RESUMEN
Many cytosolic proteins lacking a signal peptide, called leaderless cargoes, are secreted through unconventional secretion. Vesicle trafficking is a major pathway involved. It is unclear how leaderless cargoes enter into the vesicle. Here, we find a translocation pathway regulating vesicle entry and secretion of leaderless cargoes. We identify TMED10 as a protein channel for the vesicle entry and secretion of many leaderless cargoes. The interaction of TMED10 C-terminal region with a motif in the cargo accounts for the selective release of the cargoes. In an in vitro reconstitution assay, TMED10 directly mediates the membrane translocation of leaderless cargoes into the liposome, which is dependent on protein unfolding and enhanced by HSP90s. In the cell, TMED10 localizes on the endoplasmic reticulum (ER)-Golgi intermediate compartment and directs the entry of cargoes into this compartment. Furthermore, cargo induces the formation of TMED10 homo-oligomers which may act as a protein channel for cargo translocation.
Asunto(s)
Sistemas de Translocación de Proteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Transporte Biológico , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Señales de Clasificación de Proteína , Sistemas de Translocación de Proteínas/fisiología , Transporte de Proteínas/fisiología , Proteínas/metabolismo , Vías Secretoras , Proteínas de Transporte Vesicular/fisiologíaRESUMEN
The trans-Golgi network (TGN) is an important cargo sorting station within the cell where newly synthesized proteins are packaged into distinct transport carriers that are targeted to various destinations. To maintain the fidelity of protein transport, elaborate protein sorting machinery is employed to mediate sorting of specific cargo proteins into distinct transport carriers. Protein sorting requires assembly of the cytosolic sorting machinery onto the TGN membrane and capture of cargo proteins. We review the cytosolic and transmembrane sorting machinery that function at the TGN and describe molecular interactions and regulatory mechanisms that enable accurate protein sorting. In addition, we highlight the importance of TGN sorting in physiology and disease.
Asunto(s)
Transporte de Proteínas/fisiología , Red trans-Golgi/fisiología , Factor 1 de Ribosilacion-ADP/fisiología , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/fisiología , Polaridad Celular , Citosol/fisiología , Humanos , Lípidos de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Modelos Biológicos , Modelos Moleculares , Fosfolípidos/fisiología , Conformación Proteica , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas/inmunología , Relación Estructura-Actividad , Vesículas Transportadoras/fisiología , Proteínas de Transporte Vesicular/fisiología , Red trans-Golgi/inmunologíaRESUMEN
Multivesicular bodies (MVBs) are unique organelles in the endocytic pathway that contain vesicles in their lumen. Sorting and incorporation of material into such vesicles is a critical cellular process that has been intensely studied following discovery of the ESCRT (endosomal sorting complex required for transport) machinery just more than a decade ago. In this review, we summarize current understanding of the cellular functions of MVBs and how the ESCRT machinery contributes to MVB morphogenesis. We also highlight the importance of MVBs and ESCRTs in human health. We identify critical areas in which further mechanistic and spatiotemporal studies in living cells will advance this exciting area of research.
Asunto(s)
Cuerpos Multivesiculares/fisiología , Animales , Enfermedades Transmisibles/metabolismo , Enfermedades Transmisibles/patología , Citocinesis , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Humanos , Cuerpos Multivesiculares/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Mapas de Interacción de Proteínas , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/fisiología , Liberación del VirusRESUMEN
Autophagy is traditionally depicted as a signaling cascade that culminates in the formation of an autophagosome that degrades cellular cargo. However, recent studies have identified myriad pathways and cellular organelles underlying the autophagy process, be it as signaling platforms or through the contribution of proteins and lipids. The Golgi complex is recognized as being a central transport hub in the cell, with a critical role in endocytic trafficking and endoplasmic reticulum (ER) to plasma membrane (PM) transport. However, the Golgi is also an important site of key autophagy regulators, including the protein autophagy-related (ATG)-9A and the lipid, phosphatidylinositol-4-phosphate [PI(4)P]. In this review, we highlight the central function of this organelle in autophagy as a transport hub supplying various components of autophagosome formation.
Asunto(s)
Autofagosomas/fisiología , Aparato de Golgi/fisiología , Autofagia , Proteínas Relacionadas con la Autofagia/fisiología , Transporte Biológico , Endosomas/metabolismo , Humanos , Metabolismo de los Lípidos , Proteínas de la Membrana/fisiología , Proteínas de Transporte Vesicular/fisiologíaRESUMEN
The ACK family tyrosine kinase SID-3 is involved in the endocytic uptake of double-stranded RNA. Here we identified SID-3 as a previously unappreciated recycling regulator in the Caenorhabditis elegans intestine. The RAB-10 effector EHBP-1 is required for the endosomal localization of SID-3. Accordingly, animals with loss of SID-3 phenocopied the recycling defects observed in ehbp-1 and rab-10 single mutants. Moreover, we detected sequential protein interactions between EHBP-1, SID-3, NCK-1, and DYN-1. In the absence of SID-3, DYN-1 failed to localize at tubular recycling endosomes, and membrane tubules breaking away from endosomes were mostly absent, suggesting that SID-3 acts synergistically with the downstream DYN-1 to promote endosomal tubule fission. In agreement with these observations, overexpression of DYN-1 significantly increased recycling transport in SID-3-deficient cells. Finally, we noticed that loss of RAB-10 or EHBP-1 compromised feeding RNAi efficiency in multiple tissues, implicating basolateral recycling in the transport of RNA silencing signals. Taken together, our study demonstrated that in C. elegans intestinal epithelia, SID-3 acts downstream of EHBP-1 to direct fission of recycling endosomal tubules in concert with NCK-1 and DYN-1.
Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Citocinesis/genética , Dinaminas/fisiología , Endocitosis/fisiología , Endosomas/metabolismo , Proteínas Tirosina Quinasas/fisiología , Proteínas de Transporte Vesicular/fisiología , Animales , Animales Modificados Genéticamente , Transporte Biológico/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Endocitosis/genética , Estudio de Asociación del Genoma Completo , Transducción de Señal/genética , Proteínas de Unión al GTP rab/metabolismoRESUMEN
Skeletal muscle is responsible for the majority of glucose disposal following meals, and this is achieved by insulin-mediated trafficking of glucose transporter type 4 (GLUT4) to the cell membrane. The eight-protein exocyst trafficking complex facilitates targeted docking of membrane-bound vesicles, a process underlying the regulated delivery of fuel transporters. We previously demonstrated the role of exocyst subunit EXOC5 in insulin-stimulated GLUT4 exocytosis and glucose uptake in cultured rat skeletal myoblasts. However, the in vivo role of EXOC5 in skeletal muscle remains unclear. Using mice with inducible, skeletal-muscle-specific knockout of exocyst subunit EXOC5 (Exoc5-SMKO), we examined how muscle-specific disruption of the exocyst would affect glucose homeostasis in vivo. We found that both male and female Exoc5-SMKO mice displayed elevated fasting glucose levels. Additionally, male Exoc5-SMKO mice had impaired glucose tolerance and lower serum insulin levels. Using indirect calorimetry, we observed that male Exoc5-SMKO mice have a reduced respiratory exchange ratio during the light period and lower energy expenditure. Using the hyperinsulinemic-euglycemic clamp method, we further showed that insulin-stimulated skeletal muscle glucose uptake is reduced in Exoc5-SMKO males compared with wild-type controls. Overall, our findings indicate that EXOC5 and the exocyst are necessary for insulin-stimulated glucose uptake in skeletal muscle and regulate glucose homeostasis in vivo.
Asunto(s)
Glucosa/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Membrana Celular/metabolismo , Citoplasma/metabolismo , Exocitosis , Femenino , Intolerancia a la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Homeostasis , Insulina/análisis , Insulina/sangre , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos , Músculo Esquelético/fisiología , Mioblastos Esqueléticos/metabolismo , Transporte de Proteínas , Proteínas de Transporte Vesicular/fisiologíaRESUMEN
In eukaryotes, coat protein complex II (COPII) vesicles mediate anterograde traffic from the endoplasmic reticulum to the Golgi apparatus. Compared to yeasts, plants have multiple COPII coat proteins; however, the functional diversity among them is less well understood. SEC31A and SEC31B are outer coat proteins found in COPII vesicles in Arabidopsis. In this study, we explored the function of SEC31A and compared it with that of SEC31B from various perspectives. SEC31A was widely expressed, but at a significantly lower level than SEC31B. SEC31A-mCherry and SEC31B-GFP exhibited a high co-localization rate in pollen, but a lower rate in growing pollen tubes. The sec31a single mutant exhibited normal growth. SEC31A expression driven by the SEC31B promoter rescued the pollen abortion and infertility observed in sec31b. A sec31asec31b double mutant was unavailable due to lethality of the sec31asec31b gametophyte. Transmission electron microscopy revealed that one quarter of male gametogenesis was arrested at the uninuclear microspore stage, while confocal laser scanning microscopy showed that 1/4 female gametophyte development was suspended at the functional megaspore stage in sec31a-1/+sec31b-3/+ plants. Our study highlights the essential role of SEC31A/B in gametogenesis and their interchangeable functions in pollen development.
Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Gametogénesis en la Planta , Polen/crecimiento & desarrollo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Fertilidad , Genes de Plantas/fisiología , Células Germinativas de las Plantas/metabolismo , Polen/metabolismo , Tubo Polínico/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiologíaRESUMEN
The niche controls stem cell self-renewal and differentiation in animal tissues. Although the exocyst is known to be important for protein membrane trafficking and secretion, its role in stem cells and niches has never been reported. Here, this study shows that the exocyst functions in the niche to promote germline stem cell (GSC) progeny differentiation in the Drosophila ovary by directly regulating EGFR membrane trafficking and signaling. Inactivation of exocyst components in inner germarial sheath cells, which form the differentiation niche, causes a severe GSC differentiation defect. The exocyst is required for maintaining niche cells and preventing BMP signaling in GSC progeny by promoting EGFR membrane targeting and signaling through direct association with EGFR. Finally, it is also required for EGFR membrane targeting, recycling and signaling in human cells. Therefore, this study reveals a novel function of the exocyst in niche cells to promote stem cell progeny differentiation by directly controlling EGFR membrane trafficking and signaling in vivo, and also provides important insight into how the niche controls stem cell progeny differentiation at the molecular level.
Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Células Germinativas/citología , Receptores de Péptidos de Invertebrados/metabolismo , Nicho de Células Madre , Células Madre/fisiología , Proteínas de Transporte Vesicular/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Membrana Celular/metabolismo , Autorrenovación de las Células/genética , Células Cultivadas , Drosophila , Proteínas de Drosophila/fisiología , Receptores ErbB/fisiología , Femenino , Proteínas de Unión al GTP/fisiología , Células Germinativas/metabolismo , Células HEK293 , Células HeLa , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/fisiología , Ovario/citología , Ovario/metabolismo , Transporte de Proteínas/genética , Receptores de Péptidos de Invertebrados/fisiología , Nicho de Células Madre/genética , Células Madre/citología , Proteínas de Transporte Vesicular/genéticaRESUMEN
Congenital dyserythropoietic anemias (CDAs) are a heterogeneous group of inherited anemias that affect the normal differentiation-proliferation pathways of the erythroid lineage. They belong to the wide group of ineffective erythropoiesis conditions that mainly result in monolinear cytopenia. CDAs are classified into the 3 major types (I, II, III), plus the transcription factor-related CDAs, and the CDA variants, on the basis of the distinctive morphological, clinical, and genetic features. Next-generation sequencing has revolutionized the field of diagnosis of and research into CDAs, with reduced time to diagnosis, and ameliorated differential diagnosis in terms of identification of new causative/modifier genes and polygenic conditions. The main improvements regarding CDAs have been in the study of iron metabolism in CDAII. The erythroblast-derived hormone erythroferrone specifically inhibits hepcidin production, and its role in the mediation of hepatic iron overload has been dissected out. We discuss here the most recent advances in this field regarding the molecular genetics and pathogenic mechanisms of CDAs, through an analysis of the clinical and molecular classifications, and the complications and clinical management of patients. We summarize also the main cellular and animal models developed to date and the possible future therapies.
Asunto(s)
Anemia Diseritropoyética Congénita/genética , Anemia Diseritropoyética Congénita/clasificación , Anemia Diseritropoyética Congénita/diagnóstico , Anemia Diseritropoyética Congénita/terapia , Animales , Transfusión Sanguínea , Diagnóstico Diferencial , Modelos Animales de Enfermedad , Heterogeneidad Genética , Glicoproteínas/genética , Glicoproteínas/fisiología , Trasplante de Células Madre Hematopoyéticas , Hepcidinas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/etiología , Sobrecarga de Hierro/etiología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Técnicas de Diagnóstico Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Hormonas Peptídicas/fisiología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiología , Pez CebraRESUMEN
The retrograde transport inhibitor Retro-2 has a protective effect on cells and in mice against Shiga-like toxins and ricin. Retro-2 causes toxin accumulation in early endosomes and relocalization of the Golgi SNARE protein syntaxin-5 to the endoplasmic reticulum. The molecular mechanisms by which this is achieved remain unknown. Here, we show that Retro-2 targets the endoplasmic reticulum exit site component Sec16A, affecting anterograde transport of syntaxin-5 from the endoplasmic reticulum to the Golgi. The formation of canonical SNARE complexes involving syntaxin-5 is not affected in Retro-2-treated cells. By contrast, the interaction of syntaxin-5 with a newly discovered binding partner, the retrograde trafficking chaperone GPP130, is abolished, and we show that GPP130 must indeed bind to syntaxin-5 to drive Shiga toxin transport from the endosomes to the Golgi. We therefore identify Sec16A as a druggable target and provide evidence for a non-SNARE function for syntaxin-5 in interaction with GPP130.
Asunto(s)
Benzamidas/metabolismo , Proteínas Qa-SNARE/metabolismo , Tiofenos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Benzamidas/farmacología , Transporte Biológico , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Ricina/metabolismo , Toxina Shiga/metabolismo , Toxinas Shiga/metabolismo , Tiofenos/farmacología , Proteínas de Transporte Vesicular/fisiologíaRESUMEN
Presynaptic neurotransmitter release is strictly regulated by SNARE proteins, Ca2+ and a number of Ca2+ sensors including synaptotagmins (Syts) and Double C2 domain proteins (Doc2s). More than seventy years after the original description of spontaneous release, the mechanism that regulates this process is still poorly understood. Syt-1, Syt7 and Doc2 proteins contribute predominantly, but not exclusively, to synchronous, asynchronous and spontaneous phases of release. The proteins share a conserved tandem C2 domain architecture, but are functionally diverse in their subcellular location, Ca2+-binding properties and protein interactions. In absence of Syt-1, Doc2a and -b, neurons still exhibit spontaneous vesicle fusion which remains Ca2+-sensitive, suggesting the existence of additional sensors. Here, we selected Doc2c, rabphilin-3a and Syt-7 as three potential Ca2+ sensors for their sequence homology with Syt-1 and Doc2b. We genetically ablated each candidate gene in absence of Doc2a and -b and investigated spontaneous and evoked release in glutamatergic hippocampal neurons, cultured either in networks or on microglial islands (autapses). The removal of Doc2c had no effect on spontaneous or evoked release. Syt-7 removal also did not affect spontaneous release, although it altered short-term plasticity by accentuating short-term depression. The removal of rabphilin caused an increased spontaneous release frequency in network cultures, an effect that was not observed in autapses. Taken together, we conclude that Doc2c and Syt-7 do not affect spontaneous release of glutamate in hippocampal neurons, while our results suggest a possible regulatory role of rabphilin-3a in neuronal networks. These findings importantly narrow down the repertoire of synaptic Ca2+ sensors that may be implicated in the spontaneous release of glutamate.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Unión al Calcio/fisiología , Calcio/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinaptotagmina I/fisiología , Proteínas de Transporte Vesicular/fisiología , Potenciales de Acción , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Células Cultivadas , Secuencia Conservada , Ácido Glutámico/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Potenciales Postsinápticos Miniatura/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sinaptotagmina I/química , Sinaptotagmina I/deficiencia , Sinaptotagmina I/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética , Rabfilina-3ARESUMEN
Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene represent a cause of late-onset, autosomal dominant familial Parkinson's disease (PD). A single missense mutation, D620N, is considered pathogenic based upon its segregation with disease in multiple families with PD. At present, the mechanism(s) by which familial VPS35 mutations precipitate neurodegeneration in PD are poorly understood. Here, we employ a germline D620N VPS35 knockin (KI) mouse model of PD to formally establish the age-related pathogenic effects of the D620N mutation at physiological expression levels. Our data demonstrate that a heterozygous or homozygous D620N mutation is sufficient to reproduce key neuropathological hallmarks of PD as indicated by the progressive degeneration of nigrostriatal pathway dopaminergic neurons and widespread axonal pathology. Unexpectedly, endogenous D620N VPS35 expression induces robust tau-positive somatodendritic pathology throughout the brain as indicated by abnormal hyperphosphorylated and conformation-specific tau, which may represent an important and early feature of mutant VPS35-induced neurodegeneration in PD. In contrast, we find no evidence for α-synuclein-positive neuropathology in aged VPS35 KI mice, a hallmark of Lewy body pathology in PD. D620N VPS35 expression also fails to modify the lethal neurodegenerative phenotype of human A53T-α-synuclein transgenic mice. Finally, by crossing VPS35 KI and null mice, our data demonstrate that a single D620N VPS35 allele is sufficient for survival and early maintenance of dopaminergic neurons, indicating that the D620N VPS35 protein is fully functional. Our data raise the tantalizing possibility of a pathogenic interplay between mutant VPS35 and tau for inducing neurodegeneration in PD.
Asunto(s)
Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiología , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Técnicas de Sustitución del Gen , Masculino , Ratones , Mutación , Enfermedades del Sistema Nervioso/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Neuropatología , Enfermedad de Parkinson/genética , Transporte de Proteínas , alfa-Sinucleína/metabolismo , Proteínas tau/fisiologíaRESUMEN
Membrane fusion at each organelle requires conserved proteins: Rab-GTPases, effector tethering complexes, Sec1/Munc18 (SM)-family SNARE chaperones, SNAREs of the R, Qa, Qb, and Qc families, and the Sec17/α-SNAP and ATP-dependent Sec18/NSF SNARE chaperone system. The basis of organelle-specific fusion, which is essential for accurate protein compartmentation, has been elusive. Rab family GTPases, SM proteins, and R- and Q-SNAREs may contribute to this specificity. We now report that the fusion supported by SNAREs alone is both inefficient and promiscuous with respect to organelle identity and to stimulation by SM family proteins or complexes. SNARE-only fusion is abolished by the disassembly chaperones Sec17 and Sec18. Efficient fusion in the presence of Sec17 and Sec18 requires a tripartite match between the organellar identities of the R-SNARE, the Q-SNAREs, and the SM protein or complex. The functions of Sec17 and Sec18 are not simply negative regulation; they stimulate fusion with either vacuolar SNAREs and their SM protein complex HOPS or endoplasmic reticulum/cis-Golgi SNAREs and their SM protein Sly1. The fusion complex of each organelle is assembled from its own functionally matching pieces to engage Sec17/Sec18 for fusion stimulation rather than inhibition.
Asunto(s)
Adenosina Trifosfatasas/fisiología , Membranas Intracelulares/fisiología , Fusión de Membrana/fisiología , Chaperonas Moleculares/fisiología , Proteínas Munc18/metabolismo , Orgánulos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/fisiología , Proteínas de Transporte Vesicular/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Lisosomas/metabolismo , Lisosomas/ultraestructura , Complejos Multiproteicos , Especificidad de Órganos , Orgánulos/ultraestructura , Proteolípidos/metabolismo , Proteínas Recombinantes/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructuraRESUMEN
Biallelic pathogenic variants in the SEC23B gene cause congenital dyserythropoietic anemia type II (CDA II), a rare hereditary disorder hallmarked by ineffective erythropoiesis, hemolysis, erythroblast morphological abnormalities, and hypo-glycosylation of some red blood cell membrane proteins. Abnormalities in SEC23B, which encodes the homonymous cytoplasmic COPII (coat protein complex II) component, disturb the endoplasmic reticulum to Golgi trafficking and affect different glycosylation pathways. The most harmful complication of CDA II is the severe iron overload. Within our case series (28 CDA II patients), approximately 36% of them exhibit severe iron overload despite mild degree of anemia and slightly increased levels of ERFE (the only erythroid regulator of hepcidin suppression). Thus, we hypothesized a direct role of SEC23B loss-of-function in the pathomechanism of hepatic iron overload. We established a hepatic cell line, HuH7, stably silenced for SEC23B. In silenced cells, we observed significant alterations of the iron status, due to both the alteration in BMP/SMADs pathway effectors and a reduced capability to sense BMP6 stimulus. We demonstrated that the loss-of-function of SEC23B is responsible of the impairment in glycosylation of the membrane proteins involved in the activation of the BMP/SMADs pathway with subsequent hepcidin suppression. Most of these data were confirmed in another hepatic cell line, HepG2, stably silenced for SEC23B. Our findings suggested that the pathogenic mechanism of iron overload in CDA II is associated to both ineffective erythropoiesis and to a specific involvement of SEC23B pathogenic variants at hepatic level. Finally, we demonstrated the ability of SEC23B paralog, i.e., SEC23A, to rescue the hepcidin suppression, highlighting the functional overlap between the two SEC23 paralogs in human hepatic cells.
Asunto(s)
Hepatocitos/metabolismo , Hepcidinas/genética , Proteínas de Transporte Vesicular/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Eritropoyesis/genética , Glicosilación , Aparato de Golgi/metabolismo , Hepcidinas/metabolismo , Humanos , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Hígado/patología , Mutación con Pérdida de Función/genética , Fenotipo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiologíaRESUMEN
Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days. To reveal the mechanisms underlying L-heat stress tolerance, we here used a forward genetic screen for sensitive to long-term heat (sloh) mutants and isolated sloh4. The mutant was hypersensitive to L-heat stress but not to S-heat stress. The causal gene of sloh4 was identical to MIP3 encoding a member of the MAIGO2 (MAG2) tethering complex, which is composed of the MAG2, MIP1, MIP2 and MIP3 subunits and is localized at the endoplasmic reticulum (ER) membrane. Although sloh4/mip3 was hypersensitive to L-heat stress, the sensitivity of the mag2-3 and mip1-1 mutants was similar to that of the wild type (WT). Under L-heat stress, the ER stress and the following unfolded protein response (UPR) were more pronounced in sloh4 than in the WT. Transcript levels of bZIP60-regulated UPR genes were strongly increased in sloh4 under L-heat stress. Two processes known to be mediated by INOSITOL REQUIRING ENZYME1 (IRE1) - accumulation of the spliced bZIP60 transcript and a decrease in the transcript levels of PR4 and PRX34, encoding secretory proteins - were observed in sloh4 in response to L-heat stress. These findings suggest that misfolded proteins generated in sloh4 under L-heat stress may be recognized by IRE1 but not by bZIP28, resulting in the initiation of the UPR via activated bZIP60. Therefore, it would be possible that only MIP3 in the MAG2 complex has an additional function in L-heat tolerance, which is not related to the ER-Golgi vesicle tethering.
Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Retículo Endoplásmico/fisiología , Aparato de Golgi/metabolismo , Termotolerancia , Proteínas de Transporte Vesicular/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Estrés del Retículo Endoplásmico , Genes de Plantas/fisiología , Proteínas de Transporte Vesicular/genéticaRESUMEN
Atg2 is one of the essential factors for autophagy. Recent advance of structural and biochemical study on yeast Atg2 proposed that Atg2 tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum and mediates direct lipid transfer (LT) from ER to IM for IM expansion. In mammals, two Atg2 orthologs, ATG2A and ATG2B, participate in autophagic process. Here we showed that human ATG2B possesses the membrane tethering (MT) and LT activity that was promoted by negatively charged membranes and an Atg18 ortholog WIPI4. By contrast, negatively charged membranes reduced the yeast Atg2 activities in the absence of Atg18. These results suggest that the MT/LT activity of Atg2 is evolutionally conserved although their regulation differs among species.
Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/fisiología , Transporte Biológico , Proteínas Portadoras/fisiología , Retículo Endoplásmico/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Proteínas de Unión a Fosfato/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/fisiologíaRESUMEN
Amino acid signaling mediated by the activation of mechanistic target of rapamycin complex 1 (mTORC1) is fundamental to cell growth and metabolism. However, how cells negatively regulate amino acid signaling remains largely unknown. Here, we show that interaction between 4F2 heavy chain (4F2hc), a subunit of multiple amino acid transporters, and the multifunctional hub protein girders of actin filaments (Girdin) down-regulates mTORC1 activity. 4F2hc interacts with Girdin in mitogen-activated protein kinase (MAPK)- and amino acid signaling-dependent manners to translocate to the lysosome. The resultant decrease in cell surface 4F2hc leads to lowered cytoplasmic glutamine (Gln) and leucine (Leu) content, which down-regulates amino acid signaling. Consistently, Girdin depletion augments amino acid-induced mTORC1 activation and inhibits amino acid deprivation-induced autophagy. These findings uncovered the mechanism underlying negative regulation of amino acid signaling, which may play a role in tightly regulated cell growth and metabolism.
Asunto(s)
Cadena Pesada de la Proteína-1 Reguladora de Fusión/fisiología , Sistema de Señalización de MAP Quinasas , Proteínas de Microfilamentos/fisiología , Transducción de Señal , Proteínas de Transporte Vesicular/fisiología , Animales , Regulación hacia Abajo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Células HeLa , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Ratones , Proteínas de Microfilamentos/metabolismo , Fosforilación , Ubiquitinación , Proteínas de Transporte Vesicular/metabolismoRESUMEN
The BTLA-HVEM checkpoint axis plays extensive roles in immunomodulation and diseases, including cancer and autoimmune disorders. However, the functions of this checkpoint axis in hepatitis remain limited. In this study, we explored the regulatory role of the Btla-Hvem axis in a ConA-induced hepatitis model in zebrafish. Results showed that Btla and Hvem were differentially expressed on intrahepatic Cd8+ T cells and hepatocytes. Knockdown of Btla or Hvem significantly promoted hepatic inflammation. Btla was highly expressed in Cd8+ T cells in healthy liver but was downregulated in inflamed liver, as evidenced by a disparate proportion of Cd8+Btla+ and Cd8+Btla- T cells in individuals without or with ConA stimulation. Cd8+Btla+ T cells showed minimal cytotoxicity to hepatocytes, whereas Cd8+Btla- T cells were strongly reactive. The depletion of Cd8+Btla- T cells reduced hepatitis, whereas their transfer enhanced hepatic inflammation. These observations indicate that Btla endowed Cd8+Btla+ T cells with self-tolerance, thereby preventing them from attacking hepatocytes. Btla downregulation deprived this tolerization. Mechanistically, Btla-Hvem interaction contributed to Cd8+Btla+ T cell tolerization, which was impaired by Hvem knockdown but rescued by soluble Hvem protein administration. Notably, Light was markedly upregulated on Cd8+Btla- T cells, accompanied by the transition of Cd8+Btla+Light- to Cd8+Btla-Light+ T cells during hepatitis, which could be modulated by Cd4+ T cells. Light blockade attenuated hepatitis, thereby suggesting the positive role of Light in hepatic inflammation. These findings provide insights into a previously unrecognized Btla-Hvem-Light regulatory network in hepatic homeostasis and inflammation, thus adding a new potential therapeutic intervention for hepatitis.
Asunto(s)
Concanavalina A/farmacología , Hepatitis/inmunología , Homeostasis , Inflamación/etiología , Hígado/inmunología , Receptores Inmunológicos/fisiología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Proteínas de Drosophila/fisiología , Células HEK293 , Humanos , Proteínas de Transporte Vesicular/fisiología , Pez CebraRESUMEN
Mutations in the gene encoding the microtubule severing ATPase spastin are the most frequent cause of hereditary spastic paraplegia, a genetic condition characterised by length-dependent axonal degeneration. Here, we show that HeLa cells lacking spastin and embryonic fibroblasts from a spastin knock-in mouse model become highly polarised and develop cellular protrusions. In HeLa cells, this phenotype was rescued by wild-type spastin, but not by forms unable to sever microtubules or interact with endosomal ESCRT-III proteins. Cells lacking the spastin-interacting ESCRT-III-associated proteins IST1 or CHMP1B also developed protrusions. The protrusion phenotype required protrudin, a RAB-interacting protein that interacts with spastin and localises to ER-endosome contact sites, where it promotes KIF5-dependent endosomal motility to protrusions. Consistent with this, the protrusion phenotype in cells lacking spastin also required KIF5. Lack or mutation of spastin resulted in functional consequences for receptor traffic of a pathway implicated in HSP, as Bone Morphogenetic Protein receptor distribution became polarised. Our results, therefore, identify a novel role for ESCRT-III proteins and spastin in regulating polarised membrane traffic.
Asunto(s)
Extensiones de la Superficie Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Espastina/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Membrana Celular/metabolismo , Polaridad Celular , Extensiones de la Superficie Celular/ultraestructura , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Sustitución del Gen , Células HeLa , Humanos , Cinesinas/fisiología , Ratones , Transporte de Proteínas , Paraplejía Espástica Hereditaria/genética , Espastina/genética , Proteínas de Transporte Vesicular/fisiologíaRESUMEN
BACKGROUND: Studies have linked mutations in genes encoding the eight-protein exocyst protein complex to kidney disease, but the underlying mechanism is unclear. Because Drosophila nephrocytes share molecular and structural features with mammalian podocytes, they provide an efficient model for studying this issue. METHODS: We silenced genes encoding exocyst complex proteins specifically in Drosophila nephrocytes and studied the effects on protein reabsorption by lacuna channels and filtration by the slit diaphragm. We performed nephrocyte functional assays, carried out super-resolution confocal microscopy of slit diaphragm proteins, and used transmission electron microscopy to analyze ultrastructural changes. We also examined the colocalization of slit diaphragm proteins with exocyst protein Sec15 and with endocytosis and recycling regulators Rab5, Rab7, and Rab11. RESULTS: Silencing exocyst genes in nephrocytes led to profound changes in structure and function. Abolition of cellular accumulation of hemolymph proteins with dramatically reduced lacuna channel membrane invaginations offered a strong indication of reabsorption defects. Moreover, the slit diaphragm's highly organized surface structure-essential for filtration-was disrupted, and key proteins were mislocalized. Ultrastructural analysis revealed that exocyst gene silencing led to the striking appearance of novel electron-dense structures that we named "exocyst rods," which likely represent accumulated membrane proteins following defective exocytosis or recycling. The slit diaphragm proteins partially colocalized with Sec15, Rab5, and Rab11. CONCLUSIONS: Our findings suggest that the slit diaphragm of Drosophila nephrocytes requires balanced endocytosis and recycling to maintain its structural integrity and that impairment of the exocyst complex leads to disruption of the slit diaphragm and nephrocyte malfunction. This model may help identify therapeutic targets for treating kidney diseases featuring molecular defects in vesicle endocytosis, exocytosis, and recycling.