Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.146
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(13): 3249-3261.e14, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38781968

RESUMEN

Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , ADN , Edición Génica , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , ADN/metabolismo , ADN/genética , Edición Génica/métodos , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Células HEK293 , Dominios Proteicos , Genoma Humano , Modelos Moleculares , Estructura Terciaria de Proteína , Conformación de Ácido Nucleico , Biocatálisis , Magnesio/química , Magnesio/metabolismo
2.
Cell ; 185(6): 980-994.e15, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35303428

RESUMEN

The emergence of hypervirulent clade 2 Clostridioides difficile is associated with severe symptoms and accounts for >20% of global infections. TcdB is a dominant virulence factor of C. difficile, and clade 2 strains exclusively express two TcdB variants (TcdB2 and TcdB4) that use unknown receptors distinct from the classic TcdB. Here, we performed CRISPR/Cas9 screens for TcdB4 and identified tissue factor pathway inhibitor (TFPI) as its receptor. Using cryo-EM, we determined a complex structure of the full-length TcdB4 with TFPI, defining a common receptor-binding region for TcdB. Residue variations within this region divide major TcdB variants into 2 classes: one recognizes Frizzled (FZD), and the other recognizes TFPI. TFPI is highly expressed in the intestinal glands, and recombinant TFPI protects the colonic epithelium from TcdB2/4. These findings establish TFPI as a colonic crypt receptor for TcdB from clade 2 C. difficile and reveal new mechanisms for CDI pathogenesis.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Clostridioides difficile/genética , Lipoproteínas/genética
3.
Annu Rev Biochem ; 90: 475-501, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33781076

RESUMEN

Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.


Asunto(s)
Bioquímica/métodos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Luz , Optogenética/métodos , Procesos Fotoquímicos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Fitocromo/química , Fitocromo/metabolismo , Dominios Proteicos , Ingeniería de Proteínas/métodos , Vitamina B 12/metabolismo
4.
Cell ; 184(14): 3660-3673.e18, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166615

RESUMEN

Membrane remodeling and repair are essential for all cells. Proteins that perform these functions include Vipp1/IM30 in photosynthetic plastids, PspA in bacteria, and ESCRT-III in eukaryotes. Here, using a combination of evolutionary and structural analyses, we show that these protein families are homologous and share a common ancient evolutionary origin that likely predates the last universal common ancestor. This homology is evident in cryo-electron microscopy structures of Vipp1 rings from the cyanobacterium Nostoc punctiforme presented over a range of symmetries. Each ring is assembled from rungs that stack and progressively tilt to form dome-shaped curvature. Assembly is facilitated by hinges in the Vipp1 monomer, similar to those in ESCRT-III proteins, which allow the formation of flexible polymers. Rings have an inner lumen that is able to bind and deform membranes. Collectively, these data suggest conserved mechanistic principles that underlie Vipp1, PspA, and ESCRT-III-dependent membrane remodeling across all domains of life.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Familia de Multigenes , Nostoc/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Pollos , Microscopía por Crioelectrón , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Evolución Molecular , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/ultraestructura , Humanos , Modelos Moleculares , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Termodinámica
5.
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166613

RESUMEN

Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chlamydomonas/metabolismo , Multimerización de Proteína , Synechocystis/metabolismo , Tilacoides/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Membrana Celular/metabolismo , Chlamydomonas/ultraestructura , Microscopía por Crioelectrón , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Lípidos/química , Modelos Moleculares , Nucleótidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estrés Fisiológico/efectos de la radiación , Synechocystis/ultraestructura , Tilacoides/ultraestructura
6.
Cell ; 184(14): 3674-3688.e18, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166616

RESUMEN

PspA is the main effector of the phage shock protein (Psp) system and preserves the bacterial inner membrane integrity and function. Here, we present the 3.6 Å resolution cryoelectron microscopy (cryo-EM) structure of PspA assembled in helical rods. PspA monomers adopt a canonical ESCRT-III fold in an extended open conformation. PspA rods are capable of enclosing lipids and generating positive membrane curvature. Using cryo-EM, we visualized how PspA remodels membrane vesicles into µm-sized structures and how it mediates the formation of internalized vesicular structures. Hotspots of these activities are zones derived from PspA assemblies, serving as lipid transfer platforms and linking previously separated lipid structures. These membrane fusion and fission activities are in line with the described functional properties of bacterial PspA/IM30/LiaH proteins. Our structural and functional analyses reveal that bacterial PspA belongs to the evolutionary ancestry of ESCRT-III proteins involved in membrane remodeling.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/ultraestructura , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Liposomas Unilamelares/metabolismo
7.
Annu Rev Biochem ; 89: 741-768, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569526

RESUMEN

Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucolípidos/biosíntesis , Antígenos O/biosíntesis , Poliprenoles/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Ligasas de Carbono-Oxígeno/química , Ligasas de Carbono-Oxígeno/genética , Ligasas de Carbono-Oxígeno/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ácidos Teicoicos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
8.
Cell ; 183(1): 244-257.e16, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931735

RESUMEN

Many bacteria use the flagellum for locomotion and chemotaxis. Its bidirectional rotation is driven by a membrane-embedded motor, which uses energy from the transmembrane ion gradient to generate torque at the interface between stator units and rotor. The structural organization of the stator unit (MotAB), its conformational changes upon ion transport, and how these changes power rotation of the flagellum remain unknown. Here, we present ~3 Å-resolution cryoelectron microscopy reconstructions of the stator unit in different functional states. We show that the stator unit consists of a dimer of MotB surrounded by a pentamer of MotA. Combining structural data with mutagenesis and functional studies, we identify key residues involved in torque generation and present a detailed mechanistic model for motor function and switching of rotational direction.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Flagelos/ultraestructura , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón/métodos , Flagelos/metabolismo , Conformación Proteica , Torque
9.
Cell ; 182(1): 38-49.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32544385

RESUMEN

cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are immune sensors that synthesize nucleotide second messengers and initiate antiviral responses in bacterial and animal cells. Here, we discover Enterobacter cloacae CD-NTase-associated protein 4 (Cap4) as a founding member of a diverse family of >2,000 bacterial receptors that respond to CD-NTase signals. Structures of Cap4 reveal a promiscuous DNA endonuclease domain activated through ligand-induced oligomerization. Oligonucleotide recognition occurs through an appended SAVED domain that is an unexpected fusion of two CRISPR-associated Rossman fold (CARF) subunits co-opted from type III CRISPR immunity. Like a lock and key, SAVED effectors exquisitely discriminate 2'-5'- and 3'-5'-linked bacterial cyclic oligonucleotide signals and enable specific recognition of at least 180 potential nucleotide second messenger species. Our results reveal SAVED CARF family proteins as major nucleotide second messenger receptors in CBASS and CRISPR immune defense and extend the importance of linkage specificity beyond mammalian cGAS-STING signaling.


Asunto(s)
Bacterias/virología , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Inmunidad , Oligonucleótidos/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Desoxirribonucleasa I/metabolismo , Ligandos , Mutagénesis/genética , Nucleotidiltransferasas/metabolismo , Unión Proteica , Sistemas de Mensajero Secundario
10.
Annu Rev Biochem ; 88: 409-431, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30633550

RESUMEN

Aerobic life is possible because the molecular structure of oxygen (O2) makes direct reaction with most organic materials at ambient temperatures an exceptionally slow process. Of course, these reactions are inherently very favorable, and they occur rapidly with the release of a great deal of energy at high temperature. Nature has been able to tap this sequestered reservoir of energy with great spatial and temporal selectivity at ambient temperatures through the evolution of oxidase and oxygenase enzymes. One mechanism used by these enzymes for O2 activation has been studied in detail for the soluble form of the enzyme methane monooxygenase. These studies have revealed the step-by-step process of O2 activation and insertion into the ultimately stable C-H bond of methane. Additionally, an elegant regulatory mechanism has been defined that enlists size selection and quantum tunneling to allow methane oxidation to occur specifically in the presence of more easily oxidized substrates.


Asunto(s)
Bacterias/enzimología , Metano/metabolismo , Oxígeno/metabolismo , Oxigenasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía , Cinética , Methylococcus capsulatus/enzimología , Methylosinus trichosporium/enzimología , Oxigenasas/química , Conformación Proteica
11.
Annu Rev Biochem ; 88: 551-576, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30485755

RESUMEN

Energy-coupling factor (ECF)-type ATP-binding cassette (ABC) transporters catalyze membrane transport of micronutrients in prokaryotes. Crystal structures and biochemical characterization have revealed that ECF transporters are mechanistically distinct from other ABC transport systems. Notably, ECF transporters make use of small integral membrane subunits (S-components) that are predicted to topple over in the membrane when carrying the bound substrate from the extracellular side of the bilayer to the cytosol. Here, we review the phylogenetic diversity of ECF transporters as well as recent structural and biochemical advancements that have led to the postulation of conceptually different mechanistic models. These models can be described as power stroke and thermal ratchet. Structural data indicate that the lipid composition and bilayer structure are likely to have great impact on the transport function. We argue that study of ECF transporters could lead to generic insight into membrane protein structure, dynamics, and interaction.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfato/metabolismo , Animales , Archaea/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Filogenia , Conformación Proteica
12.
Cell ; 179(7): 1512-1524.e15, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835030

RESUMEN

During cell division, newly replicated DNA is actively segregated to the daughter cells. In most bacteria, this process involves the DNA-binding protein ParB, which condenses the centromeric regions of sister DNA molecules into kinetochore-like structures that recruit the DNA partition ATPase ParA and the prokaroytic SMC/condensin complex. Here, we report the crystal structure of a ParB-like protein (PadC) that emerges to tightly bind the ribonucleotide CTP. The CTP-binding pocket of PadC is conserved in ParB and composed of signature motifs known to be essential for ParB function. We find that ParB indeed interacts with CTP and requires nucleotide binding for DNA condensation in vivo. We further show that CTP-binding modulates the affinity of ParB for centromeric parS sites, whereas parS recognition stimulates its CTPase activity. ParB proteins thus emerge as a new class of CTP-dependent molecular switches that act in concert with ATPases and GTPases to control fundamental cellular functions.


Asunto(s)
Proteínas Bacterianas/química , Citidina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Motivos de Nucleótidos , Unión Proteica
13.
Cell ; 178(2): 374-384.e15, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31299201

RESUMEN

Multicellular lifestyle requires cell-cell connections. In multicellular cyanobacteria, septal junctions enable molecular exchange between sister cells and are required for cellular differentiation. The structure of septal junctions is poorly understood, and it is unknown whether they are capable of controlling intercellular communication. Here, we resolved the in situ architecture of septal junctions by electron cryotomography of cryo-focused ion beam-milled cyanobacterial filaments. Septal junctions consisted of a tube traversing the septal peptidoglycan. Each tube end comprised a FraD-containing plug, which was covered by a cytoplasmic cap. Fluorescence recovery after photobleaching showed that intercellular communication was blocked upon stress. Gating was accompanied by a reversible conformational change of the septal junction cap. We provide the mechanistic framework for a cell junction that predates eukaryotic gap junctions by a billion years. The conservation of a gated dynamic mechanism across different domains of life emphasizes the importance of controlling molecular exchange in multicellular organisms.


Asunto(s)
Uniones Comunicantes/metabolismo , Anabaena/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Comunicación Celular/efectos de los fármacos , Microscopía por Crioelectrón , Uniones Comunicantes/química , Uniones Comunicantes/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis
14.
Cell ; 179(1): 205-218.e21, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31522888

RESUMEN

The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Imitación Molecular/inmunología , Inmunidad de la Planta/fisiología , Adenosina Trifosfatasas/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/química , Células HEK293 , Proteínas HSP90 de Choque Térmico/química , Células HeLa , Interacciones Microbiota-Huesped/inmunología , Humanos , Fosforilación , Plásmidos/genética , Unión Proteica , Pliegue de Proteína , Proteínas Quinasas/metabolismo , Pseudomonas syringae/metabolismo , Saccharomyces cerevisiae/metabolismo
15.
Annu Rev Biochem ; 87: 645-676, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29668305

RESUMEN

Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quelantes/metabolismo , Cobre/metabolismo , Imidazoles/metabolismo , Oligopéptidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Fenómenos Biofísicos , Quelantes/química , Genoma Bacteriano , Homeostasis , Imidazoles/química , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Modelos Biológicos , Estructura Molecular , Oligopéptidos/química , Oligopéptidos/genética , Operón , Transporte de Proteínas
16.
Cell ; 175(7): 1856-1871.e21, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30503205

RESUMEN

Cas12a, also known as Cpf1, is a type V-A CRISPR-Cas RNA-guided endonuclease that is used for genome editing based on its ability to generate specific dsDNA breaks. Here, we show cryo-EM structures of intermediates of the cleavage reaction, thus visualizing three protein regions that sense the crRNA-DNA hybrid assembly triggering the catalytic activation of Cas12a. Single-molecule FRET provides the thermodynamics and kinetics of the conformational activation leading to phosphodiester bond hydrolysis. These findings illustrate why Cas12a cuts its target DNA and unleashes unspecific cleavage activity, degrading ssDNA molecules after activation. In addition, we show that other crRNAs are able to displace the R-loop inside the protein after target DNA cleavage, terminating indiscriminate ssDNA degradation. We propose a model whereby the conformational activation of the enzyme results in indiscriminate ssDNA cleavage. The displacement of the R-loop by a new crRNA molecule will reset Cas12a specificity, targeting new DNAs.


Asunto(s)
Proteínas Bacterianas/química , Sistemas CRISPR-Cas , División del ADN , ADN de Cadena Simple/química , Francisella/química , ARN Guía de Kinetoplastida/química , Proteínas Bacterianas/genética , Catálisis , ADN de Cadena Simple/genética , Francisella/genética , Edición Génica , ARN Guía de Kinetoplastida/genética
17.
Cell ; 173(5): 1231-1243.e16, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29731171

RESUMEN

Ubiquitination constitutes one of the most important signaling mechanisms in eukaryotes. Conventional ubiquitination is catalyzed by the universally conserved E1-E2-E3 three-enzyme cascade in an ATP-dependent manner. The newly identified SidE family effectors of the pathogen Legionella pneumophila ubiquitinate several human proteins by a different mechanism without engaging any of the conventional ubiquitination machinery. We now report the crystal structures of SidE alone and in complex with ubiquitin, NAD, and ADP-ribose, thereby capturing different conformations of SidE before and after ubiquitin and ligand binding. The structures of ubiquitin bound to both mART and PDE domains reveal several unique features of the two reaction steps catalyzed by SidE. Further, the structural and biochemical results demonstrate that SidE family members do not recognize specific structural folds of the substrate proteins. Our studies provide both structural explanations for the functional observations and new insights into the molecular mechanisms of this non-canonical ubiquitination machinery.


Asunto(s)
Proteínas Bacterianas/química , Legionella pneumophila/metabolismo , Hidrolasas Diéster Fosfóricas/química , Ubiquitina/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Cristalografía por Rayos X , Dimerización , Hidrolasas Diéster Fosfóricas/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , Ubiquitina/metabolismo , Ubiquitinación
18.
Cell ; 175(4): 934-946.e15, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343903

RESUMEN

CRISPR-Cas systems confer an adaptive immunity against viruses. Following viral injection, Cas1-Cas2 integrates segments of the viral genome (spacers) into the CRISPR locus. In type I CRISPR-Cas systems, efficient "primed" spacer acquisition and viral degradation (interference) require both the Cascade complex and the Cas3 helicase/nuclease. Here, we present single-molecule characterization of the Thermobifida fusca (Tfu) primed acquisition complex (PAC). We show that TfuCascade rapidly samples non-specific DNA via facilitated one-dimensional diffusion. Cas3 loads at target-bound Cascade and the Cascade/Cas3 complex translocates via a looped DNA intermediate. Cascade/Cas3 complexes stall at diverse protein roadblocks, resulting in a double strand break at the stall site. In contrast, Cas1-Cas2 samples DNA transiently via 3D collisions. Moreover, Cas1-Cas2 associates with Cascade and translocates with Cascade/Cas3, forming the PAC. PACs can displace different protein roadblocks, suggesting a mechanism for long-range spacer acquisition. This work provides a molecular basis for the coordinated steps in CRISPR-based adaptive immunity.


Asunto(s)
Actinomycetales/enzimología , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/química , ADN Viral/metabolismo , Multimerización de Proteína , Imagen Individual de Molécula
19.
Cell ; 173(7): 1636-1649.e16, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29754813

RESUMEN

Hydrogen gas-evolving membrane-bound hydrogenase (MBH) and quinone-reducing complex I are homologous respiratory complexes with a common ancestor, but a structural basis for their evolutionary relationship is lacking. Here, we report the cryo-EM structure of a 14-subunit MBH from the hyperthermophile Pyrococcus furiosus. MBH contains a membrane-anchored hydrogenase module that is highly similar structurally to the quinone-binding Q-module of complex I while its membrane-embedded ion-translocation module can be divided into a H+- and a Na+-translocating unit. The H+-translocating unit is rotated 180° in-membrane with respect to its counterpart in complex I, leading to distinctive architectures for the two respiratory systems despite their largely conserved proton-pumping mechanisms. The Na+-translocating unit, absent in complex I, resembles that found in the Mrp H+/Na+ antiporter and enables hydrogen gas evolution by MBH to establish a Na+ gradient for ATP synthesis near 100°C. MBH also provides insights into Mrp structure and evolution of MBH-based respiratory enzymes.


Asunto(s)
Proteínas Arqueales/metabolismo , Hidrogenasas/metabolismo , Pyrococcus furiosus/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Membrana Celular/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Evolución Molecular , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/genética , Mutagénesis , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Sodio/química , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
20.
Annu Rev Biochem ; 86: 129-157, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28375744

RESUMEN

Ubiquitin E3 ligases control every aspect of eukaryotic biology by promoting protein ubiquitination and degradation. At the end of a three-enzyme cascade, ubiquitin ligases mediate the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to specific substrate proteins. Early investigations of E3s of the RING (really interesting new gene) and HECT (homologous to the E6AP carboxyl terminus) types shed light on their enzymatic activities, general architectures, and substrate degron-binding modes. Recent studies have provided deeper mechanistic insights into their catalysis, activation, and regulation. In this review, we summarize the current progress in structure-function studies of ubiquitin ligases as well as exciting new discoveries of novel classes of E3s and diverse substrate recognition mechanisms. Our increased understanding of ubiquitin ligase function and regulation has provided the rationale for developing E3-targeting therapeutics for the treatment of human diseases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Eucariotas/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Proteínas Virales/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Drogas en Investigación/síntesis química , Células Eucariotas/microbiología , Células Eucariotas/virología , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Especificidad por Sustrato , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/clasificación , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas Virales/química , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA