Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.472
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 168(3): 460-472.e14, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28089356

RESUMEN

Certain cell types function as factories, secreting large quantities of one or more proteins that are central to the physiology of the respective organ. Examples include surfactant proteins in lung alveoli, albumin in liver parenchyma, and lipase in the stomach lining. Whole-genome sequencing analysis of lung adenocarcinomas revealed noncoding somatic mutational hotspots near VMP1/MIR21 and indel hotspots in surfactant protein genes (SFTPA1, SFTPB, and SFTPC). Extrapolation to other solid cancers demonstrated highly recurrent and tumor-type-specific indel hotspots targeting the noncoding regions of highly expressed genes defining certain secretory cellular lineages: albumin (ALB) in liver carcinoma, gastric lipase (LIPF) in stomach carcinoma, and thyroglobulin (TG) in thyroid carcinoma. The sequence contexts of indels targeting lineage-defining genes were significantly enriched in the AATAATD DNA motif and specific chromatin contexts, including H3K27ac and H3K36me3. Our findings illuminate a prevalent and hitherto unrecognized mutational process linking cellular lineage and cancer.


Asunto(s)
Linaje de la Célula , Mutación INDEL , Mutación , Neoplasias/genética , Neoplasias/patología , Regiones no Traducidas 3' , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , MicroARNs/genética , Persona de Mediana Edad , Motivos de Nucleótidos , Polimorfismo de Nucleótido Simple , Proteínas Asociadas a Surfactante Pulmonar/genética
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121658

RESUMEN

Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5 Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband's lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative-acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.


Asunto(s)
Variación Genética/genética , Precursores de Proteínas/genética , Proteína C Asociada a Surfactante Pulmonar/genética , Proteínas Asociadas a Surfactante Pulmonar/genética , Proteínas de Unión al GTP rab5/genética , Células Epiteliales Alveolares/metabolismo , Animales , Caenorhabditis elegans/genética , Humanos , Pulmón/metabolismo , Enfermedades Pulmonares Intersticiales/genética , Surfactantes Pulmonares/metabolismo
3.
Eur Respir J ; 63(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575158

RESUMEN

BACKGROUND: Several rare surfactant-related gene (SRG) variants associated with interstitial lung disease are suspected to be associated with lung cancer, but data are missing. We aimed to study the epidemiology and phenotype of lung cancer in an international cohort of SRG variant carriers. METHODS: We conducted a cross-sectional study of all adults with SRG variants in the OrphaLung network and compared lung cancer risk with telomere-related gene (TRG) variant carriers. RESULTS: We identified 99 SRG adult variant carriers (SFTPA1 (n=18), SFTPA2 (n=31), SFTPC (n=24), ABCA3 (n=14) and NKX2-1 (n=12)), including 20 (20.2%) with lung cancer (SFTPA1 (n=7), SFTPA2 (n=8), SFTPC (n=3), NKX2-1 (n=2) and ABCA3 (n=0)). Among SRG variant carriers, the odds of lung cancer was associated with age (OR 1.04, 95% CI 1.01-1.08), smoking (OR 20.7, 95% CI 6.60-76.2) and SFTPA1/SFTPA2 variants (OR 3.97, 95% CI 1.39-13.2). Adenocarcinoma was the only histological type reported, with programmed death ligand-1 expression ≥1% in tumour cells in three samples. Cancer staging was localised (I/II) in eight (40%) individuals, locally advanced (III) in two (10%) and metastatic (IV) in 10 (50%). We found no somatic variant eligible for targeted therapy. Seven cancers were surgically removed, 10 received systemic therapy, and three received the best supportive care according to their stage and performance status. The median overall survival was 24 months, with stage I/II cancers showing better survival. We identified 233 TRG variant carriers. The comparative risk (subdistribution hazard ratio) for lung cancer in SRG patients versus TRG patients was 18.1 (95% CI 7.1-44.7). CONCLUSIONS: The high risk of lung cancer among SRG variant carriers suggests specific screening and diagnostic and therapeutic challenges. The benefit of regular computed tomography scan follow-up should be evaluated.


Asunto(s)
Neoplasias Pulmonares , Proteína A Asociada a Surfactante Pulmonar , Proteína C Asociada a Surfactante Pulmonar , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Transversales , Proteína C Asociada a Surfactante Pulmonar/genética , Proteína A Asociada a Surfactante Pulmonar/genética , Adulto , Factor Nuclear Tiroideo 1/genética , Transportadoras de Casetes de Unión a ATP/genética , Factores de Riesgo , Predisposición Genética a la Enfermedad , Enfermedades Pulmonares Intersticiales/genética , Heterocigoto , Proteínas Asociadas a Surfactante Pulmonar/genética
4.
Environ Sci Technol ; 58(28): 12330-12342, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38772857

RESUMEN

Thorium-232 (Th), the most abundant naturally occurring nuclear fuel, has been identified as a sustainable source of energy. In view of its large-scale utilization and human evidence of lung disorders and carcinogenicity, it is imperative to understand the effect of Th exposure on lung cells. The present study investigated the effect of Th-dioxide (1-100 µg/mL, 24-48 h) on expression of surfactant proteins (SPs) (SP-A, SP-B, SP-C, and SP-D, which are essential to maintain lung's surface tension and host-defense) in human lung cells (WI26 and A549), representative of alveolar cell type-I and type-II, respectively. Results demonstrated the inhibitory effect of Th on transcriptional expression of SP-A, SP-B, and SP-C. However, Th promoted the mRNA expression of SP-D in A549 and reduced its expression in WI26. To a significant extent, the effect of Th on SPs was found to be in accordance with their protein levels. Moreover, Th exposure altered the extracellular release of SP-D/A from A549, which remained unaltered in WI26. Our results suggested the differential role of oxidative stress and ATM and HSP90 signaling in Th-induced alterations of SPs. These effects of Th were found to be consistent in lung tissues of mice exposed to Th aerosols, suggesting a potential role of SPs in Th-associated lung disorders.


Asunto(s)
Células Epiteliales Alveolares , Torio , Humanos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Ratones , Animales , Células A549 , Proteínas Asociadas a Surfactante Pulmonar/metabolismo
5.
Mol Cell Proteomics ; 21(10): 100413, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36115577

RESUMEN

The assembly of proteins and peptides into amyloid fibrils is causally linked to serious disorders such as Alzheimer's disease. Multiple proteins have been shown to prevent amyloid formation in vitro and in vivo, ranging from highly specific chaperone-client pairs to completely nonspecific binding of aggregation-prone peptides. The underlying interactions remain elusive. Here, we turn to the machine learning-based structure prediction algorithm AlphaFold2 to obtain models for the nonspecific interactions of ß-lactoglobulin, transthyretin, or thioredoxin 80 with the model amyloid peptide amyloid ß and the highly specific complex between the BRICHOS chaperone domain of C-terminal region of lung surfactant protein C and its polyvaline target. Using a combination of native mass spectrometry (MS) and ion mobility MS, we show that nonspecific chaperoning is driven predominantly by hydrophobic interactions of amyloid ß with hydrophobic surfaces in ß-lactoglobulin, transthyretin, and thioredoxin 80, and in part regulated by oligomer stability. For C-terminal region of lung surfactant protein C, native MS and hydrogen-deuterium exchange MS reveal that a disordered region recognizes the polyvaline target by forming a complementary ß-strand. Hence, we show that AlphaFold2 and MS can yield atomistic models of hard-to-capture protein interactions that reveal different chaperoning mechanisms based on separate ligand properties and may provide possible clues for specific therapeutic intervention.


Asunto(s)
Péptidos beta-Amiloides , Amiloide , Humanos , Amiloide/química , Amiloide/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Prealbúmina , Deuterio , Ligandos , Chaperonas Moleculares/metabolismo , Espectrometría de Masas , Aprendizaje Automático , Tiorredoxinas , Lactoglobulinas , Proteínas Asociadas a Surfactante Pulmonar
6.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108455

RESUMEN

Low serum levels of 1α, 25-dihydroxyvitamin D3 (VD3) are associated with a higher mortality in trauma patients with sepsis or ARDS. However, the molecular mechanisms behind this observation are not yet understood. VD3 is known to stimulate lung maturity, alveolar type II cell differentiation, or pulmonary surfactant synthesis and guides epithelial defense during infection. In this study, we investigated the impact of VD3 on the alveolar-capillary barrier in a co-culture model of alveolar epithelial cells and microvascular endothelial cells respectively in the individual cell types. After stimulation with bacterial LPS (lipopolysaccharide), gene expression of inflammatory cytokines, surfactant proteins, transport proteins, antimicrobial peptide, and doublecortin-like kinase 1 (DCLK1) were analyzed by real-time PCR, while corresponding proteins were evaluated by ELISA, immune-fluorescence, or Western blot. The effect of VD3 on the intracellular protein composition in H441 cells was analyzed by quantitative liquid chromatography-mass spectrometry-based proteomics. VD3 effectively protected the alveolar-capillary barrier against LPS treatment, as indicated by TEER measurement and morphological assessment. VD3 did not inhibit the IL-6 secretion by H441 and OEC but restricted the diffusion of IL-6 to the epithelial compartment. Further, VD3 could significantly suppress the surfactant protein A expression induced in the co-culture system by LPS treatment. VD3 induced high levels of the antimicrobial peptide LL-37, which counteracted effects by LPS and strengthened the barrier. Quantitative proteomics identified VD3-dependent protein abundance changes ranging from constitutional extracellular matrix components and surfactant-associated proteins to immune-regulatory molecules. DCLK1, as a newly described target molecule for VD3, was prominently stimulated by VD3 (10 nM) and seems to influence the alveolar-epithelial cell barrier and regeneration.


Asunto(s)
Células Endoteliales , Interleucina-6 , Humanos , Lipopolisacáridos/farmacología , Proteínas Asociadas a Surfactante Pulmonar , Células Epiteliales Alveolares , Tensoactivos , Quinasas Similares a Doblecortina
7.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446012

RESUMEN

Lung surfactant is a complex mixture of phospholipids and surfactant proteins that is produced in alveolar type 2 cells. It prevents lung collapse by reducing surface tension and is involved in innate immunity. Exogenous animal-derived and, more recently, synthetic lung surfactant has shown clinical efficacy in surfactant-deficient premature infants and in critically ill patients with acute respiratory distress syndrome (ARDS), such as those with severe COVID-19 disease. COVID-19 pneumonia is initiated by the binding of the viral receptor-binding domain (RBD) of SARS-CoV-2 to the cellular receptor angiotensin-converting enzyme 2 (ACE2). Inflammation and tissue damage then lead to loss and dysfunction of surface activity that can be relieved by treatment with an exogenous lung surfactant. Surfactant protein B (SP-B) is pivotal for surfactant activity and has anti-inflammatory effects. Here, we study the binding of two synthetic SP-B peptide mimics, Super Mini-B (SMB) and B-YL, to a recombinant human ACE2 receptor protein construct using molecular docking and surface plasmon resonance (SPR) to evaluate their potential as antiviral drugs. The SPR measurements confirmed that both the SMB and B-YL peptides bind to the rhACE2 receptor with affinities like that of the viral RBD-ACE2 complex. These findings suggest that synthetic lung surfactant peptide mimics can act as competitive inhibitors of the binding of viral RBD to the ACE2 receptor.


Asunto(s)
COVID-19 , Surfactantes Pulmonares , Animales , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/química , Simulación del Acoplamiento Molecular , Péptidos , Proteínas Asociadas a Surfactante Pulmonar , Unión Proteica , Receptores Virales , Surfactantes Pulmonares/farmacología , Tensoactivos
8.
Mol Cell Proteomics ; 19(9): 1523-1532, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32581039

RESUMEN

Communication between individuals via molecules, termed chemosignaling, is widespread among animal and plant species. However, we lack knowledge on the specific functions of the substances involved for most systems. The femoral gland is an organ that secretes a waxy substance involved in chemical communication in lizards. Although the lipids and volatile substances secreted by the femoral glands have been investigated in several biochemical studies, the protein composition and functions of secretions remain completely unknown. Applying a proteomic approach, we provide the first attempt to comprehensively characterize the protein composition of femoral gland secretions from the Galápagos marine iguana. Using samples from several organs, the marine iguana proteome was assembled by next-generation sequencing and MS, resulting in 7513 proteins. Of these, 4305 proteins were present in the femoral gland, including keratins, small serum proteins, and fatty acid-binding proteins. Surprisingly, no proteins with discernible roles in partner recognition or inter-species communication could be identified. However, we did find several proteins with direct associations to the innate immune system, including lysozyme C, antileukoproteinase (ALP), pulmonary surfactant protein (SFTPD), and galectin (LGALS1) suggesting that the femoral glands function as an important barrier to infection. Furthermore, we report several novel anti-microbial peptides from the femoral glands that show similar action against Escherichia coli and Bacillus subtilis such as oncocin, a peptide known for its effectiveness against Gram-negative pathogens. This proteomics data set is a valuable resource for future functional protein analysis and demonstrates that femoral gland secretions also perform functions of the innate immune system.


Asunto(s)
Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Iguanas/metabolismo , Sistema Inmunológico/metabolismo , Inmunidad Innata , Proteoma/metabolismo , Transcriptoma , Animales , Apoproteínas/genética , Apoproteínas/metabolismo , Bacillus subtilis/efectos de los fármacos , Encéfalo/metabolismo , Factores Quimiotácticos/genética , Factores Quimiotácticos/metabolismo , Ecuador , Endopeptidasas/genética , Endopeptidasas/metabolismo , Escherichia coli/efectos de los fármacos , Galectinas/genética , Galectinas/metabolismo , Corazón/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Iguanas/genética , Iguanas/inmunología , Inmunidad Innata/genética , Pulmón/metabolismo , Muramidasa/genética , Muramidasa/metabolismo , Músculos/metabolismo , Miocardio/metabolismo , Especificidad de Órganos , Proteoma/genética , Proteoma/inmunología , Proteómica , Proteínas Asociadas a Surfactante Pulmonar/genética , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Piel/metabolismo , Espectrometría de Masas en Tándem , Transcriptoma/genética
9.
Am J Respir Cell Mol Biol ; 65(4): 442-460, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34101541

RESUMEN

Alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, are typically identified through the use of the canonical markers, SFTPC and ABCA3. Self-renewing AEC2-like cells have been generated from human induced pluripotent stem cells (iPSCs) through the use of knock-in SFTPC fluorochrome reporters. However, developmentally, SFTPC expression onset begins in the fetal distal lung bud tip and thus is not specific to mature AEC2s. Furthermore, SFTPC reporters appear to identify only those iPSC-derived AEC2s (iAEC2s) expressing the highest SFTPC levels. Here, we generate an ABCA3 knock-in GFP fusion reporter (ABCA3:GFP) that enables the purification of iAEC2s while allowing visualization of lamellar bodies, organelles associated with AEC2 maturation. Using an SFTPCtdTomato and ABCA3:GFP bifluorescent line for in vitro distal lung-directed differentiation, we observe later onset of ABCA3:GFP expression and broader identification of the subsequently emerging iAEC2 population based on ABCA3:GFP expression compared with SFTPCtdTomato expression. Comparing ABCA3:GFP/SFTPCtdTomato double-positive with ABCA3:GFP single-positive (SP) cells by RNA sequencing and functional studies reveals iAEC2 cellular heterogeneity with both populations functionally processing surfactant proteins but the SP cells exhibiting faster growth kinetics, increased clonogenicity, increased expression of progenitor markers, lower levels of SFTPC expression, and lower levels of AEC2 maturation markers. Over time, we observe that each population (double-positive and SP) gives rise to the other and each can serve as the parents of indefinitely self-renewing iAEC2 progeny. Our results indicate that iAEC2s are a heterogeneous population of cells with differing proliferation versus maturation properties, the majority of which can be tracked and purified using the ABCA3:GFP reporter or surrogate cell surface proteins, such as SLC34A2 and CPM.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Células Epiteliales Alveolares/citología , Células Madre Pluripotentes Inducidas/citología , Alveolos Pulmonares/citología , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Diferenciación Celular/fisiología , Células Epiteliales/metabolismo , Humanos , Pulmón/metabolismo , Proteínas Asociadas a Surfactante Pulmonar/metabolismo
10.
Am J Respir Cell Mol Biol ; 64(4): 504-514, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33493427

RESUMEN

Alveolar epithelial type II (AT2) cells secrete pulmonary surfactant via lamellar bodies (LBs). Abnormalities in LBs are associated with pulmonary disorders, including fibrosis. However, high-content screening (HCS) for LB abnormalities is limited by the lack of understanding of AT2 cell functions. In the present study, we have developed LB cells harboring LB-like organelles that secrete surfactant proteins. These cells were more similar to AT2 cells than to parental A549 cells. LB cells recapitulated amiodarone (AMD)-induced LB enlargement, similar to AT2 cells of patients exposed to AMD. To reverse AMD-induced LB abnormalities, we performed HCS of approved drugs and identified 2-hydroxypropyl-ß-cyclodextrin (HPßCD), a cyclic oligosaccharide, as a potential therapeutic agent. A transcriptome analysis revealed that HPßCD modulates lipid homeostasis. In addition, HPßCD inhibited AMD-induced LB abnormalities in human induced pluripotent stem cell-derived AT2 cells. Our results demonstrate that LB cells are useful for HCS and suggest that HPßCD is a candidate therapeutic agent for AMD-induced interstitial pneumonia.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/farmacología , Células Epiteliales Alveolares/efectos de los fármacos , Amiodarona/toxicidad , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Células A549 , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Ensayos Analíticos de Alto Rendimiento , Homeostasis , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Precursores de Proteínas/metabolismo , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteínas Asociadas a Surfactante Pulmonar/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L942-L957, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33719563

RESUMEN

The ability of pulmonary surfactant to reduce alveolar surface tension requires adequate levels of surfactant protein B (SP-B). Dexamethasone (DEX) increases human SP-B expression, in part, through increased SP-B mRNA stability. A 30-nt-long hairpin element (RBE) in the 3'-untranslated region of human SP-B mRNA mediates both DEX-induced and intrinsic mRNA stabilities, but the mechanism is unknown. Proteomic analysis of RBE-interacting proteins identified a primate-specific protein, RNA-binding motif X-linked-like-3 (RBMXL3). siRNA directed against RBMXL3 reduces DEX-induced SP-B mRNA expression in human bronchoalveolar cells. Human SP-B mRNA stability, measured by our dual cistronic plasmid assay, is unaffected by DEX in mouse lung epithelial cells lacking RBMXL3, but DEX increases human SP-B mRNA stability when RBMXL3 is expressed and requires the RBE. In the absence of DEX, RBE interacts with cellular proteins, reducing intrinsic SP-B mRNA stability in human and mouse lung epithelial cells. RBMXL3 specifically binds the RBE in vitro, whereas RNA immunoprecipitation and affinity chromatography analyses indicate that binding is enhanced in the presence of DEX. These results describe a model where intrinsic stability of human SP-B mRNA is reduced through binding of cellular mRNA decay factors to RBE, which is then relieved through DEX-enhanced binding of primate-specific RBMXL3.


Asunto(s)
Dexametasona/farmacología , Glucocorticoides/farmacología , Precursores de Proteínas/metabolismo , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Células A549 , Animales , Células HEK293 , Humanos , Ratones , Precursores de Proteínas/genética , Proteínas Asociadas a Surfactante Pulmonar/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
12.
Toxicol Appl Pharmacol ; 417: 115470, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33647319

RESUMEN

Bleomycin is a cancer therapeutic known to cause lung injury which progresses to fibrosis. Evidence suggests that macrophages contribute to this pathological response. Tumor necrosis factor (TNF)α is a macrophage-derived pro-inflammatory cytokine implicated in lung injury. Herein, we investigated the role of TNFα in macrophage responses to bleomycin. Treatment of mice with bleomycin (3 U/kg, i.t.) caused histopathological changes in the lung within 3 d which culminated in fibrosis at 21 d. This was accompanied by an early (3-7 d) influx of CD11b+ and iNOS+ macrophages into the lung, and Arg-1+ macrophages at 21 d. At this time, epithelial cell dysfunction, defined by increases in total phospholipids and SP-B was evident. Treatment of mice with anti-TNFα antibody (7.5 mg/kg, i.v.) beginning 15-30 min after bleomycin, and every 5 d thereafter reduced the number and size of fibrotic foci and restored epithelial cell function. Flow cytometric analysis of F4/80+ alveolar macrophages (AM) isolated by bronchoalveolar lavage and interstitial macrophages (IM) by tissue digestion identified resident (CD11b-CD11c+) and immature infiltrating (CD11b+CD11c-) AM, and mature (CD11b+CD11c+) and immature (CD11b+CD11c-) IM subsets in bleomycin treated mice. Greater numbers of mature (CD11c+) infiltrating (CD11b+) AM expressing the anti-inflammatory marker, mannose receptor (CD206) were observed at 21 d when compared to 7 d post bleomycin. Mature proinflammatory (Ly6C+) IM were greater at 7 d relative to 21 d. These cells transitioned into mature anti-inflammatory/pro-fibrotic (CD206+) IM between 7 and 21 d. Anti-TNFα antibody heightened the number of CD11b+ AM in the lung without altering their activation state. Conversely, it reduced the abundance of mature proinflammatory (Ly6C+) IM in the tissue at 7 d and immature pro-fibrotic IM at 21 d. Taken together, these data suggest that TNFα inhibition has beneficial effects in bleomycin induced injury, restoring epithelial function and reducing numbers of profibrotic IM and the extent of pulmonary fibrosis.


Asunto(s)
Antiinflamatorios/farmacología , Pulmón/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Neumonía/prevención & control , Fibrosis Pulmonar/prevención & control , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Bleomicina , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibrosis , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Fenotipo , Fosfolípidos/metabolismo , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
13.
Exp Physiol ; 106(5): 1303-1311, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33729612

RESUMEN

NEW FINDINGS: What is the central question of this study? It is reported that polymorphism of the gene for pulmonary surfactant-associated protein B (SFTPB) is associated with chronic obstructive pulmonary disease (COPD): what are the function and mechanism of action of SFTPB in COPD? What is the main finding and its importance? Under stimulation of the risk factors of COPD, SFTPB expression is decreased, which may be involved in the formation of COPD. The progress of COPD induces an inflammatory response and reduces SFTPB expression. Levels of prostaglandin-endoperoxide synthase-2 (PTGS2) and inflammatory responses are changed by SFTPB, which indicates that SFTPB promotes the progression of COPD by PTGS2 and inflammation. ABSTRACT: Pulmonary surfactant-associated protein B (SFTPB) is a critical protein for lung homeostasis, and polymorphism of its gene is associated with chronic obstructive pulmonary disease (COPD). However, few studies have so far confirmed the functional involvement of SFTPB in COPD. Serum SFTPB and inflammatory cytokine levels were measured in 54 patients with acute exacerbation of COPD and 29 healthy controls. A549 cells were induced using 10% cigarette smoke extract (CSE) and treated with dexamethasone to investigate the effect of inflammation on SFTPB expression, and the effect of SFTPB overexpression and silencing on inflammatory cytokines was measured using real-time PCR and enzyme-linked immunosorbent assay. SFTPB expression was assessed in mouse lung tissues using immunofluorescence. Serum levels of SFTPB were significantly lower in COPD patients than in controls (P = 0.009). Conversely, levels of interleukin (IL)-6 and prostaglandin-endoperoxide synthase-2 (PTGS2) were increased in COPD patients (IL-6: P = 0.006; PTGS2: P = 0.043). After CSE treatment, SFTPB mRNA and protein levels were significantly decreased compared to controls (mRNA: P = 0.002; protein: P = 0.011), while IL-6, IL-8 and PTGS2 were elevated. Dexamethasone treatment increased SFTPB levels. Following overexpression of SFTPB in A549 cells, mRNA and protein levels of IL-6, IL-8 and PTGS2 were significantly reduced, while gene silencing induced the opposite effect. SFTPB levels were significantly reduced in the lung tissue of a mouse model of COPD compared to controls. Reduced SFTPB levels may induce PTGS2 and inflammatory responses in COPD and SFTPB could be a key protein for evaluation of COPD progression.


Asunto(s)
Ciclooxigenasa 2/sangre , Enfermedad Pulmonar Obstructiva Crónica , Proteína B Asociada a Surfactante Pulmonar , Células A549 , Animales , Humanos , Inflamación , Pulmón/metabolismo , Ratones , Precursores de Proteínas , Proteína B Asociada a Surfactante Pulmonar/sangre , Proteína B Asociada a Surfactante Pulmonar/genética , Proteínas Asociadas a Surfactante Pulmonar
14.
Protein Expr Purif ; 179: 105801, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33248225

RESUMEN

While the discovery of antibiotics has made a huge contribution to medicine, bacteria that are resistant to many antibiotics pose new challenges to medicine. Antimicrobial peptides (AMPs), a new kind of antibiotics, have attracted people's attention because they are not prone to drug resistance. In this study, glutathione transferase (GST) was used as a fusion partner to recombinantly expressed rat lung surfactant protein B precursor (proSP-B) in E. coli pLySs. Cck-8 evaluated the cytotoxicity of the fusion protein and calculated its 50% inhibitory concentration (IC50). The purified peptides showed broad-spectrum antibacterial activity using filter paper method and MIC, and propidium iodide (PI) was used to explore the antibacterial mechanism against Staphylococcus aureus. In addition, the pEGFP-N2-proSP-B vector was constructed to explore the localization of proSP-B in CCL-149 cells. We found that proSP-B has obvious antibacterial activity against Gram-positive bacteria, Gram-negative bacteria and fungi, and has broad-spectrum antibacterial activity. Besides, proSP-B fusion protein has low toxicity and can change the permeability of Staphylococcus aureus cell membrane to realize its antibacterial. For these reasons, proSP-B can be used as a potential natural antibacterial drug.


Asunto(s)
Antibacterianos , Proteínas Asociadas a Surfactante Pulmonar , Proteínas Recombinantes , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Escherichia coli/genética , Hongos/efectos de los fármacos , Pulmón/química , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Surfactante Pulmonar/genética , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Proteínas Asociadas a Surfactante Pulmonar/farmacología , ARN/aislamiento & purificación , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
15.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806395

RESUMEN

Alveolar type II (ATII) cells are a key structure of the distal lung epithelium, where they exert their innate immune response and serve as progenitors of alveolar type I (ATI) cells, contributing to alveolar epithelial repair and regeneration. In the healthy lung, ATII cells coordinate the host defense mechanisms, not only generating a restrictive alveolar epithelial barrier, but also orchestrating host defense mechanisms and secreting surfactant proteins, which are important in lung protection against pathogen exposure. Moreover, surfactant proteins help to maintain homeostasis in the distal lung and reduce surface tension at the pulmonary air-liquid interface, thereby preventing atelectasis and reducing the work of breathing. ATII cells may also contribute to the fibroproliferative reaction by secreting growth factors and proinflammatory molecules after damage. Indeed, various acute and chronic diseases are associated with intensive inflammation. These include oedema, acute respiratory distress syndrome, fibrosis and numerous interstitial lung diseases, and are characterized by hyperplastic ATII cells which are considered an essential part of the epithelialization process and, consequently, wound healing. The aim of this review is that of revising the physiologic and pathologic role ATII cells play in pulmonary diseases, as, despite what has been learnt in the last few decades of research, the origin, phenotypic regulation and crosstalk of these cells still remain, in part, a mystery.


Asunto(s)
Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/fisiología , Enfermedades Pulmonares/fisiopatología , Pulmón/fisiología , Células Epiteliales Alveolares/citología , Animales , COVID-19/fisiopatología , Humanos , Inmunidad Innata , Iones/metabolismo , Pulmón/anatomía & histología , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/patología , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Regeneración
16.
J Cell Mol Med ; 24(12): 7067-7071, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32363643

RESUMEN

Bronchopulmonary dysplasia (BPD) is a major cause of mortality and morbidity in premature infants, characterized by alveolar simplification, surfactant deficiency, and respiratory distress. In the present study, we have investigated the functional roles of sumoylated CCAAT/enhancer binding protein alpha (C/EBPα) in the BPD rat model. A significant increase in small ubiquitin-like modifier 1 (SUMO1) and sumoylated C/EBPα protein levels were observed in BPD rats, and the levels of the sumoylated C/EBPα were associated with the pulmonary surfactant proteins (SPs). In order to confirm the role of sumoylated C/EBPα in BPD rats, SUMO1 was knocked down by lentiviral transfection of neonatal rat lungs with SUMO1-RNAi-LV. We found that the expression of C/EBPα and surfactant proteins increased following SUMO1 knockdown. Furthermore, the relatively low decrease in the levels of C/EBPα sumoylation was correlated with reduced glycogen consumption. Besides, co-immunoprecipitation assays revealed that sumoylation is involved in the regulation of the interaction between C/EBPα and TGFß2 in the lung. In conclusion, our findings indicate that sumoylation may act as a negative regulator of the C/EBPα-mediated transactivation in BPD rats.


Asunto(s)
Displasia Broncopulmonar/patología , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular , Pulmón/patología , Sumoilación , Animales , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Glucógeno/metabolismo , Unión Proteica , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Ratas Sprague-Dawley , Proteína SUMO-1/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo
17.
Respir Res ; 21(1): 59, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32085773

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia continues to cause important respiratory morbidity throughout life, and new therapies are needed. The common denominator of all BPD cases is preterm birth, however most preclinical research in this area focusses on the effect of hyperoxia or mechanical ventilation. In this study we investigated if and how prematurity affects lung structure and function in neonatal rabbits. METHODS: Pups were delivered on either day 28 or day 31. For each gestational age a group of pups was harvested immediately after birth for lung morphometry and surfactant protein B and C quantification. All other pups were hand raised and harvested on day 4 for the term pups and day 7 for the preterm pups (same corrected age) for lung morphometry, lung function testing and qPCR. A subset of pups underwent microCT and dark field imaging on day 0, 2 and 4 for terms and on day 0, 3, 5 and 7 for preterms. RESULTS: Preterm pups assessed at birth depicted a more rudimentary lung structure (larger alveoli and thicker septations) and a lower expression of surfactant proteins in comparison to term pups. MicroCT and dark field imaging revealed delayed lung aeration in preterm pups, in comparison to term pups. Preterm birth led to smaller pups, with smaller lungs with a lower alveolar surface area on day 7/day 4. Furthermore, preterm birth affected lung function with increased tissue damping, tissue elastance and resistance and decreased dynamic compliance. Expression of vascular endothelial growth factor (VEGFA) was significantly decreased in preterm pups, however in the absence of structural vascular differences. CONCLUSIONS: Preterm birth affects lung structure and function at birth, but also has persistent effects on the developing lung. This supports the use of a preterm animal model, such as the preterm rabbit, for preclinical research on BPD. Future research that focuses on the identification of pathways that are involved in in-utero lung development and disrupted by pre-term birth, could lead to novel therapeutic strategies for BPD.


Asunto(s)
Pulmón/crecimiento & desarrollo , Pulmón/patología , Modelos Animales , Nacimiento Prematuro/patología , Animales , Animales Recién Nacidos , Femenino , Pulmón/metabolismo , Masculino , Embarazo , Nacimiento Prematuro/metabolismo , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Conejos , Pruebas de Función Respiratoria/métodos , Volumen de Ventilación Pulmonar/fisiología
19.
Am J Respir Crit Care Med ; 200(7): 881-887, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31002528

RESUMEN

Rationale: Pulmonary alveolar proteinosis (PAP) is characterized by filling of the alveolar spaces by lipoprotein-rich material of ill-defined composition, and is caused by molecularly different and often rare diseases that occur from birth to old age.Objectives: To perform a quantitative lipidomic analysis of lipids and the surfactant proteins A, B, and C in lavage fluids from patients with proteinosis of different causes in comparison with healthy control subjects.Methods: During the last two decades, we have collected BAL samples from patients with PAP due to autoantibodies against granulocyte-macrophage colony-stimulating factor; genetic mutations in CSF2RA (colony-stimulating factor 2 receptor α-subunit), MARS (methionyl aminoacyl-tRNA synthetase), FARSB (phenylalanine-tRNA synthetase, ß-subunit), and NPC2 (Niemann-Pick disease type C2); and secondary to myeloid leukemia. Their lipid composition was quantified.Measurements and Main Results: Free cholesterol was largely increased by 60-fold and cholesteryl esters were increased by 24-fold. There was an excessive, more than 130-fold increase in ceramide and other sphingolipids. In particular, the long-chain ceramides d18:1/20:0 and d18:1/24:0 were elevated and likely contributed to the proapoptotic environment observed in PAP. Cellular debris lipids such as phosphatidylethanolamine and phosphatidylserine were only moderately increased, by four- to sevenfold. The surfactant lipid class phosphatidylcholine expanded 17-fold, lysophosphatidylcholine expanded 54-fold, and the surfactant proteins A, B, and C expanded 144-, 4-, and 17-fold, respectively. These changes did not differ among the various diseases that cause PAP.Conclusions: This insight into the alveolar lipidome may provide monitoring tools and lead to new therapeutic strategies for PAP.


Asunto(s)
Metabolismo de los Lípidos , Lipidómica , Proteinosis Alveolar Pulmonar/metabolismo , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Adolescente , Adulto , Apoptosis , Enfermedades Autoinmunes/metabolismo , Líquido del Lavado Bronquioalveolar , Estudios de Casos y Controles , Ceramidas/metabolismo , Niño , Preescolar , Colesterol/metabolismo , Ésteres del Colesterol/metabolismo , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Humanos , Lactante , Leucemia Mieloide/complicaciones , Masculino , Metionina-ARNt Ligasa/genética , Persona de Mediana Edad , Fenilalanina-ARNt Ligasa/genética , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteinosis Alveolar Pulmonar/etiología , Proteinosis Alveolar Pulmonar/genética , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Esfingolípidos/metabolismo , Proteínas de Transporte Vesicular/genética , Adulto Joven
20.
Toxicol Ind Health ; 36(4): 237-249, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32419650

RESUMEN

OBJECTIVE: For several decades, there has been increasing evidence for excess incidence of lung cancer among workers in the rubber industry. The purpose of this study was to assess the risk of lung cancer occurrence among Egyptian workers involved in the rubber industry using two circulating protein biomarkers. METHODS: This study was performed in a rubber manufacturing factory in Shubra El-Kheima region in Greater Cairo, Egypt. Environmental assessment for the suspended particulate matter of size 10 µm (PM10) concentrations was done. Levels of plasma pro-surfactant protein B (pro-SFTPB) and serum high-sensitivity C-reactive protein (HsCRP) were measured among the studied population (n = 155) who were divided into two groups. The first group included 75 workers exposed to rubber manufacturing process while the control group involved 80 administrative subjects. RESULTS: The levels of PM10 neither exceeded the Egyptian nor the international permissible limits where the highest levels were observed in the mixing department. However, through medical history and clinical examination, it was observed that some general and respiratory manifestations were more prevalent among the exposed group when compared with their controls. Laboratory investigations revealed that the mean values of pro-SFTPB and HsCRP levels among exposed workers were significantly higher than those of the control group. These increased circulating proteins levels were strongly and positively correlated with each other and with the duration of employment of exposed workers. CONCLUSION: The study results support the conclusion that prolonged occupational exposure to rubber manufacturing process is associated with an elevated risk of lung cancer.


Asunto(s)
Proteína C-Reactiva/análisis , Neoplasias Pulmonares/sangre , Enfermedades Profesionales/sangre , Exposición Profesional/efectos adversos , Precursores de Proteínas/sangre , Proteínas Asociadas a Surfactante Pulmonar/sangre , Goma/efectos adversos , Adulto , Biomarcadores/sangre , Estudios Transversales , Egipto/epidemiología , Humanos , Industrias , Neoplasias Pulmonares/epidemiología , Masculino , Persona de Mediana Edad , Enfermedades Profesionales/epidemiología , Material Particulado , Enfermedades Respiratorias/epidemiología , Medición de Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA