Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60.825
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(7): 1569-1573, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552605

RESUMEN

The story of p53 is illuminating. Despite widespread attention, the tumor-suppressive functions of wild-type p53 or the oncogenic activities of its cancer-associated mutants are still not fully understood, and our discoveries have not yet led to major therapeutic breakthroughs. There is still much to learn about this fascinating protein.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Mutación
2.
Cell ; 187(10): 2375-2392.e33, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653238

RESUMEN

Lysine lactylation is a post-translational modification that links cellular metabolism to protein function. Here, we find that AARS1 functions as a lactate sensor that mediates global lysine lacylation in tumor cells. AARS1 binds to lactate and catalyzes the formation of lactate-AMP, followed by transfer of lactate to the lysince acceptor residue. Proteomics studies reveal a large number of AARS1 targets, including p53 where lysine 120 and lysine 139 in the DNA binding domain are lactylated. Generation and utilization of p53 variants carrying constitutively lactylated lysine residues revealed that AARS1 lactylation of p53 hinders its liquid-liquid phase separation, DNA binding, and transcriptional activation. AARS1 expression and p53 lacylation correlate with poor prognosis among cancer patients carrying wild type p53. ß-alanine disrupts lactate binding to AARS1, reduces p53 lacylation, and mitigates tumorigenesis in animal models. We propose that AARS1 contributes to tumorigenesis by coupling tumor cell metabolism to proteome alteration.


Asunto(s)
Carcinogénesis , Ácido Láctico , Proteína p53 Supresora de Tumor , Animales , Femenino , Humanos , Ratones , Carcinogénesis/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Ácido Láctico/metabolismo , Lisina/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/metabolismo , Masculino
3.
Cell ; 186(3): 528-542.e14, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36681079

RESUMEN

Whole-genome duplication (WGD) is a frequent event in cancer evolution and an important driver of aneuploidy. The role of the p53 tumor suppressor in WGD has been enigmatic: p53 can block the proliferation of tetraploid cells, acting as a barrier to WGD, but can also promote mitotic bypass, a key step in WGD via endoreduplication. In wild-type (WT) p53 tumors, WGD is frequently associated with activation of the E2F pathway, especially amplification of CCNE1, encoding cyclin E1. Here, we show that elevated cyclin E1 expression causes replicative stress, which activates ATR- and Chk1-dependent G2 phase arrest. p53, via its downstream target p21, together with Wee1, then inhibits mitotic cyclin-dependent kinase activity sufficiently to activate APC/CCdh1 and promote mitotic bypass. Cyclin E expression suppresses p53-dependent senescence after mitotic bypass, allowing cells to complete endoreduplication. Our results indicate that p53 can contribute to cancer evolution through the promotion of WGD.


Asunto(s)
Ciclina E , Duplicación de Gen , Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Línea Celular Tumoral , Ciclina E/genética , Ciclina E/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Mitosis , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo
4.
Cell ; 185(23): 4394-4408.e10, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36368307

RESUMEN

Living organisms are constantly exposed to DNA damage, and optimal repair is therefore crucial. A characteristic hallmark of the response is the formation of sub-compartments around the site of damage, known as foci. Following multiple DNA breaks, the transcription factor p53 exhibits oscillations in its nuclear concentration, but how this dynamics can affect the repair remains unknown. Here, we formulate a theory for foci formation through droplet condensation and discover how oscillations in p53, with its specific periodicity and amplitude, optimize the repair process by preventing Ostwald ripening and distributing protein material in space and time. Based on the theory predictions, we reveal experimentally that the oscillatory dynamics of p53 does enhance the repair efficiency. These results connect the dynamical signaling of p53 with the microscopic repair process and create a new paradigm for the interplay of complex dynamics and phase transitions in biology.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Reparación del ADN , Daño del ADN , Transducción de Señal/fisiología
5.
Cell ; 184(3): 689-708.e20, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482083

RESUMEN

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.


Asunto(s)
Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Degeneración Nerviosa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Proteína C9orf72/genética , Muerte Celular , Células Cultivadas , Corteza Cerebral/patología , Cromatina/metabolismo , Daño del ADN , Modelos Animales de Enfermedad , Drosophila , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Estabilidad Proteica , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
6.
Annu Rev Biochem ; 89: 103-133, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32176524

RESUMEN

Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Reparación del ADN por Unión de Extremidades , ADN/genética , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Humanos , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32649862

RESUMEN

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Asunto(s)
Daño del ADN , Redes Reguladoras de Genes/fisiología , Aminoquinolinas/farmacología , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Humanos , Ratones , Ácidos Picolínicos/farmacología , ARN Guía de Kinetoplastida/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
8.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649877

RESUMEN

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Proteómica , Adenocarcinoma del Pulmón/genética , Pueblo Asiatico/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Sistemas de Liberación de Medicamentos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Estadificación de Neoplasias , Fosfoproteínas/metabolismo , Análisis de Componente Principal , Pronóstico , Proteoma/metabolismo , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/genética
9.
Nat Immunol ; 23(2): 287-302, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35105987

RESUMEN

The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2'3'cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of Lrrc8c-/- mice have increased cell cycle progression, proliferation, survival, Ca2+ influx and cytokine production-a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2'3'cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function. Lrrc8c-/- mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING-p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.


Asunto(s)
Aniones/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Linfocitos T/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Calcio/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Nucleótidos Cíclicos/metabolismo , Transducción de Señal/fisiología
10.
Cell ; 179(2): 403-416.e23, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585080

RESUMEN

Pulmonary neuroendocrine (NE) cells are neurosensory cells sparsely distributed throughout the bronchial epithelium, many in innervated clusters of 20-30 cells. Following lung injury, NE cells proliferate and generate other cell types to promote epithelial repair. Here, we show that only rare NE cells, typically 2-4 per cluster, function as stem cells. These fully differentiated cells display features of classical stem cells. Most proliferate (self-renew) following injury, and some migrate into the injured area. A week later, individual cells, often just one per cluster, lose NE identity (deprogram), transit amplify, and reprogram to other fates, creating large clonal repair patches. Small cell lung cancer (SCLC) tumor suppressors regulate the stem cells: Rb and p53 suppress self-renewal, whereas Notch marks the stem cells and initiates deprogramming and transit amplification. We propose that NE stem cells give rise to SCLC, and transformation results from constitutive activation of stem cell renewal and inhibition of deprogramming.


Asunto(s)
Transformación Celular Neoplásica/patología , Neoplasias Pulmonares/patología , Pulmón/patología , Células Madre Neoplásicas/patología , Células Neuroendocrinas/patología , Receptores Notch/metabolismo , Proteína de Retinoblastoma/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Diferenciación Celular , Transformación Celular Neoplásica/metabolismo , Lesión Pulmonar/patología , Neoplasias Pulmonares/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Células Neuroendocrinas/metabolismo , Análisis de la Célula Individual/métodos , Carcinoma Pulmonar de Células Pequeñas/metabolismo
11.
Cell ; 176(3): 564-580.e19, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30580964

RESUMEN

There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.


Asunto(s)
Ácido Mevalónico/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Línea Celular , Colesterol/metabolismo , Femenino , Genes Supresores de Tumor , Células HCT116 , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/genética , Regiones Promotoras Genéticas , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Terpenos/metabolismo
12.
Cell ; 178(2): 361-373.e12, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31204100

RESUMEN

Chemotherapy is designed to induce cell death. However, at non-lethal doses, cancer cells can choose to remain proliferative or become senescent. The slow development of senescence makes studying this decision challenging. Here, by analyzing single-cell p21 dynamics before, during, and days after drug treatment, we link three distinct patterns of early p21 dynamics to final cell fate. Surprisingly, while high p21 expression is classically associated with senescence, we find the opposite at early times during drug treatment: most senescence-fated cells express much lower p21 levels than proliferation-fated cells. We demonstrate that these dynamics lead to a p21 "Goldilocks zone" for proliferation, in which modest increases of p21 expression can lead to an undesirable increase of cancer cell proliferation. Our study identifies a counter-intuitive role for early p21 dynamics in the cell-fate decision and pinpoints a source of proliferative cancer cells that can emerge after exposure to non-lethal doses of chemotherapy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Doxorrubicina/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Daño del ADN/efectos de los fármacos , Humanos , Modelos Biológicos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
13.
Nat Immunol ; 22(4): 460-470, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33767425

RESUMEN

Targeting the p53-MDM2 pathway to reactivate tumor p53 is a chemotherapeutic approach. However, the involvement of this pathway in CD8+ T cell-mediated antitumor immunity is unknown. Here, we report that mice with MDM2 deficiency in T cells exhibit accelerated tumor progression and a decrease in tumor-infiltrating CD8+ T cell survival and function. Mechanistically, MDM2 competes with c-Cbl for STAT5 binding, reduces c-Cbl-mediated STAT5 degradation and enhances STAT5 stability in tumor-infiltrating CD8+ T cells. Targeting the p53-MDM2 interaction with a pharmacological agent, APG-115, augmented MDM2 in T cells, thereby stabilizing STAT5, boosting T cell immunity and synergizing with cancer immunotherapy. Unexpectedly, these effects of APG-115 were dependent on p53 and MDM2 in T cells. Clinically, MDM2 abundance correlated with T cell function and interferon-γ signature in patients with cancer. Thus, the p53-MDM2 pathway controls T cell immunity, and targeting this pathway may treat patients with cancer regardless of tumor p53 status.


Asunto(s)
Linfocitos T CD8-positivos/enzimología , Linfocitos Infiltrantes de Tumor/enzimología , Neoplasias/enzimología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Factor de Transcripción STAT5/metabolismo , Animales , Antineoplásicos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/trasplante , Línea Celular Tumoral , Terapia Combinada , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/trasplante , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Estabilidad Proteica , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/genética , Factor de Transcripción STAT5/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Nat Immunol ; 22(4): 520-529, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33753942

RESUMEN

Patients with myelodysplastic syndromes (MDSs) display severe anemia but the mechanisms underlying this phenotype are incompletely understood. Right open-reading-frame kinase 2 (RIOK2) encodes a protein kinase located at 5q15, a region frequently lost in patients with MDS del(5q). Here we show that hematopoietic cell-specific haploinsufficient deletion of Riok2 (Riok2f/+Vav1cre) led to reduced erythroid precursor frequency leading to anemia. Proteomic analysis of Riok2f/+Vav1cre erythroid precursors suggested immune system activation, and transcriptomic analysis revealed an increase in p53-dependent interleukin (IL)-22 in Riok2f/+Vav1cre CD4+ T cells (TH22). Further, we discovered that the IL-22 receptor, IL-22RA1, was unexpectedly present on erythroid precursors. Blockade of IL-22 signaling alleviated anemia not only in Riok2f/+Vav1cre mice but also in wild-type mice. Serum concentrations of IL-22 were increased in the subset of patients with del(5q) MDS as well as patients with anemia secondary to chronic kidney disease. This work reveals a possible therapeutic opportunity for reversing many stress-induced anemias by targeting IL-22 signaling.


Asunto(s)
Anemia/metabolismo , Anticuerpos Neutralizantes/farmacología , Células Eritroides/metabolismo , Eritropoyesis/efectos de los fármacos , Interleucinas/antagonistas & inhibidores , Síndromes Mielodisplásicos/tratamiento farmacológico , Receptores de Interleucina/metabolismo , Anemia/sangre , Anemia/inmunología , Anemia/prevención & control , Animales , Células Cultivadas , Microambiente Celular , Modelos Animales de Enfermedad , Células Eritroides/inmunología , Humanos , Interleucinas/inmunología , Interleucinas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Síndromes Mielodisplásicos/sangre , Síndromes Mielodisplásicos/inmunología , Síndromes Mielodisplásicos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas c-vav/metabolismo , Receptores de Interleucina/genética , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Interleucina-22
15.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625050

RESUMEN

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Asunto(s)
Bases de Datos Genéticas , Neoplasias/patología , Transducción de Señal/genética , Genes Relacionados con las Neoplasias , Humanos , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
16.
Cell ; 175(6): 1665-1678.e18, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30343896

RESUMEN

Low-grade gliomas almost invariably progress into secondary glioblastoma (sGBM) with limited therapeutic option and poorly understood mechanism. By studying the mutational landscape of 188 sGBMs, we find significant enrichment of TP53 mutations, somatic hypermutation, MET-exon-14-skipping (METex14), PTPRZ1-MET (ZM) fusions, and MET amplification. Strikingly, METex14 frequently co-occurs with ZM fusion and is present in ∼14% of cases with significantly worse prognosis. Subsequent studies show that METex14 promotes glioma progression by prolonging MET activity. Furthermore, we describe a MET kinase inhibitor, PLB-1001, that demonstrates remarkable potency in selectively inhibiting MET-altered tumor cells in preclinical models. Importantly, this compound also shows blood-brain barrier permeability and is subsequently applied in a phase I clinical trial that enrolls MET-altered chemo-resistant glioma patients. Encouragingly, PLB-1001 achieves partial response in at least two advanced sGBM patients with rarely significant side effects, underscoring the clinical potential for precisely treating gliomas using this therapy.


Asunto(s)
Neoplasias Encefálicas , Exones , Glioblastoma , Mutación , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-met , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cell ; 174(3): 758-769.e9, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033370

RESUMEN

While mutations affecting protein-coding regions have been examined across many cancers, structural variants at the genome-wide level are still poorly defined. Through integrative deep whole-genome and -transcriptome analysis of 101 castration-resistant prostate cancer metastases (109X tumor/38X normal coverage), we identified structural variants altering critical regulators of tumorigenesis and progression not detectable by exome approaches. Notably, we observed amplification of an intergenic enhancer region 624 kb upstream of the androgen receptor (AR) in 81% of patients, correlating with increased AR expression. Tandem duplication hotspots also occur near MYC, in lncRNAs associated with post-translational MYC regulation. Classes of structural variations were linked to distinct DNA repair deficiencies, suggesting their etiology, including associations of CDK12 mutation with tandem duplications, TP53 inactivation with inverted rearrangements and chromothripsis, and BRCA2 inactivation with deletions. Together, these observations provide a comprehensive view of how structural variations affect critical regulators in metastatic prostate cancer.


Asunto(s)
Variación Estructural del Genoma/genética , Neoplasias de la Próstata/genética , Anciano , Anciano de 80 o más Años , Proteína BRCA2/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Variaciones en el Número de Copia de ADN , Exoma , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Humanos , Masculino , Persona de Mediana Edad , Mutación , Metástasis de la Neoplasia/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Secuencias Repetidas en Tándem/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación Completa del Genoma/métodos
18.
Cell ; 175(1): 171-185.e25, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30146162

RESUMEN

CKIα ablation induces p53 activation, and CKIα degradation underlies the therapeutic effect of lenalidomide in a pre-leukemia syndrome. Here we describe the development of CKIα inhibitors, which co-target the transcriptional kinases CDK7 and CDK9, thereby augmenting CKIα-induced p53 activation and its anti-leukemic activity. Oncogene-driving super-enhancers (SEs) are highly sensitive to CDK7/9 inhibition. We identified multiple newly gained SEs in primary mouse acute myeloid leukemia (AML) cells and demonstrate that the inhibitors abolish many SEs and preferentially suppress the transcription elongation of SE-driven oncogenes. We show that blocking CKIα together with CDK7 and/or CDK9 synergistically stabilize p53, deprive leukemia cells of survival and proliferation-maintaining SE-driven oncogenes, and induce apoptosis. Leukemia progenitors are selectively eliminated by the inhibitors, explaining their therapeutic efficacy with preserved hematopoiesis and leukemia cure potential; they eradicate leukemia in MLL-AF9 and Tet2-/-;Flt3ITD AML mouse models and in several patient-derived AML xenograft models, supporting their potential efficacy in curing human leukemia.


Asunto(s)
Caseína Quinasa Ialfa/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Caseína Quinasa Ialfa/fisiología , Proliferación Celular/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/fisiología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/fisiología , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Elementos de Facilitación Genéticos/genética , Hematopoyesis , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Proteína p53 Supresora de Tumor/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cell ; 174(4): 856-869.e17, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096312

RESUMEN

Recent sequencing analyses have shed light on heterogeneous patterns of genomic aberrations in human gastric cancers (GCs). To explore how individual genetic events translate into cancer phenotypes, we established a biological library consisting of genetically engineered gastric organoids carrying various GC mutations and 37 patient-derived organoid lines, including rare genomically stable GCs. Phenotype analyses of GC organoids revealed divergent genetic and epigenetic routes to gain Wnt and R-spondin niche independency. An unbiased phenotype-based genetic screening identified a significant association between CDH1/TP53 compound mutations and the R-spondin independency that was functionally validated by CRISPR-based knockout. Xenografting of GC organoids further established the feasibility of Wnt-targeting therapy for Wnt-dependent GCs. Our results collectively demonstrate that multifaceted genetic abnormalities render human GCs independent of the stem cell niche and highlight the validity of the genotype-phenotype screening strategy in gaining deeper understanding of human cancers.


Asunto(s)
Adenocarcinoma/patología , Organoides/patología , Neoplasias Gástricas/patología , Estómago/patología , Trombospondinas/metabolismo , Proteínas Wnt/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Antígenos CD/genética , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Cadherinas/genética , Carcinogénesis , Proliferación Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Organoides/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Trombospondinas/genética , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteínas Wnt/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392959

RESUMEN

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Asunto(s)
Adenina/análogos & derivados , Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/patología , Adenina/análisis , Adenina/química , Adulto , Anciano , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/antagonistas & inhibidores , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Hipoxia de la Célula , Niño , Epigenómica , Femenino , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA