markedly reduced compared to wild-type WASp and Y293F-WASp, although partially recoverable by treatment of cells with proteasome inhibitors. Consequently, tyrosine phosphorylation plays a critical role in normal activation of WASp in vivo, and is indispensible for multiple tasks including proliferation, phagocytosis, chemotaxis, and assembly of adhesion structures. Furthermore, it may target WASp for proteasome-mediated degradation, thereby providing a default mechanism for self-limiting stimulation of the Arp2/3 complex.


Asunto(s)
Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Células COS , Línea Celular , Movimiento Celular , Chlorocebus aethiops , Hematopoyesis , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Fagocitosis , Fosforilación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tirosina/química , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/patología , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/genética
20.
J Biol Chem ; 285(11): 8481-91, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20071330

RESUMEN

The Arp2/3 complex is a conserved seven-subunit actin-nucleating machine activated by WASp (Wiskott Aldrich syndrome protein). Despite its central importance in a broad range of cellular processes, many critical aspects of the mechanism of the Arp2/3 complex have yet to be resolved. In particular, some of the individual subunits in the complex have not been assigned clear functional roles, including p40/ARPC1. Here, we dissected the structure and function of Saccharomyces cerevisiae p40/ARPC1, which is encoded by the essential ARC40 gene, by analyzing 39 integrated alleles that target its conserved surfaces. We identified three distinct sites on p40/ARPC1 required for function in vivo: one site contacts p19/ARPC4, one contacts p15/ARPC5, and one site resides in an extended structural "arm" of p40/ARPC1. Using a novel strategy, we purified the corresponding lethal mutant Arp2/3 complexes from yeast and compared their actin nucleation activities. Lethal mutations at the contact with p19/ARPC4 specifically impaired WASp-induced nucleation. In contrast, lethal mutations at the contact with p15/ARPC5 led to unregulated ("leaky") nucleation in the absence of WASp. Lethal mutations in the extended arm drastically reduced nucleation, and the same mutations disrupted the ability of the purified p40/ARPC1 arm domain to bind the VCA domain of WASp. Together, these data indicate that p40/ARPC1 performs at least three distinct, essential functions in regulating Arp2/3 complex-mediated actin assembly: 1) suppression of spontaneous nucleation by the Arp2/3 complex, which requires proper contacts with p15/ARPC5; 2) propagation of WASp activation signals via contacts with p19/ARPC2; and 3) direct facilitation of actin nucleation through interactions of the extended arm with the VCA domain of WASp.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteína 2 Relacionada con la Actina/metabolismo , Actinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteína 2 Relacionada con la Actina/química , Proteína 2 Relacionada con la Actina/genética , Proteína 3 Relacionada con la Actina/genética , Proteína 3 Relacionada con la Actina/metabolismo , Alanina/genética , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica/fisiología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Conejos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA