RESUMEN
TCF1high progenitor CD8+ T cells mediate the efficacy of immunotherapy; however, the mechanisms that govern their generation and maintenance are poorly understood. Here, we show that targeting glycolysis through deletion of pyruvate kinase muscle 2 (PKM2) results in elevated pentose phosphate pathway (PPP) activity, leading to enrichment of a TCF1high progenitor-exhausted-like phenotype and increased responsiveness to PD-1 blockade in vivo. PKM2KO CD8+ T cells showed reduced glycolytic flux, accumulation of glycolytic intermediates and PPP metabolites and increased PPP cycling as determined by 1,2-13C glucose carbon tracing. Small molecule agonism of the PPP without acute glycolytic impairment skewed CD8+ T cells toward a TCF1high population, generated a unique transcriptional landscape and adoptive transfer of agonist-treated CD8+ T cells enhanced tumor control in mice in combination with PD-1 blockade and promoted tumor killing in patient-derived tumor organoids. Our study demonstrates a new metabolic reprogramming that contributes to a progenitor-like T cell state promoting immunotherapy efficacy.
Asunto(s)
Linfocitos T CD8-positivos , Factor Nuclear 1-alfa del Hepatocito , Inmunoterapia , Vía de Pentosa Fosfato , Proteínas de Unión a Hormona Tiroide , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Humanos , Inmunoterapia/métodos , Glucólisis , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Noqueados , Hormonas Tiroideas/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Piruvato QuinasaRESUMEN
During eukaryotic evolution, ribosomes have considerably increased in size, forming a surface-exposed ribosomal RNA (rRNA) shell of unknown function, which may create an interface for yet uncharacterized interacting proteins. To investigate such protein interactions, we establish a ribosome affinity purification method that unexpectedly identifies hundreds of ribosome-associated proteins (RAPs) from categories including metabolism and cell cycle, as well as RNA- and protein-modifying enzymes that functionally diversify mammalian ribosomes. By further characterizing RAPs, we discover the presence of ufmylation, a metazoan-specific post-translational modification (PTM), on ribosomes and define its direct substrates. Moreover, we show that the metabolic enzyme, pyruvate kinase muscle (PKM), interacts with sub-pools of endoplasmic reticulum (ER)-associated ribosomes, exerting a non-canonical function as an RNA-binding protein in the translation of ER-destined mRNAs. Therefore, RAPs interconnect one of life's most ancient molecular machines with diverse cellular processes, providing an additional layer of regulatory potential to protein expression.
Asunto(s)
Ribosomas/química , Ribosomas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células Madre Embrionarias/metabolismo , Retículo Endoplásmico/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Ratones , Biosíntesis de Proteínas , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/metabolismo , Hormonas Tiroideas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión a Hormona TiroideRESUMEN
In this issue of Molecular Cell, Anastasakis et al. describe a novel function of the metabolic enzyme PKM2 as an RNA G-quadruplex binding protein, which could contribute to cancer biology.
Asunto(s)
Proteínas Portadoras , G-Cuádruplex , Proteínas de la Membrana , Neoplasias , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas , Transcriptoma , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/enzimología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética , Regulación Neoplásica de la Expresión GénicaRESUMEN
Nuclear localization of the metabolic enzyme PKM2 is widely observed in various cancer types. We identify nuclear PKM2 as a non-canonical RNA-binding protein (RBP) that specifically interacts with folded RNA G-quadruplex (rG4) structures in precursor mRNAs (pre-mRNAs). PKM2 occupancy at rG4s prevents the binding of repressive RBPs, such as HNRNPF, and promotes the expression of rG4-containing pre-mRNAs (the "rG4ome"). We observe an upregulation of the rG4ome during epithelial-to-mesenchymal transition and a negative correlation of rG4 abundance with patient survival in different cancer types. By preventing the nuclear accumulation of PKM2, we could repress the rG4ome in triple-negative breast cancer cells and reduce migration and invasion of cancer cells in vitro and in xenograft mouse models. Our data suggest that the balance of folded and unfolded rG4s controlled by RBPs impacts gene expression during tumor progression.
Asunto(s)
Proteínas Portadoras , Núcleo Celular , Transición Epitelial-Mesenquimal , G-Cuádruplex , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana , Precursores del ARN , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas , Animales , Femenino , Humanos , Ratones , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Movimiento Celular , Núcleo Celular/metabolismo , Núcleo Celular/genética , Transición Epitelial-Mesenquimal/genética , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos NOD , Invasividad Neoplásica , Unión Proteica , Precursores del ARN/metabolismo , Precursores del ARN/genética , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismoRESUMEN
Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.
Asunto(s)
Carcinoma Ductal Pancreático , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas , Hormonas Tiroideas/metabolismo , Carcinoma Ductal Pancreático/genética , Humanos , Metionina , Metionina Sulfóxido Reductasas/química , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Neoplasias Pancreáticas/genética , Piruvato Quinasa/metabolismo , Proteínas de Unión a Hormona Tiroide , Neoplasias PancreáticasRESUMEN
Non-covalent complexes of glycolytic enzymes, called metabolons, were postulated in the 1970s, but the concept has been controversial. Here we show that a c-Myc-responsive long noncoding RNA (lncRNA) that we call glycoLINC (gLINC) acts as a backbone for metabolon formation between all four glycolytic payoff phase enzymes (PGK1, PGAM1, ENO1, and PKM2) along with lactate dehydrogenase A (LDHA). The gLINC metabolon enhances glycolytic flux, increases ATP production, and enables cell survival under serine deprivation. Furthermore, gLINC overexpression in cancer cells promotes xenograft growth in mice fed a diet deprived of serine, suggesting that cancer cells employ gLINC during metabolic reprogramming. We propose that gLINC makes a functional contribution to cancer cell adaptation and provide the first example of a lncRNA-facilitated metabolon.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Glucólisis , Proteínas de la Membrana/metabolismo , Neoplasias/enzimología , Fosfoglicerato Quinasa/metabolismo , Fosfoglicerato Mutasa/metabolismo , Fosfopiruvato Hidratasa/metabolismo , ARN Largo no Codificante/metabolismo , Hormonas Tiroideas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Biomarcadores de Tumor/genética , Proteínas Portadoras/genética , Proliferación Celular , Proteínas de Unión al ADN/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Proteínas de la Membrana/genética , Ratones Desnudos , Complejos Multienzimáticos , Neoplasias/genética , Neoplasias/patología , Fosfoglicerato Quinasa/genética , Fosfoglicerato Mutasa/genética , Fosfopiruvato Hidratasa/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/genética , Serina/deficiencia , Hormonas Tiroideas/genética , Carga Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas de Unión a Hormona TiroideRESUMEN
Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.
Asunto(s)
Glucólisis , Fosfoglicerato Mutasa , Hormonas Tiroideas , Humanos , Fosfoglicerato Mutasa/metabolismo , Fosfoglicerato Mutasa/genética , Fosforilación , Animales , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética , Ratones , Proteínas de Unión a Hormona Tiroide , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genéticaRESUMEN
Tumor-derived extracellular vesicles are important mediators of cell-to-cell communication during tumorigenesis. Here, we demonstrated that hepatocellular carcinoma (HCC)-derived ectosomes remodel the tumor microenvironment to facilitate HCC progression in an ectosomal PKM2-dependent manner. HCC-derived ectosomal PKM2 induced not only metabolic reprogramming in monocytes but also STAT3 phosphorylation in the nucleus to upregulate differentiation-associated transcription factors, leading to monocyte-to-macrophage differentiation and tumor microenvironment remodeling. In HCC cells, sumoylation of PKM2 induced its plasma membrane targeting and subsequent ectosomal excretion via interactions with ARRDC1. The PKM2-ARRDC1 association in HCC was reinforced by macrophage-secreted cytokines/chemokines in a CCL1-CCR8 axis-dependent manner, further facilitating PKM2 excretion from HCC cells to form a feedforward regulatory loop for tumorigenesis. In the clinic, ectosomal PKM2 was clearly detected in the plasma of HCC patients. This study highlights a mechanism by which ectosomal PKM2 remodels the tumor microenvironment and reveals ectosomal PKM2 as a potential diagnostic marker for HCC.
Asunto(s)
Proteínas Portadoras/metabolismo , Micropartículas Derivadas de Células/metabolismo , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Portadoras/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/patología , Quimiocina CCL1/metabolismo , Progresión de la Enfermedad , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Monocitos/metabolismo , Pronóstico , Factor de Transcripción STAT3/metabolismo , Hormonas Tiroideas/genética , Microambiente Tumoral , Proteínas de Unión a Hormona TiroideRESUMEN
Tumor-specific pyruvate kinase M2 (PKM2) is essential for the Warburg effect. In addition to its well-established role in aerobic glycolysis, PKM2 directly regulates gene transcription. However, the mechanism underlying this nonmetabolic function of PKM2 remains elusive. We show here that PKM2 directly binds to histone H3 and phosphorylates histone H3 at T11 upon EGF receptor activation. This phosphorylation is required for the dissociation of HDAC3 from the CCND1 and MYC promoter regions and subsequent acetylation of histone H3 at K9. PKM2-dependent histone H3 modifications are instrumental in EGF-induced expression of cyclin D1 and c-Myc, tumor cell proliferation, cell-cycle progression, and brain tumorigenesis. In addition, levels of histone H3 T11 phosphorylation correlate with nuclear PKM2 expression levels, glioma malignancy grades, and prognosis. These findings highlight the role of PKM2 as a protein kinase in its nonmetabolic functions of histone modification, which is essential for its epigenetic regulation of gene expression and tumorigenesis.
Asunto(s)
Astrocitoma/metabolismo , Proteínas Portadoras/metabolismo , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Histonas/metabolismo , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Astrocitoma/genética , Línea Celular , Línea Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Epigénesis Genética , Femenino , Glioblastoma/genética , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas c-myc/genética , Transcripción Genética , Trasplante Heterólogo , Proteínas de Unión a Hormona TiroideRESUMEN
This study delves into the molecular intricacies of hypopharyngeal squamous cell carcinoma (HSCC), specifically focusing on the pivotal role played by ETS translocation variant 4 (ETV4) in aerobic glycolysis. The objective is to uncover new targets for early diagnosis and treatment of HSCC. ETV4 expression in HSCC tissues was rigorously examined, revealing its association with patient survival. Through comprehensive experimentation, we demonstrated that ETV4 activation promotes HSCC cell proliferation and invasion while inhibiting apoptosis. Furthermore, in vivo experiments confirmed the tumor-promoting effect of ETV4 activation. The study elucidated the binding of ETV4 to the NSUN2 promoter and its influence on PKM2 expression, thereby regulating glycolysis and cellular functions in HSCC.
Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glucólisis , Proteínas Proto-Oncogénicas c-ets , Humanos , Glucólisis/genética , Proliferación Celular/genética , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Ratones , Apoptosis/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Regiones Promotoras Genéticas , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión a Hormona Tiroide , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Masculino , Femenino , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patologíaRESUMEN
Microglia undergo two-stage activation in neurodegenerative diseases, known as disease-associated microglia (DAM). TREM2 mediates the DAM2 stage transition, but what regulates the first DAM1 stage transition is unknown. We report that glucose dyshomeostasis inhibits DAM1 activation and PKM2 plays a role. As in tumors, PKM2 was aberrantly elevated in both male and female human AD brains, but unlike in tumors, it is expressed as active tetramers, as well as among TREM2+ microglia surrounding plaques in 5XFAD male and female mice. snRNAseq analyses of microglia without Pkm2 in 5XFAD mice revealed significant increases in DAM1 markers in a distinct metabolic cluster, which is enriched in genes for glucose metabolism, DAM1, and AD risk. 5XFAD mice incidentally exhibited a significant reduction in amyloid pathology without microglial Pkm2 Surprisingly, microglia in 5XFAD without Pkm2 exhibited increases in glycolysis and spare respiratory capacity, which correlated with restoration of mitochondrial cristae alterations. In addition, in situ spatial metabolomics of plaque-bearing microglia revealed an increase in respiratory activity. These results together suggest that it is not only glycolytic but also respiratory inputs that are critical to the development of DAM signatures in 5XFAD mice.
Asunto(s)
Glucosa , Homeostasis , Ratones Transgénicos , Microglía , Animales , Microglía/metabolismo , Microglía/patología , Ratones , Homeostasis/fisiología , Glucosa/metabolismo , Masculino , Femenino , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glucólisis/fisiología , Proteínas de Unión a Hormona TiroideRESUMEN
Most cancer cells exhibit high glycolysis rates under conditions of abundant oxygen. Maintaining a stable glycolytic rate is critical for cancer cell growth as it ensures sufficient conversion of glucose carbons to energy, biosynthesis, and redox balance. Here we deciphered the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway. Knocking down or knocking out PKM2 induced a thermodynamic equilibration in the glycolytic pathway, characterized by the reciprocal changes of the Gibbs free energy (ΔG) of the reactions catalyzed by PFK1 and PK, leading to a less exergonic PFK1-catalyzed reaction and a more exergonic PK-catalyzed reaction. The changes in the ΔGs of the two reactions cause the accumulation of intermediates, including the substrate PEP (the substrate of PK), in the segment between PFK1 and PK. The increased concentration of PEP in turn increased PK activity in the glycolytic pathway. Thus, the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway maintains the reciprocal relationship between PK concentration and its substrate PEP concentration, by which, PK activity in the glycolytic pathway can be stabilized and effectively counteracts the effect of PKM2 KD or KO on glycolytic rate. In line with our previous reports, this study further validates the roles of the thermodynamics of the glycolytic pathway in stabilizing glycolysis in cancer cells. Deciphering the interaction between glycolytic enzymes and the thermodynamics of the glycolytic pathway will promote a better understanding of the flux control of glycolysis in cancer cells.
Asunto(s)
Proteínas Portadoras , Glucólisis , Proteínas de la Membrana , Termodinámica , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas , Humanos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Fosfofructoquinasa-1/metabolismo , Fosfofructoquinasa-1/genética , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genéticaRESUMEN
Androgen receptor (AR) is one of the key targets for the treatment of castration-resistant prostate cancer (CRPC). Current endocrine therapy can greatly improve patients with CRPC. However, with the change of pathogenic mechanism, acquired resistance often leads to the failure of treatment. Studies have shown that tanshinone IIA (TS-IIA) and its derivatives have significant antitumor activity, and have certain AR-targeting effects, but the mechanism is unknown. In this study, the TS-IIA analog TB3 was found to significantly inhibit the growth of CRPC in vitro and in vivo. Molecular docking, cellular thermal shift assay, and cycloheximide experiments confirmed that AR was the target of TB3 and promoted the degradation of AR. Furthermore, TB3 can significantly inhibit glycolysis metabolism by targeting the AR/PKM2 axis. The addition of pyruvic acid could significantly alleviate the inhibitory effect of TB3 on CRPC cells. Besides, the knockdown of AR or PKM2 also could reverse the effect of TB3 on CRPC cells. Taken together, our study suggests that TS-IIA derivative TB3 inhibits glycolysis to prevent the CRPC process by targeting the AR/PKM2 axis.
Asunto(s)
Abietanos , Glucólisis , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Proteínas de Unión a Hormona Tiroide , Animales , Humanos , Masculino , Ratones , Abietanos/farmacología , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Desnudos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Hormonas Tiroideas/metabolismoRESUMEN
The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up-regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP-cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2-like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer-promoting agent TEPP-46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell-autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism.
Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos/fisiología , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Colesterol/sangre , Femenino , Regulación Neoplásica de la Expresión Génica , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones Noqueados , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Hormonas Tiroideas/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión a Hormona TiroideRESUMEN
Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, PKM1 and PKM2, function in glycolysis, but PKM2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of PKM1 and PKM2 during myoblast differentiation. RNA-seq analysis revealed that PKM2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. DPF2 and BAF250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for the activation of myogenic gene expression during differentiation. PKM2 also mediated the incorporation of DPF2 and BAF250a into the regulatory sequences controlling myogenic gene expression. PKM1 did not affect expression but was required for nuclear localization of DPF2. Additionally, PKM2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for PKM2 and a novel function for PKM1 in gene expression and chromatin regulation during myoblast differentiation.
Asunto(s)
Diferenciación Celular , Proteínas Cromosómicas no Histona , Histonas , Mioblastos , Piruvato Quinasa , Animales , Humanos , Ratones , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Histonas/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Mioblastos/metabolismo , Mioblastos/citología , Fosforilación , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Complejos Multiproteicos/metabolismoRESUMEN
Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.
Asunto(s)
Artritis Reumatoide , Proteína Disulfuro Isomerasas , Factor de Transcripción STAT1 , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/genética , Humanos , Artritis Reumatoide/metabolismo , Ratones , Animales , Factor de Transcripción STAT1/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Transporte Activo de Núcleo Celular , Proteínas Portadoras/metabolismo , Transducción de Señal , Proteínas de Unión a Hormona Tiroide , Factores de Transcripción NFATC/metabolismo , Activación de Linfocitos , Hormonas Tiroideas/metabolismo , Regulación de la Expresión Génica , Células Th17/metabolismo , Células Th17/inmunología , Células TH1/inmunología , Células TH1/metabolismo , Modelos Animales de Enfermedad , Piruvato QuinasaRESUMEN
BACKGROUND: The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS: Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RTâPCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS: Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION: Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.
Asunto(s)
Proteínas Portadoras , Ácidos Grasos , Proteínas de la Membrana , Proteínas de Neoplasias , Neoplasias Ováricas , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas , Microambiente Tumoral , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Animales , Hormonas Tiroideas/metabolismo , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Ácidos Grasos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Efecto Warburg en Oncología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Regulación Neoplásica de la Expresión Génica , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular , ProteoglicanosRESUMEN
BACKGROUND: At present, hepatic ischemia-reperfusion injury (IRI) is an important complication of partial hepatectomy and liver transplantation, and it is an important cause of poor prognosis. Spleen tyrosine kinase(SYK) plays an important role in a variety of signaling pathways in the liver, but its role in hepatic IRI is still unclear. This study aims to investigate the role and mechanism of SYK in hepatic IRI and tumor recurrence. METHODS: We first observed the activation of SYK in the liver of mice in response to hepatic IRI. Subsequently, Pharmacological inhibitions of SYK were used to evaluated the effect of SYK on neutrophil recruitment and NETosis, and further explored the effect of SYK on IRI and tumor recurrence. RESULTS: Our study shows that SYK is activated in response to hepatic IRI and aggravates liver injury. On the one hand, neutrophils SYK during the early stage of liver reperfusion increases neutrophil extracellular traps (NETs) production by promoting Pyruvate kinase M2(PKM2) nuclear translocation leading to upregulation of phosphorylated STAT3, thereby exacerbating liver inflammation and tumor recurrence. On the other hand, macrophages SYK can promote the recruitment of neutrophils and increase the activation of NLRP3 inflammasome and IL1ß, which further promotes the formation of NETs. CONCLUSIONS: Our study demonstrates that neutrophil and macrophage SYK synergistically promote hepatic IRI and tumor recurrence, and SYK may be a potential target to improve postoperative hepatic IRI and tumor recurrence.
Asunto(s)
Trampas Extracelulares , Proteínas de la Membrana , Neutrófilos , Daño por Reperfusión , Factor de Transcripción STAT3 , Quinasa Syk , Quinasa Syk/metabolismo , Animales , Factor de Transcripción STAT3/metabolismo , Trampas Extracelulares/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Fosforilación , Ratones , Proteínas de la Membrana/metabolismo , Masculino , Neutrófilos/metabolismo , Proteínas Portadoras/metabolismo , Piruvato Quinasa/metabolismo , Hígado/metabolismo , Hígado/patología , Proteínas de Unión a Hormona Tiroide , Recurrencia Local de Neoplasia/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Humanos , Transducción de SeñalRESUMEN
Apigenin (API) is a natural flavonoid compound with antioxidant, anti fibrotic, anti-inflammatory and other effects, but there is limited research on the effect of API on liver fibrosis. This study aims to explore the effect and potential mechanism of API on liver fibrosis induced by CCl4 in mice. The results indicate that API reduces oxidative stress levels, inhibits hepatic stellate cell (HSC) activation, and exerts anti liver fibrosis effects by regulating the PKM2-HIF-1α pathway. We observed that API alleviated liver tissue pathological damage and collagen deposition in CCl4 induced mouse liver fibrosis model, promoting the recovery of liver function in mice with liver fibrosis. In addition, the API inhibits the transition of Pyruvate kinase isozyme type M2 (PKM2) from dimer to tetramer formation by regulating the EGFR-MEK1/2-ERK1/2 pathway, thereby preventing dimer from entering the nucleus and blocking PKM2-HIF-1α access. This change leads to a decrease in malondialdehyde (MDA) and Catalase (CAT) levels and an increase in glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) levels, as well as total antioxidant capacity (T-AOC) in the liver of liver fibrosis mice. At the same time, API downregulated the expression of α-smooth muscle actin (α-SMA), Vimentin and Desmin in the liver tissue of mice with liver fibrosis, inhibited the activation of HSC, and reduced collagen deposition. These results indicate that API can inhibit HSC activation and alleviate CCl4 induced liver fibrosis by inhibiting the PKM2-HIF-1α pathway and reducing oxidative stress, laying an important foundation for the development and clinical application of API as a novel drug for treating liver fibrosis.
Asunto(s)
Apigenina , Subunidad alfa del Factor 1 Inducible por Hipoxia , Cirrosis Hepática , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Apigenina/farmacología , Apigenina/uso terapéutico , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Ratones , Masculino , Piruvato Quinasa/metabolismo , Ratones Endogámicos C57BL , Tetracloruro de Carbono/toxicidad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Proteínas de Unión a Hormona Tiroide , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hormonas Tiroideas/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Receptores ErbBRESUMEN
The heterogeneous nuclear ribonucleoprotein C (HNRNPC) plays a crucial role in tumorigenesis, yet its role in papillary thyroid carcinoma (PTC) remains elusive. Herein, we elucidated the function and molecular mechanism of HNRNPC in PTC tumorigenesis and progression. Our study unveiled a significant upregulation of HNRNPC in PTC, and knockdown of HNRNPC markedly inhibited the proliferation, invasion, and metastasis of BCPAP cells. Furthermore, HNRNPC modulated PKM alternative splicing in BCPAP cells primarily through m6A modification. Additionally, by upregulating PKM2 expression, HNRNPC promoted aerobic glycolysis in BCPAP cells, thereby facilitating malignant progression in PTC. In summary, our findings demonstrate that HNRNPC regulates PKM alternative splicing through m6A methylation modification and promotes the proliferation, invasion and metastasis of PTC through glucose metabolism pathways mediated by PKM2. These discoveries provide new biomarkers for screening and diagnosing PTC patients and offer novel therapeutic targets for personalized treatment strategies.