Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 293(10): 3593-3606, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29352103

RESUMEN

Platelets regulate vascular integrity by secreting a host of molecules that promote hemostasis and its sequelae. Given the importance of platelet exocytosis, it is critical to understand how it is controlled. The t-SNAREs, SNAP-23 and syntaxin-11, lack classical transmembrane domains (TMDs), yet both are associated with platelet membranes and redistributed into cholesterol-dependent lipid rafts when platelets are activated. Using metabolic labeling and hydroxylamine (HA)/HCl treatment, we showed that both contain thioester-linked acyl groups. Mass spectrometry mapping further showed that syntaxin-11 was modified on cysteine 275, 279, 280, 282, 283, and 285, and SNAP-23 was modified on cysteine 79, 80, 83, 85, and 87. Interestingly, metabolic labeling studies showed incorporation of [3H]palmitate into the t-SNAREs increased although the protein levels were unchanged, suggesting that acylation turns over on the two t-SNAREs in resting platelets. Exogenously added fatty acids did compete with [3H]palmitate for t-SNARE labeling. To determine the effects of acylation, we measured aggregation, ADP/ATP release, as well as P-selectin exposure in platelets treated with the acyltransferase inhibitor cerulenin or the thioesterase inhibitor palmostatin B. We found that cerulenin pretreatment inhibited t-SNARE acylation and platelet function in a dose- and time-dependent manner whereas palmostatin B had no detectable effect. Interestingly, pretreatment with palmostatin B blocked the inhibitory effects of cerulenin, suggesting that maintaining the acylation state is important for platelet function. Thus, our work shows that t-SNARE acylation is actively cycling in platelets and suggests that the enzymes regulating protein acylation could be potential targets to control platelet exocytosis in vivo.


Asunto(s)
Plaquetas/metabolismo , Cisteína/metabolismo , Exocitosis , Procesamiento Proteico-Postraduccional , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Acilación/efectos de los fármacos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/enzimología , Cisteína/química , Inhibidores Enzimáticos/farmacología , Exocitosis/efectos de los fármacos , Humanos , Hidroxilamina/farmacología , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Oxidación-Reducción , Selectina-P/metabolismo , Ácido Palmítico/metabolismo , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Qa-SNARE/química , Proteínas Qb-SNARE/química , Proteínas Qc-SNARE/química , Sustancias Reductoras/farmacología , Propiedades de Superficie/efectos de los fármacos , Tioléster Hidrolasas/antagonistas & inhibidores , Tioléster Hidrolasas/metabolismo , Tritio
2.
J Biol Chem ; 292(39): 16199-16210, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28798239

RESUMEN

Tumor cell invasion involves targeted localization of proteins required for interactions with the extracellular matrix and for proteolysis. The localization of many proteins during these cell-extracellular matrix interactions relies on membrane trafficking mediated in part by SNAREs. The SNARE protein syntaxin4 (Stx4) is involved in the formation of invasive structures called invadopodia; however, it is unclear how Stx4 function is regulated during tumor cell invasion. Munc18c is known to regulate Stx4 activity, and here we show that Munc18c is required for Stx4-mediated invadopodium formation and cell invasion. Biochemical and microscopic analyses revealed a physical association between Munc18c and Stx4, which was enhanced during invadopodium formation, and that a reduction in Munc18c expression decreases invadopodium formation. We also found that an N-terminal Stx4-derived peptide associates with Munc18c and inhibits endogenous interactions of Stx4 with synaptosome-associated protein 23 (SNAP23) and vesicle-associated membrane protein 2 (VAMP2). Furthermore, expression of the Stx4 N-terminal peptide decreased invadopodium formation and cell invasion in vitro Of note, cells expressing the Stx4 N-terminal peptide exhibited impaired trafficking of membrane type 1 matrix metalloproteinase (MT1-MMP) and EGF receptor (EGFR) to the cell surface during invadopodium formation. Our findings implicate Munc18c as a regulator of Stx4-mediated trafficking of MT1-MMP and EGFR, advancing our understanding of the role of SNARE function in the localization of proteins that drive tumor cell invasion.


Asunto(s)
Adenocarcinoma/metabolismo , Matriz Extracelular/metabolismo , Fibrosarcoma/metabolismo , Proteínas Munc18/metabolismo , Proteínas de Neoplasias/metabolismo , Podosomas/metabolismo , Proteínas Qa-SNARE/metabolismo , Adenocarcinoma/patología , Unión Competitiva , Línea Celular Tumoral , Receptores ErbB/metabolismo , Matriz Extracelular/patología , Fibrosarcoma/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Metaloproteinasa 14 de la Matriz/metabolismo , Proteínas Munc18/antagonistas & inhibidores , Proteínas Munc18/química , Proteínas Munc18/genética , Invasividad Neoplásica , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Podosomas/patología , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética , Proteínas Qb-SNARE/antagonistas & inhibidores , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/antagonistas & inhibidores , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/antagonistas & inhibidores , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
3.
Biochim Biophys Acta ; 1858(11): 2709-2716, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27480805

RESUMEN

Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas de Arabidopsis/química , Membrana Celular/química , Liposomas/química , Ácidos Fosfatidicos/química , Proteínas Recombinantes de Fusión/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Bioensayo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Humanos , Liposomas/metabolismo , Lisofosfatidilcolinas/farmacología , Proteínas de Unión a Fosfato , Ácidos Fosfatidicos/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 290(17): 10657-66, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25750128

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complexes play essential roles in catalyzing intracellular membrane fusion events although the assembly pathway and molecular arrangement of SNARE complexes in membrane fusion reactions are not well understood. Here we monitored interactions of the R-SNARE protein Sec22 through a cysteine scanning approach and detected efficient formation of cross-linked Sec22 homodimers in cellular membranes when cysteine residues were positioned in the SNARE motif or C terminus of the transmembrane domain. When specific Sec22 cysteine derivatives are present on both donor COPII vesicles and acceptor Golgi membranes, the formation of disulfide cross-links provide clear readouts on trans- and cis-SNARE arrangements during this fusion event. The Sec22 transmembrane domain was required for efficient homodimer formation and for membrane fusion suggesting a functional role for Sec22 homodimers. We propose that Sec22 homodimers promote assembly of higher-order SNARE complexes to catalyze membrane fusion. Sec22 is also reported to function in macroautophagy and in formation of endoplasmic reticulum-plasma membrane contact sites therefore homodimer assembly may regulate Sec22 activity across a range of cellular processes.


Asunto(s)
Fusión de Membrana/fisiología , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sustitución de Aminoácidos , Cisteína/química , Fusión de Membrana/genética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Biochem Soc Trans ; 42(5): 1396-400, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25233421

RESUMEN

Insulin plays a fundamental role in whole-body glucose homeostasis. Central to this is the hormone's ability to rapidly stimulate the rate of glucose transport into adipocytes and muscle cells [1]. Upon binding its receptor, insulin stimulates an intracellular signalling cascade that culminates in redistribution of glucose transporter proteins, specifically the GLUT4 isoform, from intracellular stores to the plasma membrane, a process termed 'translocation' [1,2]. This is an example of regulated membrane trafficking [3], a process that also underpins other aspects of physiology in a number of specialized cell types, for example neurotransmission in brain/neurons and release of hormone-containing vesicles from specialized secretory cells such as those found in pancreatic islets. These processes invoke a number of intriguing biological questions as follows. How is the machinery involved in these membrane trafficking events mobilized in response to a stimulus? How do the signalling pathways that detect the external stimulus interface with the trafficking machinery? Recent studies of insulin-stimulated GLUT4 translocation offer insight into such questions. In the present paper, we have reviewed these studies and draw parallels with other regulated trafficking systems.


Asunto(s)
Adipocitos Blancos/metabolismo , Membrana Celular/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Receptor de Insulina/agonistas , Proteínas SNARE/metabolismo , Transducción de Señal , Animales , Transportador de Glucosa de Tipo 4/química , Humanos , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/metabolismo , Receptor de Insulina/metabolismo , Proteínas SNARE/química , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
6.
Proc Natl Acad Sci U S A ; 108(30): 12277-82, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21746902

RESUMEN

SNARE proteins are crucial for membrane fusion in vesicular transport. To ensure efficient and accurate fusion, SNAREs need to be sorted into different budding vesicles. This process is usually regulated by specific recognition between SNAREs and their adaptor proteins. How different pairs of SNAREs and adaptors achieve their recognition is unclear. Here, we report the recognition between yeast SNARE Vti1p and its adaptor Ent3p derived from three crystal structures. Surprisingly, this yeast pair Vti1p/Ent3p interacts through a distinct binding site compared to their homologues vti1b/epsinR in mammals. An opposite surface on Vti1p_Habc domain binds to a conserved area on the epsin N-terminal homology (ENTH) domain of Ent3p. Two-hybrid, in vitro pull-down and in vivo experiments indicate this binding interface is important for correct localization of Vti1p in the cell. This previously undescribed discovery that a cargo and adaptor pair uses different binding sites across species suggests the diversity of SNARE-adaptor recognition in vesicular transport.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Fusión de Membrana/fisiología , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
7.
Nature ; 450(7169): 570-4, 2007 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-18033301

RESUMEN

Soluble NSF attachment protein receptors (SNAREs) are type II transmembrane proteins that have critical roles in providing the specificity and energy for transport-vesicle fusion and must therefore be correctly partitioned between vesicle and organelle membranes. Like all other cargo, SNAREs need to be sorted into the forming vesicles by direct interaction with components of the vesicles' coats. Here we characterize the molecular details governing the sorting of a SNARE into clathrin-coated vesicles, namely the direct recognition of the three-helical bundle H(abc) domain of the mouse SNARE Vti1b by the human clathrin adaptor epsinR (EPNR, also known as CLINT1). Structures of each domain and of their complex show that this interaction (dissociation constant 22 muM) is mediated by surface patches composed of approximately 15 residues each, the topographies of which are dependent on each domain's overall fold. Disruption of the interface with point mutations abolishes the interaction in vitro and causes Vti1b to become relocalized to late endosomes and lysosomes. This new class of highly specific, surface-surface interaction between the clathrin coat component and the cargo is distinct from the widely observed binding of short, linear cargo motifs by the assembly polypeptide (AP) complex and GGA adaptors and is therefore not vulnerable to competition from standard motif-containing cargoes for incorporation into clathrin-coated vesicles. We propose that conceptually similar but mechanistically different interactions will direct the post-Golgi trafficking of many SNAREs.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Endosomas/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Qb-SNARE/química
8.
EMBO J ; 27(15): 2031-42, 2008 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-18650938

RESUMEN

The homotypic fusion of yeast vacuoles, each with 3Q- and 1R-SNARE, requires SNARE chaperones (Sec17p/Sec18p and HOPS) and regulatory lipids (sterol, diacylglycerol and phosphoinositides). Pairs of liposomes of phosphatidylcholine/phosphatidylserine, bearing three vacuolar Q-SNAREs on one and the R-SNARE on the other, undergo slow lipid mixing, but this is unaffected by HOPS and inhibited by Sec17p/Sec18p. To study these essential fusion components, we reconstituted proteoliposomes of a more physiological composition, bearing vacuolar lipids and all four vacuolar SNAREs. Their fusion requires Sec17p/Sec18p and HOPS, and each regulatory lipid is important for rapid fusion. Although SNAREs can cause both fusion and lysis, fusion of these proteoliposomes with Sec17p/Sec18p and HOPS is not accompanied by lysis. Sec17p/Sec18p, which disassemble SNARE complexes, and HOPS, which promotes and proofreads SNARE assembly, act synergistically to form fusion-competent SNARE complexes, and this synergy requires phosphoinositides. This is the first chemically defined model of the physiological interactions of these conserved fusion catalysts.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Lípidos/fisiología , Fusión de Membrana/fisiología , Chaperonas Moleculares/fisiología , Proteínas SNARE/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatasas/química , Genes Fúngicos , Lípidos/química , Liposomas , Chaperonas Moleculares/química , Fosfatidilcolinas/química , Fosfatidilserinas/química , Unión Proteica , Transporte de Proteínas , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/fisiología , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/fisiología , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/fisiología , Proteínas R-SNARE/química , Proteínas R-SNARE/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/química , Proteínas de Transporte Vesicular/química
9.
Plant Mol Biol ; 72(4-5): 433-44, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20012673

RESUMEN

Membrane associated proteins SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) provide the minimal fusion machinery necessary for cellular vesicles to fuse to target organelle membranes in eukaryotic cells. Despite the conserved nature of the fusion machinery in all eukaryotes, it still remains challenging to identify functional SNARE pairs in higher plants. We developed a method based on a split-luciferase complementation assay for detecting changes in SNARE-SNARE interaction by luminescence within Arabidopsis protoplasts that express recombinant proteins at physiological levels in 96-well plates. The reliability of the assay was confirmed by three experiments. First, reduction of the SNARE-SNARE interaction caused by a single amino acid substitution adjacent to the SNARE motif in endosome-localized AtVAM3/SYP22 (syntaxin of plant 22) was detected by a reduction of luminescence. Second, reduction of the interaction between plasma-membrane localized SYP121 and VAMP722 in response to sodium azide was detected in real-time. Third, the results of 21 SNARE pairs investigated by this method largely agreed with the results from previously reported co-immunoprecipitation assays. Using the method, we newly identified the interaction between SYP121 and VAMP722 was significantly increased when the protoplasts were incubated in the light. Microscopic observation of transgenic Arabidopsis expressing GFP-SYP121 (green fluorescent protein tagged SYP121) from its own promoter suggested that the plasma-membrane localization of GFP-SYP121 is maintained by light. These suggested that the vesicle trafficking pathway mediated by SYP121 might be regulated by light in Arabidopsis. In general, this article demonstrated the method that can generate new biological insight of the SNARE protein interactions in plant cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas SNARE/metabolismo , Sustitución de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mediciones Luminiscentes , Procesos Fototróficos , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Protoplastos/metabolismo , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE/química , Proteínas SNARE/genética
10.
Mol Biol Cell ; 29(13): 1753-1762, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29771640

RESUMEN

SNAP-23 is a plasma membrane-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) involved in Fc receptor (FcR)-mediated phagocytosis. However, the regulatory mechanism underlying its function remains elusive. Using phosphorylation-specific antibodies, SNAP-23 was found to be phosphorylated at Ser95 in macrophages. To understand the role of this phosphorylation, we established macrophage lines overexpressing the nonphosphorylatable S95A or the phosphomimicking S95D mutation. The efficiency of phagosome formation and maturation was severely reduced in SNAP-23-S95D-overexpressing cells. To examine whether phosphorylation at Ser95 affected SNAP-23 structure, we constructed intramolecular Förster resonance energy transfer (FRET) probes of SNAP-23 designed to evaluate the approximation of the N termini of the two SNARE motifs. Interestingly, a high FRET efficiency was detected on the membrane when the S95D probe was used, indicating that phosphorylation at Ser95 caused a dynamic structural shift to the closed form. Coexpression of IκB kinase (IKK) 2 enhanced the FRET efficiency of the wild-type probe on the phagosome membrane. Furthermore, the enhanced phagosomal FRET signal in interferon-γ-activated macrophages was largely dependent on IKK2, and this kinase mediated a delay in phagosome-lysosome fusion. These results suggested that SNAP-23 phosphorylation at Ser95 played an important role in the regulation of SNARE-dependent membrane fusion during FcR-mediated phagocytosis.


Asunto(s)
Macrófagos/metabolismo , Fagosomas/metabolismo , Fosfoserina/metabolismo , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/metabolismo , Receptores Fc/metabolismo , Humanos , Interferón gamma/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Macrófagos/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fagocitosis/efectos de los fármacos , Fagosomas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Relación Estructura-Actividad
11.
BMC Med Genomics ; 11(1): 111, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30547786

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a major health burden in need for new medication. To identify potential drug targets a genomic study was performed in lipid-laden primary human hepatocyte (PHH) and human hepatoma cell cultures. METHODS: PHH, HuH7 and HepG2 hepatoma cell cultures were treated with lipids and/or TNFα. Intracellular lipid load was quantified with the ORO assay. The Affymetrix HG-U133+ array system was employed to perform transcriptome analysis. The lipid droplet (LD) growth and fusion was determined by fluorescence microscopy. LD associated proteins were imaged by confocal immunofluorescence microscopy and confirmed by Western immunoblotting. Bioinformatics defined perturbed metabolic pathways. RESULTS: Whole genome expression profiling identified 227, 1031 and 571 significant regulated genes. Likewise, the combined lipid and TNFα treatment of PHH, HuH7 and HepG2 cell cultures revealed 154, 1238 and 278 differentially expressed genes. Although genomic responses differed among in-vitro systems, commonalities were ascertained by filtering the data for LD associated gene regulations. Among others the LD-growth and fusion associated cell death inducing DFFA like effector C (CIDEC), perilipins (PLIN2, PLIN3), the synaptosome-associated-protein 23 and the vesicle associated membrane protein 3 were strongly up-regulated. Likewise, the PPAR targets pyruvate-dehydrogenase-kinase-4 and angiopoietin-like-4 were up-regulated as was hypoxia-inducible lipid droplet-associated (HILPDA), flotilin and FGF21. Their inhibition ameliorates triglyceride and cholesterol accumulation. TNFα treatment elicited strong induction of the chemokine CXCL8, the kinases MAP3K8, MAP4K4 and negative regulators of cytokine signaling, i.e. SOCS2&SOCS3. Live cell imaging of DsRED calreticulin plasmid transfected HuH7 cells permitted an assessment of LD growth and fusion and confocal immunofluorescence microscopy evidenced induced LD-associated PLIN2, CIDEC, HIF1α, HILPDA, JAK1, PDK4 and ROCK2 expression. Notwithstanding, CPT1A protein was repressed to protect mitochondria from lipid overload. Pharmacological inhibition of the GTPase-dynamin and the fatty acid transporter-2 reduced lipid uptake by 28.5 and 35%, respectively. Finally, a comparisons of in-vitro/NAFLD patient biopsy findings confirmed common gene regulations thus demonstrating clinical relevance. CONCLUSION: The genomics of fat-laden hepatocytes revealed LD-associated gene regulations and perturbed metabolic pathways. Immunofluorescence microscopy confirmed expression of coded proteins to provide a rationale for therapeutic intervention strategies. Collectively, the in-vitro system permits testing of drug candidates.


Asunto(s)
Genómica/métodos , Gotas Lipídicas/química , Enfermedad del Hígado Graso no Alcohólico/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Células Cultivadas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Oléico/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Ácido Palmítico/farmacología , Perilipina-2/metabolismo , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteína 3 de Membrana Asociada a Vesículas/química , Proteína 3 de Membrana Asociada a Vesículas/metabolismo
12.
Dis Model Mech ; 10(12): 1391-1398, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-28982678

RESUMEN

Progressive myoclonus epilepsies (PMEs) are inherited disorders characterized by myoclonus, generalized tonic-clonic seizures, and ataxia. One of the genes that is associated with PME is the ER-to-Golgi Qb-SNARE GOSR2, which forms a SNARE complex with syntaxin-5, Bet1 and Sec22b. Most PME patients are homo-zygous for a p.Gly144Trp mutation and develop similar clinical presentations. Recently, a patient who was compound heterozygous for p.Gly144Trp and a previously unseen p.Lys164del mutation was identified. Because this patient presented with a milder disease phenotype, we hypothesized that the p.Lys164del mutation may be less severe compared to p.Gly144Trp. To characterize the effect of the p.Gly144Trp and p.Lys164del mutations, both of which are present in the SNARE motif of GOSR2, we examined the corresponding mutations in the yeast ortholog Bos1. Yeasts expressing the orthologous mutants in Bos1 showed impaired growth, suggesting a partial loss of function, which was more severe for the Bos1 p.Gly176Trp mutation. Using anisotropy and gel filtration, we report that Bos1 p.Gly176Trp and p.Arg196del are capable of complex formation, but with partly reduced activity. Molecular dynamics (MD) simulations showed that the hydrophobic core, which triggers SNARE complex formation, is compromised due to the glycine-to-tryptophan substitution in both GOSR2 and Bos1. In contrast, the deletion of residue p.Lys164 (or p.Arg196del in Bos1) interferes with the formation of hydrogen bonds between GOSR2 and syntaxin-5. Despite these perturbations, all SNARE complexes stayed intact during longer simulations. Thus, our data suggest that the milder course of disease in compound heterozygous PME is due to less severe impairment of the SNARE function.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Mutación/genética , Epilepsias Mioclónicas Progresivas/genética , Proteínas Qb-SNARE/genética , Proteínas SNARE/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arginina/genética , Simulación por Computador , Humanos , Modelos Moleculares , Proteínas Qb-SNARE/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
PLoS One ; 12(6): e0178101, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28575006

RESUMEN

SNARE proteins are essential to vesicle trafficking and membrane fusion in eukaryotic cells. In addition, the SNARE-mediated secretory pathway can deliver diverse defense products to infection sites during exocytosis-associated immune responses in plants. In this study, a novel gene (CkSNAP33) encoding a synaptosomal-associated protein was isolated from Cynanchum komarovii and characterized. CkSNAP33 contains Qb- and Qc-SNARE domains in the N- and C-terminal regions, respectively, and shares high sequence identity with AtSNAP33 from Arabidopsis. CkSNAP33 expression was induced by H2O2, salicylic acid (SA), Verticillium dahliae, and wounding. Arabidopsis lines overexpressing CkSNAP33 had longer primary roots and larger seedlings than the wild type (WT). Transgenic Arabidopsis lines showed significantly enhanced resistance to V. dahliae, and displayed reductions in disease index and fungal biomass, and also showed elevated expression of PR1 and PR5. The leaves of transgenic plants infected with V. dahliae showed strong callose deposition and cell death that hindered the penetration and spread of the fungus at the infection site. Taken together, these results suggest that CkSNAP33 is involved in the defense response against V. dahliae and enhanced disease resistance in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/microbiología , Cynanchum/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Verticillium/fisiología , Secuencia de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/química , Cynanchum/química , Cynanchum/microbiología , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/química , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Dominios Proteicos , Proteínas Qb-SNARE/química , Proteínas Qc-SNARE/química , Alineación de Secuencia
14.
PLoS One ; 9(7): e102526, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25025521

RESUMEN

We developed genetically-encoded fluorescent sensors based on Förster Resonance Energy Transfer to monitor phosphatidic acid (PA) fluctuations in the plasma membrane using Spo20 as PA-binding motif. Basal PA levels and phospholipase D activity varied in different cell types. In addition, stimuli that activate PA phosphatases, leading to lower PA levels, increased lamellipodia and filopodia formation. Lower PA levels were observed in the leading edge than in the trailing edge of migrating HeLa cells. In MSC80 and OLN93 cells, which are stable cell lines derived from Schwann cells and oligodendrocytes, respectively, a higher ratio of diacylglycerol to PA levels was demonstrated in the membrane processes involved in myelination, compared to the cell body. We propose that the PA sensors reported here are valuable tools to unveil the role of PA in a variety of intracellular signaling pathways.


Asunto(s)
Membrana Celular/metabolismo , Ácidos Fosfatidicos/metabolismo , Técnicas Biosensibles , Línea Celular Tumoral , Movimiento Celular , Diglicéridos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Liposomas/química , Microscopía Fluorescente , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Qb-SNARE/química , Proteínas Qc-SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Análisis de la Célula Individual
15.
PLoS One ; 9(11): e113484, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25426975

RESUMEN

The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5)bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS), suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context.


Asunto(s)
Ácidos Fosfatidicos/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Línea Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Liposomas/química , Liposomas/metabolismo , Sondas Moleculares , Datos de Secuencia Molecular , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Unión Proteica , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
16.
Traffic ; 8(11): 1630-43, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17714435

RESUMEN

Sec9p and Spo20p are two SNAP25 family SNARE proteins specialized for different developmental stages in yeast. Sec9p interacts with Sso1/2p and Snc1/2p to mediate intracellular trafficking between post-Golgi vesicles and the plasma membrane during vegetative growth. Spo20p replaces Sec9p in the generation of prospore membranes during sporulation. The function of Spo20p requires enzymatically active Spo14p, which is a phosphatidylcholine (PC)-specific phospholipase D that hydrolyzes PC to generate phosphatidic acid (PA). Phosphatidic acid is required to localize Spo20p properly during sporulation; however, it seems to have additional roles that are not fully understood. Here we compared the fusion mediated by all combinations of the Sec9p or Spo20p C-terminal domains with Sso1p/Sso2p and Snc1p/Snc2p. Our results show that Spo20p forms a less efficient SNARE complex than Sec9p. The combination of Sso2p/Spo20c is the least fusogenic t-SNARE complex. Incorporation of PA in the lipid bilayer stimulates SNARE-mediated membrane fusion by all t-SNARE complexes, likely by decreasing the energetic barrier during membrane merger. This effect may allow the weak SNARE complex containing Spo20p to function during sporulation. In addition, PA can directly interact with the juxtamembrane region of Sso1p, which contributes to the stimulatory effects of PA on membrane fusion. Our results suggest that the fusion strength of SNAREs, the composition of organelle lipids and lipid-SNARE interactions may be coordinately regulated to control the rate and specificity of membrane fusion.


Asunto(s)
Ácidos Fosfatidicos/química , Proteínas Qb-SNARE/química , Proteínas Qc-SNARE/química , Proteínas Recombinantes/química , Proteínas SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Catálisis , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Lípidos/química , Fusión de Membrana , Datos de Secuencia Molecular , Cloruro de Potasio/química , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química
17.
Blood ; 110(5): 1492-501, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17485553

RESUMEN

SNARE proteins direct membrane fusion events required for platelet granule secretion. These proteins are oriented in cell membranes such that most of the protein resides in a cytosolic compartment. Evaluation of SNARE protein localization in activated platelets using immunonanogold staining and electron microscopy, however, demonstrated expression of SNAP-23 and syntaxin-2 on the extracellular surface of the platelet plasma membrane. Flow cytometry of intact platelets confirmed trypsin-sensitive SNAP-23 and syntaxin-2 localization to the extracellular surface of the plasma membrane. Acyl-protein thioesterase 1 and botulinum toxin C light chain released SNAP-23 and syntaxin-2, respectively, from the surface of intact platelets. When resting platelets were incubated with both acyl-protein thioesterase 1 and botulinum toxin C light chain, a complex that included both SNAP-23 and syntaxin-2 was detected in supernatants, indicating that extracellular SNARE proteins retain their ability to bind one another. These observations represent the first description of SNARE proteins on the extracellular surface of a cell.


Asunto(s)
Plaquetas/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Activación Plaquetaria/fisiología , Proteínas Qb-SNARE/biosíntesis , Proteínas Qc-SNARE/biosíntesis , Sintaxina 1/biosíntesis , Plaquetas/química , Plaquetas/ultraestructura , Toxinas Botulínicas/química , Membrana Celular/química , Membrana Celular/ultraestructura , Citometría de Flujo , Humanos , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Palmitoil-CoA Hidrolasa/química , Proteínas Qb-SNARE/química , Proteínas Qc-SNARE/química , Vesículas Secretoras/química , Vesículas Secretoras/metabolismo , Sintaxina 1/química
18.
J Biol Chem ; 281(25): 17076-17083, 2006 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-16621800

RESUMEN

The SNARE proteins are essential components of the intracellular fusion machinery. It is thought that they form a tight four-helix complex between membranes, in effect initiating fusion. Most SNAREs contain a single coiled-coil region, referred to as the SNARE motif, directly adjacent to a single transmembrane domain. The neuronal SNARE SNAP-25 defines a subfamily of SNARE proteins with two SNARE helices connected by a longer linker, comprising also the proteins SNAP-23 and SNAP-29. We now report the initial characterization of a novel vertebrate homologue termed SNAP-47. Northern blot and immunoblot analysis revealed ubiquitous tissue distribution, with particularly high levels in nervous tissue. In neurons, SNAP-47 shows a widespread distribution on intracellular membranes and is also enriched in synaptic vesicle fractions. In vitro, SNAP-47 substituted for SNAP-25 in SNARE complex formation with the neuronal SNAREs syntaxin 1a and synaptobrevin 2, and it also substituted for SNAP-25 in proteoliposome fusion. However, neither complex assembly nor fusion was as efficient as with SNAP-25.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Qb-SNARE/biosíntesis , Proteínas Qc-SNARE/biosíntesis , Proteínas SNARE/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Neuronas/metabolismo , Proteínas Qb-SNARE/química , Proteínas Qc-SNARE/química , Ratas , Proteínas SNARE/biosíntesis , Proteína 25 Asociada a Sinaptosomas/biosíntesis , Distribución Tisular , Proteínas de Transporte Vesicular/biosíntesis
19.
J Biol Chem ; 281(30): 20974-20982, 2006 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16735505

RESUMEN

Dietary long chain fatty acids are absorbed in the intestine, esterified to triacylglycerol, and packaged in the unique lipoprotein of the intestine, the chylomicron. The rate-limiting step in the transit of chylomicrons through the enterocyte is the exit of chylomicrons from the endoplasmic reticulum in prechylomicron transport vesicles (PCTV) that transport chylomicrons to the cis-Golgi. Because chylomicrons are 250 nm in average diameter and lipid absorption is intermittent, we postulated that a unique SNARE pairing would be utilized to fuse PCTV with their target membrane, cis-Golgi. PCTV loaded with [(3)H]triacylglycerol were incubated with cis-Golgi and were separated from the Golgi by a sucrose step gradient. PCTV-chylomicrons acquire apolipoprotein-AI (apoAI) only after fusion with the Golgi. PCTV became isodense with Golgi upon incubation and were considered fused when their cargo chylomicrons acquired apoAI but docked when they did not. PCTV, docked with cis-Golgi, were solubilized in 2% Triton X-100, and proteins were immunoprecipitated using VAMP7 or rBet1 antibodies. In both cases, a 112-kDa complex was identified in nonboiled samples that dissociated upon boiling. The constituents of the complex were VAMP7, syntaxin 5, vti1a, and rBet1. Antibodies to each SNARE component significantly inhibited fusion of PCTV with cis-Golgi. Membrin, Sec22b, and Ykt6 were not found in the 112-kDa complex. We conclude that the PCTV-cis-Golgi SNARE complex is composed of VAMP7, syntaxin 5, Bet1, and vti1a.


Asunto(s)
Quilomicrones/química , Aparato de Golgi/metabolismo , Proteínas SNARE/química , Animales , Retículo Endoplásmico/metabolismo , Intestino Delgado/metabolismo , Proteínas Qa-SNARE/química , Proteínas Qb-SNARE/química , Proteínas Qc-SNARE/química , Proteínas R-SNARE/química , Ratas , Triglicéridos/química
20.
Proteomics ; 6(9): 2650-5, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16596705

RESUMEN

The high-throughput deposition of recombinant proteins on chips, beads or biosensor devices would be greatly facilitated by the implementation of self-assembly concepts. DNA-directed immobilization via conjugation of proteins to an oligonucleotide would be preeminently suited for this purpose. Here, we present a unique method to attach a single DNA address to proteins in one step during the purification from the E. coli lysate by fusion to human O6-alkylguanine-DNA-alkyltransferase (SNAP-tag) and the Avitag. Use of the conjugates in converting a DNA chip into a protein chip by self assembly is demonstrated.


Asunto(s)
Sondas Moleculares/química , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis por Matrices de Proteínas/métodos , Proteínas Recombinantes de Fusión/química , Secuencia de Bases , Escherichia coli/genética , Estudios de Factibilidad , Datos de Secuencia Molecular , Estructura Molecular , O(6)-Metilguanina-ADN Metiltransferasa/química , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis por Matrices de Proteínas/instrumentación , Proteínas Qb-SNARE/química , Proteínas Qc-SNARE/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA