Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(4): 972-988.e23, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656893

RESUMEN

Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.


Asunto(s)
Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Adaptadoras Transductoras de Señales , Proteína BRCA1/antagonistas & inhibidores , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Humanos , Cambio de Clase de Inmunoglobulina/efectos de los fármacos , Proteínas Mad2/antagonistas & inhibidores , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión a Telómeros/antagonistas & inhibidores , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/antagonistas & inhibidores , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Mol Cell ; 81(12): 2611-2624.e10, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33857404

RESUMEN

The Shieldin complex shields double-strand DNA breaks (DSBs) from nucleolytic resection. Curiously, the penultimate Shieldin component, SHLD1, is one of the least abundant mammalian proteins. Here, we report that the transcription factors THAP1, YY1, and HCF1 bind directly to the SHLD1 promoter, where they cooperatively maintain the low basal expression of SHLD1, thereby ensuring a proper balance between end protection and resection during DSB repair. The loss of THAP1-dependent SHLD1 expression confers cross-resistance to poly (ADP-ribose) polymerase (PARP) inhibitor and cisplatin in BRCA1-deficient cells and shorter progression-free survival in ovarian cancer patients. Moreover, the embryonic lethality and PARPi sensitivity of BRCA1-deficient mice is rescued by ablation of SHLD1. Our study uncovers a transcriptional network that directly controls DSB repair choice and suggests a potential link between DNA damage and pathogenic THAP1 mutations, found in patients with the neurodevelopmental movement disorder adult-onset torsion dystonia type 6.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN/genética , Distonía/genética , Femenino , Factor C1 de la Célula Huésped/metabolismo , Proteínas Mad2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Reparación del ADN por Recombinación/efectos de los fármacos , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Factor de Transcripción YY1/metabolismo
3.
PLoS Genet ; 20(6): e1011302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829899

RESUMEN

Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular , Cryptococcus neoformans , Proteínas Mad2 , Huso Acromático , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Huso Acromático/metabolismo , Huso Acromático/genética , Transducción de Señal , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Mitosis/genética , Cinetocoros/metabolismo , Segregación Cromosómica/genética , Microtúbulos/metabolismo , Microtúbulos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
4.
Development ; 150(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37485540

RESUMEN

Accurate chromosome segregation, monitored by the spindle assembly checkpoint (SAC), is crucial for the production of euploid cells. Previous in vitro studies by us and others showed that Mad2, a core member of the SAC, performs a checkpoint function in oocyte meiosis. Here, through an oocyte-specific knockout approach in mouse, we reconfirmed that Mad2-deficient oocytes exhibit an accelerated metaphase-to-anaphase transition caused by premature degradation of securin and cyclin B1 and subsequent activation of separase in meiosis I. However, it was surprising that the knockout mice were completely fertile and the resulting oocytes were euploid. In the absence of Mad2, other SAC proteins, including BubR1, Bub3 and Mad1, were normally recruited to the kinetochores, which likely explains the balanced chromosome separation. Further studies showed that the chromosome separation in Mad2-null oocytes was particularly sensitive to environmental changes and, when matured in vitro, showed chromosome misalignment, lagging chromosomes, and aneuploidy with premature separation of sister chromatids, which was exacerbated at a lower temperature. We reveal for the first time that Mad2 is dispensable for proper chromosome segregation but acts to mitigate environmental stress in meiotic oocytes.


Asunto(s)
Proteínas de Ciclo Celular , Huso Acromático , Animales , Ratones , Proteínas de Ciclo Celular/metabolismo , Huso Acromático/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Segregación Cromosómica/genética , Oocitos/metabolismo , Cinetocoros/metabolismo , Meiosis/genética
5.
EMBO Rep ; 25(6): 2743-2772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806674

RESUMEN

Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Proteína 11 Similar a Bcl2 , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Mad2 , Proteínas Proto-Oncogénicas c-bcl-2 , Animales , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética , Ratones , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Atrofia , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Mitosis , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Médula Ósea/patología , Médula Ósea/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor
6.
Mol Cell ; 70(4): 628-638.e5, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29775579

RESUMEN

Cell survival to replication stress depends on the activation of the Mec1ATR-Rad53 checkpoint response that protects the integrity of stalled forks and controls the origin firing program. Here we found that Mad2, a member of the spindle assembly checkpoint (SAC), contributes to efficient origin firing and to cell survival in response to replication stress. We show that Rad53 and Mad2 promote S-phase cyclin expression through different mechanisms: while Rad53 influences Clb5,6 degradation, Mad2 promotes their protein synthesis. We found that Mad2 co-sediments with polysomes and modulates the association of the translation inhibitor Caf204E-BP with the translation machinery and the initiation factor eIF4E. This Mad2-dependent translational regulatory process does not depend on other SAC proteins. Altogether our observations indicate that Mad2 has an additional function outside of mitosis to control DNA synthesis and collaborates with the Mec1-Rad53 regulatory axis to allow cell survival in response to replication stress.


Asunto(s)
Ciclinas/genética , Replicación del ADN , Proteínas Mad2/metabolismo , Mitosis , Biosíntesis de Proteínas , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Ciclinas/metabolismo , Proteínas Mad2/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Origen de Réplica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Transl Med ; 22(1): 295, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515112

RESUMEN

BACKGROUND: Bladder cancer (BC) is the most common urinary tract malignancy. Aurora kinase B (AURKB), a component of the chromosomal passenger protein complex, affects chromosomal segregation during cell division. Mitotic arrest-deficient 2-like protein 2 (MAD2L2) interacts with various proteins and contributes to genomic integrity. Both AURKB and MAD2L2 are overexpressed in various human cancers and have synergistic oncogenic effects; therefore, they are regarded as emerging therapeutic targets for cancer. However, the relationship between these factors and the mechanisms underlying their oncogenic activity in BC remains largely unknown. The present study aimed to explore the interactions between AURKB and MAD2L2 and how they affect BC progression via the DNA damage response (DDR) pathway. METHODS: Bioinformatics was used to analyze the expression, prognostic value, and pro-tumoral function of AURKB in patients with BC. CCK-8 assay, colony-forming assay, flow cytometry, SA-ß-gal staining, wound healing assay, and transwell chamber experiments were performed to test the viability, cell cycle progression, senescence, and migration and invasion abilities of BC cells in vitro. A nude mouse xenograft assay was performed to test the tumorigenesis ability of BC cells in vivo. The expression and interaction of proteins and the occurrence of the senescence-associated secretory phenotype were detected using western blot analysis, co-immunoprecipitation assay, and RT-qPCR. RESULTS: AURKB was highly expressed and associated with prognosis in patients with BC. AURKB expression was positively correlated with MAD2L2 expression. We confirmed that AURKB interacts with, and modulates the expression of, MAD2L2 in BC cells. AURKB knockdown suppressed the proliferation, migration, and invasion abilities of, and cell cycle progression in, BC cells, inducing senescence in these cells. The effects of AURKB knockdown were rescued by MAD2L2 overexpression in vitro and in vivo. The effects of MAD2L2 knockdown were similar to those of AURKB knockdown. Furthermore, p53 ablation rescued the MAD2L2 knockdown-induced suppression of BC cell proliferation and cell cycle arrest and senescence in BC cells. CONCLUSIONS: AURKB activates MAD2L2 expression to downregulate the p53 DDR pathway, thereby promoting BC progression. Thus, AURKB may serve as a potential molecular marker and a novel anticancer therapeutic target for BC.


Asunto(s)
Proteína p53 Supresora de Tumor , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Ratones , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
8.
Exp Cell Res ; 429(2): 113672, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37339729

RESUMEN

Heat shock is a physiological and environmental stress that leads to the denaturation and inactivation of cellular proteins and is used in hyperthermia cancer therapy. Previously, we revealed that mild heat shock (42 °C) delays the mitotic progression by activating the spindle assembly checkpoint (SAC). However, it is unclear whether SAC activation is maintained at higher temperatures than 42 °C. Here, we demonstrated that a high temperature of 44 °C just before mitotic entry led to a prolonged mitotic delay in the early phase, which was shortened by the SAC inhibitor, AZ3146, indicating SAC activation. Interestingly, mitotic slippage was observed at 44 °C after a prolonged delay but not at 42 °C heat shock. Furthermore, the multinuclear cells were generated by mitotic slippage in 44 °C-treated cells. Immunofluorescence analysis revealed that heat shock at 44 °C reduces the kinetochore localization of MAD2, which is essential for mitotic checkpoint activation, in nocodazole-arrested mitotic cells. These results indicate that 44 °C heat shock causes SAC inactivation even after full activation of SAC and suggest that decreased localization of MAD2 at the kinetochore is involved in heat shock-induced mitotic slippage, resulting in multinucleation. Since mitotic slippage causes drug resistance and chromosomal instability, we propose that there may be a risk of cancer malignancy when the cells are exposed to high temperatures.


Asunto(s)
Proteínas de Ciclo Celular , Puntos de Control de la Fase M del Ciclo Celular , Humanos , Proteínas de Ciclo Celular/genética , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Temperatura , Huso Acromático/metabolismo , Respuesta al Choque Térmico , Mitosis
9.
Nature ; 560(7716): 122-127, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30046110

RESUMEN

53BP1 governs a specialized, context-specific branch of the classical non-homologous end joining DNA double-strand break repair pathway. Mice lacking 53bp1 (also known as Trp53bp1) are immunodeficient owing to a complete loss of immunoglobulin class-switch recombination1,2, and reduced fidelity of long-range V(D)J recombination3. The 53BP1-dependent pathway is also responsible for pathological joining events at dysfunctional telomeres4, and its unrestricted activity in Brca1-deficient cellular and tumour models causes genomic instability and oncogenesis5-7. Cells that lack core non-homologous end joining proteins are profoundly radiosensitive8, unlike 53BP1-deficient cells9,10, which suggests that 53BP1 and its co-factors act on specific DNA substrates. Here we show that 53BP1 cooperates with its downstream effector protein REV7 to promote non-homologous end joining during class-switch recombination, but REV7 is not required for 53BP1-dependent V(D)J recombination. We identify shieldin-a four-subunit putative single-stranded DNA-binding complex comprising REV7, c20orf196 (SHLD1), FAM35A (SHLD2) and FLJ26957 (SHLD3)-as the factor that explains this specificity. Shieldin is essential for REV7-dependent DNA end-protection and non-homologous end joining during class-switch recombination, and supports toxic non-homologous end joining in Brca1-deficient cells, yet is dispensable for REV7-dependent interstrand cross-link repair. The 53BP1 pathway therefore comprises distinct double-strand break repair activities within chromatin and single-stranded DNA compartments, which explains both the immunological differences between 53bp1- and Rev7- deficient mice and the context specificity of the pathway.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN/química , ADN/metabolismo , Proteínas Mad2/metabolismo , Complejos Multiproteicos/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Cambio de Clase de Inmunoglobulina/genética , Proteínas Mad2/deficiencia , Proteínas Mad2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/química , Mutación , Proteína 1 de Unión al Supresor Tumoral P53/deficiencia , Recombinación V(D)J/genética
10.
Mol Cell ; 61(3): 449-460, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26748828

RESUMEN

G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.


Asunto(s)
Aminoquinolinas/farmacología , Antineoplásicos/farmacología , Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , Biomarcadores de Tumor/deficiencia , G-Cuádruplex/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Ácidos Picolínicos/farmacología , Animales , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores de Tumor/genética , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Masculino , Ratones Desnudos , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Interferencia de ARN , Telómero/efectos de los fármacos , Telómero/genética , Telómero/metabolismo , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacos , Proteína 1 de Unión al Supresor Tumoral P53 , Ensayos Antitumor por Modelo de Xenoinjerto
11.
PLoS Genet ; 17(4): e1009329, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857147

RESUMEN

Nicks are the most frequent form of DNA damage and a potential source of mutagenesis in human cells. By deep sequencing, we have identified factors and pathways that promote and limit mutagenic repair at a targeted nick in human cells. Mutations were distributed asymmetrically around the nick site. BRCA2 inhibited all categories of mutational events, including indels, SNVs and HDR. DNA2 and RPA promoted resection. DNA2 inhibited 1 bp deletions but contributed to longer deletions, as did REV7. POLQ stimulated SNVs. Parallel analysis of DSBs targeted to the same site identified similar roles for DNA2 and POLQ (but not REV7) in promoting deletions and for POLQ in stimulating SNVs. Insertions were infrequent at nicks, and most were 1 bp in length, as at DSBs. The translesion polymerase REV1 stimulated +1 insertions at one nick site but not another, illustrating the potential importance of sequence context in determining the outcome of mutagenic repair. These results highlight the potential for nicks to promote mutagenesis, especially in BRCA-deficient cells, and identify mutagenic signatures of DNA2, REV1, REV3, REV7 and POLQ.


Asunto(s)
Proteína BRCA2/genética , Roturas del ADN de Cadena Simple , Daño del ADN/genética , Mutagénesis/genética , Ciclo Celular/genética , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL/genética , Proteínas Mad2/genética , Nucleotidiltransferasas/genética , ARN Guía de Kinetoplastida/genética , Transducción de Señal/genética , ADN Polimerasa theta
12.
J Transl Med ; 21(1): 863, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017538

RESUMEN

BACKGROUND: Glioblastoma, the most common primary malignant tumor of the brain, is associated with poor prognosis. Glioblastoma cells exhibit high proliferative and invasive properties, and glioblastoma stem cells (GSCs) have been shown to play a crucial role in the malignant behavior of glioblastoma cells. This study aims to investigate the molecular mechanisms involved in GSCs maintenance and malignant progression. METHODS: Bioinformatics analysis was performed based on data from public databases to explore the expression profile of Mitotic arrest deficient 2 like 2 (MAD2L2) and its potential function in glioma. The impact of MAD2L2 on glioblastoma cell behaviors was assessed through cell viability assays (CCK8), colony formation assays, 5-Ethynyl-2'-deoxyuridine (EDU) incorporation assays, scratch assays, and transwell migration/invasion assays. The findings from in vitro experiments were further validated in vivo using xenograft tumor model. GSCs were isolated from the U87 and LN229 cell lines through flow cytometry and the stemness characteristics were verified by immunofluorescence staining. The sphere-forming ability of GSCs was examined using the stem cell sphere formation assay. Bioinformatics methods were conducted to identified the potential downstream target genes of MAD2L2, followed by in vitro experimental validation. Furthermore, potential upstream transcription factors that regulate MAD2L2 expression were confirmed through chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS: The MAD2L2 exhibited high expression in glioblastoma samples and showed significant correlation with patient prognosis. In vitro and in vivo experiments confirmed that silencing of MAD2L2 led to decreased proliferation, invasion, and migration capabilities of glioblastoma cells, while decreasing stemness characteristics of glioblastoma stem cells. Conversely, overexpression of MAD2L2 enhanced these malignant behaviors. Further investigation revealed that MYC proto-oncogene (c-MYC) mediated the functional role of MAD2L2 in glioblastoma, which was further validated through a rescue experiment. Moreover, using dual-luciferase reporter gene assays and ChIP assays determined that the upstream transcription factor E2F-1 regulated the expression of MAD2L2. CONCLUSION: Our study elucidated the role of MAD2L2 in maintaining glioblastoma stemness and promoting malignant behaviors through the regulation of c-MYC, suggesting its potential as a therapeutic target.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Humanos , Glioblastoma/patología , Neoplasias Encefálicas/patología , Proliferación Celular , Células Madre Neoplásicas/patología , Glioma/patología , Modelos Animales de Enfermedad , Luciferasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Mad2/genética , Proteínas Mad2/metabolismo
13.
EMBO Rep ; 22(7): e52242, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34013668

RESUMEN

During metaphase, in response to improper kinetochore-microtubule attachments, the spindle assembly checkpoint (SAC) activates the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C). This process is orchestrated by the kinase Mps1, which initiates the assembly of the MCC onto kinetochores through a sequential phosphorylation-dependent signalling cascade. The Mad1-Mad2 complex, which is required to catalyse MCC formation, is targeted to kinetochores through a direct interaction with the phosphorylated conserved domain 1 (CD1) of Bub1. Here, we present the crystal structure of the C-terminal domain of Mad1 (Mad1CTD ) bound to two phosphorylated Bub1CD1 peptides at 1.75 Å resolution. This interaction is mediated by phosphorylated Bub1 Thr461, which not only directly interacts with Arg617 of the Mad1 RLK (Arg-Leu-Lys) motif, but also directly acts as an N-terminal cap to the CD1 α-helix dipole. Surprisingly, only one Bub1CD1 peptide binds to the Mad1 homodimer in solution. We suggest that this stoichiometry is due to inherent asymmetry in the coiled-coil of Mad1CTD and has implications for how the Mad1-Bub1 complex at kinetochores promotes efficient MCC assembly.


Asunto(s)
Proteínas de Ciclo Celular , Cinetocoros , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cinetocoros/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Fosforilación , Transducción de Señal , Huso Acromático/metabolismo
14.
PLoS Genet ; 16(11): e1009184, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137813

RESUMEN

In mitosis and meiosis, chromosome segregation is triggered by the Anaphase-Promoting Complex/Cyclosome (APC/C), a multi-subunit ubiquitin ligase that targets proteins for degradation, leading to the separation of chromatids. APC/C activation requires phosphorylation of its APC3 and APC1 subunits, which allows the APC/C to bind its co-activator Cdc20. The identity of the kinase(s) responsible for APC/C activation in vivo is unclear. Cyclin B3 (CycB3) is an activator of the Cyclin-Dependent Kinase 1 (Cdk1) that is required for meiotic anaphase in flies, worms and vertebrates. It has been hypothesized that CycB3-Cdk1 may be responsible for APC/C activation in meiosis but this remains to be determined. Using Drosophila, we found that mutations in CycB3 genetically enhance mutations in tws, which encodes the B55 regulatory subunit of Protein Phosphatase 2A (PP2A) known to promote mitotic exit. Females heterozygous for CycB3 and tws loss-of-function alleles lay embryos that arrest in mitotic metaphase in a maternal effect, indicating that CycB3 promotes anaphase in mitosis in addition to meiosis. This metaphase arrest is not due to the Spindle Assembly Checkpoint (SAC) because mutation of mad2 that inactivates the SAC does not rescue the development of embryos from CycB3-/+, tws-/+ females. Moreover, we found that CycB3 promotes APC/C activity and anaphase in cells in culture. We show that CycB3 physically associates with the APC/C, is required for phosphorylation of APC3, and promotes APC/C association with its Cdc20 co-activators Fizzy and Cortex. Our results strongly suggest that CycB3-Cdk1 directly activates the APC/C to promote anaphase in both meiosis and mitosis.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Anafase/fisiología , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Proteínas de Drosophila/metabolismo , Animales , Animales Modificados Genéticamente , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdc20/metabolismo , Línea Celular , Segregación Cromosómica/fisiología , Ciclina B/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Mutación con Pérdida de Función , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Masculino , Metafase/fisiología , Modelos Animales , Mutagénesis , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación
15.
Zygote ; 31(6): 605-611, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37994469

RESUMEN

Maintaining genomic stability is crucial for normal development. At earlier stages of preimplantation development, as the embryonic genome activation is not fully completed, the embryos may be more prone to abnormalities. Aneuploidies are one of the most common genetic causes of implantation failure or first-trimester miscarriages. Apoptosis is a crucial mechanism to eliminate damaged or abnormal cells from the organism to enable healthy growth. Therefore, this study aimed to determine the relationship between the expression levels of genes involved in apoptosis in human aneuploid and euploid blastocysts. In total, 32 human embryos obtained from 21 patients were used for this study. Trophectoderm biopsies were performed and next-generation screening was carried out for aneuploidy screening. Total RNA was extracted from each blastocyst separately and cDNA was synthesized. Gene expression levels were evaluated using RT-PCR. The statistical analysis was performed to evaluate the gene expression level variations in the euploid and aneuploid embryos, respectively. The expression level of the BAX gene was significantly different between the aneuploid and euploid samples. BAX expression levels were found to be 1.5-fold lower in aneuploid cells. However, the expression levels of BAK and MAD2L1 genes were similar in each group. This study aimed to investigate the possible role of genes involved in apoptosis and aneuploidy mechanisms. The findings of this investigation revealed that the BAX gene was expressed significantly differently between aneuploid and euploid embryos. Therefore, it is possible that the genes involved in the apoptotic pathway have a role in the aneuploidy mechanism.


Asunto(s)
Aneuploidia , Expresión Génica , Femenino , Humanos , Embarazo , Proteína X Asociada a bcl-2/genética , Blastocisto/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Diagnóstico Preimplantación
16.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958783

RESUMEN

Rev7 is a regulatory protein with roles in translesion synthesis (TLS), double strand break (DSB) repair, replication fork protection, and cell cycle regulation. Rev7 forms a homodimer in vitro using its HORMA (Hop, Rev7, Mad2) domain; however, the functional importance of Rev7 dimerization has been incompletely understood. We analyzed the functional properties of cells expressing either wild-type mouse Rev7 or Rev7K44A/R124A/A135D, a mutant that cannot dimerize. The expression of wild-type Rev7, but not the mutant, rescued the sensitivity of Rev7-/- cells to X-rays and several alkylating agents and reversed the olaparib resistance phenotype of Rev7-/- cells. Using a novel fluorescent host-cell reactivation assay, we found that Rev7K44A/R124A/A135D is unable to promote gap-filling TLS opposite an abasic site analog. The Rev7 dimerization interface is also required for shieldin function, as both Rev7-/- cells and Rev7-/- cells expressing Rev7K44A/R124A/A135D exhibit decreased proficiency in rejoining some types of double strand breaks, as well as increased homologous recombination. Interestingly, Rev7K44A/R124A/A135D retains some function in cell cycle regulation, as it maintains an interaction with Ras-related nuclear protein (Ran) and partially rescues the formation of micronuclei. The mutant Rev7 also rescues the G2/M accumulation observed in Rev7-/- cells but does not affect progression through mitosis following nocodazole release. We conclude that while Rev7 dimerization is required for its roles in TLS, DSB repair, and regulation of the anaphase promoting complex, dimerization is at least partially dispensable for promoting mitotic spindle assembly through its interaction with Ran.


Asunto(s)
Reparación del ADN , Replicación del ADN , Animales , Ratones , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mitosis/genética
17.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047677

RESUMEN

This study aimed to enhance homology-directed repair (HDR) efficiency in CRISPR/Cas-mediated genome editing by targeting three key factors regulating the balance between HDR and non-homologous end joining (NHEJ): MAD2L2, SCAI, and Ligase IV. In order to achieve this, a cellular model using mutated eGFP was designed to monitor HDR events. Results showed that MAD2L2 knockdown and SCR7 treatment significantly improved HDR efficiency during Cas9-mediated HDR repair of the mutated eGFP gene in the HEK293T cell line. Fusion protein Cas9-SCAI did not improve HDR. This study is the first to demonstrate that MAD2L2 knockdown during CRISPR-mediated gene editing in HEK293T cells can increase precise correction by up to 10.2 times. The study also confirmed a moderate but consistent effect of SCR7, an inhibitor of Ligase IV, which increased HDR by 1.7 times. These findings provide valuable insights into improving HDR-based genome editing efficiency.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas Mad2 , Reparación del ADN por Recombinación , Factores de Transcripción , Humanos , Reparación del ADN por Unión de Extremidades , Edición Génica/métodos , Células HEK293 , Ligasas/genética , Proteínas Mad2/genética , Factores de Transcripción/genética
18.
Hum Mol Genet ; 29(10): 1673-1688, 2020 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-32337580

RESUMEN

Twist1 is a basic helix-loop-helix transcription factor, essential during early development in mammals. While Twist1 induces epithelial-to-mesenchymal transition (EMT), here we show that Twist1 overexpression enhances nuclear and mitotic aberrations. This is accompanied by an increase in whole chromosomal copy number gains and losses, underscoring the role of Twist1 in inducing chromosomal instability (CIN) in colorectal cancer cells. Array comparative genomic hybridization (array CGH) analysis further shows sub-chromosomal deletions, consistent with an increased frequency of DNA double strand breaks (DSBs). Remarkably, Twist1 overexpression downmodulates key cell cycle checkpoint factors-Bub1, BubR1, Mad1 and Mad2-that regulate CIN. Mathematical simulations using the RACIPE tool show a negative correlation of Twist1 with E-cadherin and BubR1. Data analyses of gene expression profiles of patient samples from The Cancer Genome Atlas (TCGA) reveal a positive correlation between Twist1 and mesenchymal genes across cancers, whereas the correlation of TWIST1 with CIN and DSB genes is cancer subtype-specific. Taken together, these studies highlight the mechanistic involvement of Twist1 in the deregulation of factors that maintain genome stability during EMT in colorectal cancer cells. Twist1 overexpression enhances genome instability in the context of EMT that further contributes to cellular heterogeneity. In addition, these studies imply that Twist1 downmodulates nuclear lamins that further alter spatiotemporal organization of the cancer genome and epigenome. Notwithstanding their genetic background, colorectal cancer cells nevertheless maintain their overall ploidy, while the downstream effects of Twist1 enhance CIN and DNA damage enriching for sub-populations of aggressive cancer cells.


Asunto(s)
Cadherinas/genética , Inestabilidad Cromosómica/genética , Neoplasias Colorrectales/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína 1 Relacionada con Twist/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Hibridación Genómica Comparativa , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteínas Mad2/genética
19.
EMBO J ; 37(18)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30154076

RESUMEN

DNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1-, and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision-making process during DSB repair.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Proteínas Mad2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Fase G2/genética , Células HEK293 , Humanos , Proteínas Mad2/genética , Fase S/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
20.
EMBO J ; 37(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29789392

RESUMEN

To exploit vulnerabilities of tumors, it is urgent to identify associated defects in genome maintenance. One unsolved problem is the mechanism of regulation of DNA double-strand break repair by REV7 in complex with 53BP1 and RIF1, and its influence on repair pathway choice between homologous recombination and non-homologous end-joining. We searched for REV7-associated factors in human cells and found FAM35A, a previously unstudied protein with an unstructured N-terminal region and a C-terminal region harboring three OB-fold domains similar to single-stranded DNA-binding protein RPA, as novel interactor of REV7/RIF1/53BP1. FAM35A re-localized in damaged cell nuclei, and its knockdown caused sensitivity to DNA-damaging agents. In a BRCA1-mutant cell line, however, depletion of FAM35A increased resistance to camptothecin, suggesting that FAM35A participates in processing of DNA ends to allow more efficient DNA repair. We found FAM35A absent in one widely used BRCA1-mutant cancer cell line (HCC1937) with anomalous resistance to PARP inhibitors. A survey of FAM35A alterations revealed that the gene is altered at the highest frequency in prostate cancers (up to 13%) and significantly less expressed in metastatic cases, revealing promise for FAM35A as a therapeutically relevant cancer marker.


Asunto(s)
Proteína BRCA1/deficiencia , Biomarcadores de Tumor/metabolismo , Daño del ADN , Reparación del ADN , ADN de Neoplasias/metabolismo , Proteínas Mad2/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular , Línea Celular Tumoral , ADN de Neoplasias/genética , Proteínas de Unión al ADN , Células HEK293 , Humanos , Proteínas Mad2/genética , Mutación , Neoplasias/genética , Neoplasias/patología , Proteínas/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA