Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.032
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(3): 776-791.e17, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29576449

RESUMEN

Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation.


Asunto(s)
Actinas/química , Blastocisto/metabolismo , Microtúbulos/metabolismo , Miosina Tipo II/química , Animales , Comunicación Celular , Proteínas del Citoesqueleto/química , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Proteínas Fluorescentes Verdes , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Mórula , ARN Interferente Pequeño/metabolismo , Uniones Estrechas
2.
Cell ; 172(1-2): 275-288.e18, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328916

RESUMEN

The neuronal gene Arc is essential for long-lasting information storage in the mammalian brain, mediates various forms of synaptic plasticity, and has been implicated in neurodevelopmental disorders. However, little is known about Arc's molecular function and evolutionary origins. Here, we show that Arc self-assembles into virus-like capsids that encapsulate RNA. Endogenous Arc protein is released from neurons in extracellular vesicles that mediate the transfer of Arc mRNA into new target cells, where it can undergo activity-dependent translation. Purified Arc capsids are endocytosed and are able to transfer Arc mRNA into the cytoplasm of neurons. These results show that Arc exhibits similar molecular properties to retroviral Gag proteins. Evolutionary analysis indicates that Arc is derived from a vertebrate lineage of Ty3/gypsy retrotransposons, which are also ancestors to retroviruses. These findings suggest that Gag retroelements have been repurposed during evolution to mediate intercellular communication in the nervous system.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Exosomas/metabolismo , Productos del Gen gag/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Animales , Células Cultivadas , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Endocitosis , Femenino , Productos del Gen gag/química , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología
3.
Cell ; 172(1-2): 262-274.e11, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328915

RESUMEN

Arc/Arg3.1 is required for synaptic plasticity and cognition, and mutations in this gene are linked to autism and schizophrenia. Arc bears a domain resembling retroviral/retrotransposon Gag-like proteins, which multimerize into a capsid that packages viral RNA. The significance of such a domain in a plasticity molecule is uncertain. Here, we report that the Drosophila Arc1 protein forms capsid-like structures that bind darc1 mRNA in neurons and is loaded into extracellular vesicles that are transferred from motorneurons to muscles. This loading and transfer depends on the darc1-mRNA 3' untranslated region, which contains retrotransposon-like sequences. Disrupting transfer blocks synaptic plasticity, suggesting that transfer of dArc1 complexed with its mRNA is required for this function. Notably, cultured cells also release extracellular vesicles containing the Gag region of the Copia retrotransposon complexed with its own mRNA. Taken together, our results point to a trans-synaptic mRNA transport mechanism involving retrovirus-like capsids and extracellular vesicles.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Productos del Gen gag/genética , Cuerpos Multivesiculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , ARN Mensajero/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Productos del Gen gag/química , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/metabolismo , Plasticidad Neuronal , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Terminales Presinápticos/fisiología , Unión Proteica , Dominios Proteicos , Retroelementos/genética
4.
Cell ; 170(2): 312-323.e10, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28708999

RESUMEN

Proteins of the Rbfox family act with a complex of proteins called the Large Assembly of Splicing Regulators (LASR). We find that Rbfox interacts with LASR via its C-terminal domain (CTD), and this domain is essential for its splicing activity. In addition to LASR recruitment, a low-complexity (LC) sequence within the CTD contains repeated tyrosines that mediate higher-order assembly of Rbfox/LASR and are required for splicing activation by Rbfox. This sequence spontaneously aggregates in solution to form fibrous structures and hydrogels, suggesting an assembly similar to the insoluble cellular inclusions formed by FUS and other proteins in neurologic disease. Unlike the pathological aggregates, we find that assembly of the Rbfox CTD plays an essential role in its normal splicing function. Rather than simple recruitment of individual regulators to a target exon, alternative splicing choices also depend on the higher-order assembly of these regulators within the nucleus.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Proteínas del Citoesqueleto/química , Humanos , Ratones , Dominios Proteicos , Empalme del ARN , Alineación de Secuencia , Factores de Empalme Serina-Arginina/metabolismo
5.
Mol Cell ; 82(9): 1643-1659.e10, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35334231

RESUMEN

The NADase SARM1 (sterile alpha and TIR motif containing 1) is a key executioner of axon degeneration and a therapeutic target for several neurodegenerative conditions. We show that a potent SARM1 inhibitor undergoes base exchange with the nicotinamide moiety of nicotinamide adenine dinucleotide (NAD+) to produce the bona fide inhibitor 1AD. We report structures of SARM1 in complex with 1AD, NAD+ mimetics and the allosteric activator nicotinamide mononucleotide (NMN). NMN binding triggers reorientation of the armadillo repeat (ARM) domains, which disrupts ARM:TIR interactions and leads to formation of a two-stranded TIR domain assembly. The active site spans two molecules in these assemblies, explaining the requirement of TIR domain self-association for NADase activity and axon degeneration. Our results reveal the mechanisms of SARM1 activation and substrate binding, providing rational avenues for the design of new therapeutics targeting SARM1.


Asunto(s)
Proteínas del Dominio Armadillo , NAD , Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , NAD/metabolismo , NAD+ Nucleosidasa/metabolismo , Dominios Proteicos
6.
Cell ; 156(6): 1127-1129, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24630715

RESUMEN

Microbial and danger signals result in inflammasome activation and release of inflammatory cytokines through mechanisms that remain elusive. Cai et al. and Lu et al. show that triggering of inflammasome sensors induces prion-like polymerization of the adaptor ASC into filaments. These structures function as platforms for inflammatory cytokine production and represent a unified mechanism for inflammasome assembly.


Asunto(s)
Evolución Biológica , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Inmunidad Innata , Inflamasomas/química , Inflamasomas/inmunología , Priones/metabolismo , Transducción de Señal , Levaduras/inmunología , Animales , Proteínas Adaptadoras de Señalización CARD , Humanos
7.
Cell ; 156(6): 1193-1206, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24630722

RESUMEN

Inflammasomes elicit host defense inside cells by activating caspase-1 for cytokine maturation and cell death. AIM2 and NLRP3 are representative sensor proteins in two major families of inflammasomes. The adaptor protein ASC bridges the sensor proteins and caspase-1 to form ternary inflammasome complexes, achieved through pyrin domain (PYD) interactions between sensors and ASC and through caspase activation and recruitment domain (CARD) interactions between ASC and caspase-1. We found that PYD and CARD both form filaments. Activated AIM2 and NLRP3 nucleate PYD filaments of ASC, which, in turn, cluster the CARD of ASC. ASC thus nucleates CARD filaments of caspase-1, leading to proximity-induced activation. Endogenous NLRP3 inflammasome is also filamentous. The cryoelectron microscopy structure of ASC(PYD) filament at near-atomic resolution provides a template for homo- and hetero-PYD/PYD associations, as confirmed by structure-guided mutagenesis. We propose that ASC-dependent inflammasomes in both families share a unified assembly mechanism that involves two successive steps of nucleation-induced polymerization. PAPERFLICK:


Asunto(s)
Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Inflamasomas/química , Secuencia de Aminoácidos , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al ADN , Humanos , Inflamasomas/metabolismo , Inflamasomas/ultraestructura , Interleucina-1beta/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas Nucleares/metabolismo , Polimerizacion , Estructura Terciaria de Proteína
8.
Cell ; 156(6): 1207-1222, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24630723

RESUMEN

Pathogens and cellular danger signals activate sensors such as RIG-I and NLRP3 to produce robust immune and inflammatory responses through respective adaptor proteins MAVS and ASC, which harbor essential N-terminal CARD and PYRIN domains, respectively. Here, we show that CARD and PYRIN function as bona fide prions in yeast and that their prion forms are inducible by their respective upstream activators. Likewise, a yeast prion domain can functionally replace CARD and PYRIN in mammalian cell signaling. Mutations in MAVS and ASC that disrupt their prion activities in yeast also abrogate their ability to signal in mammalian cells. Furthermore, fibers of recombinant PYRIN can convert ASC into functional polymers capable of activating caspase-1. Remarkably, a conserved fungal NOD-like receptor and prion pair can functionally reconstitute signaling of NLRP3 and ASC PYRINs in mammalian cells. These results indicate that prion-like polymerization is a conserved signal transduction mechanism in innate immunity and inflammation.


Asunto(s)
Evolución Biológica , Inmunidad Innata , Inflamasomas/inmunología , Priones/metabolismo , Transducción de Señal , Levaduras/inmunología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Humanos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Polimerizacion , Levaduras/metabolismo
9.
Cell ; 154(2): 391-402, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870127

RESUMEN

Mitotic spindle position defines the cell-cleavage site during cytokinesis. However, the mechanisms that control spindle positioning to generate equal-sized daughter cells remain poorly understood. Here, we demonstrate that two mechanisms act coordinately to center the spindle during anaphase in symmetrically dividing human cells. First, the spindle is positioned directly by the microtubule-based motor dynein, which we demonstrate is targeted to the cell cortex by two distinct pathways: a Gαi/LGN/NuMA-dependent pathway and a 4.1G/R and NuMA-dependent, anaphase-specific pathway. Second, we find that asymmetric plasma membrane elongation occurs in response to spindle mispositioning to alter the cellular boundaries relative to the spindle. Asymmetric membrane elongation is promoted by chromosome-derived Ran-GTP signals that locally reduce Anillin at the growing cell cortex. In asymmetrically elongating cells, dynein-dependent spindle anchoring at the stationary cell cortex ensures proper spindle positioning. Our results reveal the anaphase-specific spindle centering systems that achieve equal-sized cell division.


Asunto(s)
Anafase , Membrana Celular/metabolismo , Dineínas/metabolismo , Huso Acromático/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Complejo Dinactina , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Proteínas Asociadas a Matriz Nuclear/metabolismo , Alineación de Secuencia
10.
Mol Cell ; 75(1): 13-25.e5, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31151856

RESUMEN

Arc is a synaptic protein essential for memory consolidation. Recent studies indicate that Arc originates in evolution from a Ty3-Gypsy retrotransposon GAG domain. The N-lobe of Arc GAG domain acquired a hydrophobic binding pocket in higher vertebrates that is essential for Arc's canonical function to weaken excitatory synapses. Here, we report that Arc GAG also acquired phosphorylation sites that can acutely regulate its synaptic function. CaMKII phosphorylates the N-lobe of the Arc GAG domain and disrupts an interaction surface essential for high-order oligomerization. In Purkinje neurons, CaMKII phosphorylation acutely reverses Arc's synaptic action. Mutant Arc that cannot be phosphorylated by CaMKII enhances metabotropic receptor-dependent depression in the hippocampus but does not alter baseline synaptic transmission or long-term potentiation. Behavioral studies indicate that hippocampus- and amygdala-dependent learning requires Arc GAG domain phosphorylation. These studies provide an atomic model for dynamic and local control of Arc function underlying synaptic plasticity and memory.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/metabolismo , Secuencia de Aminoácidos , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/metabolismo , Animales , Sitios de Unión , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Técnicas de Sustitución del Gen , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Células de Purkinje/citología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sinapsis/fisiología , Transmisión Sináptica
11.
Nature ; 588(7839): 658-663, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053563

RESUMEN

Pathological degeneration of axons disrupts neural circuits and represents one of the hallmarks of neurodegeneration1-4. Sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 (SARM1) is a central regulator of this neurodegenerative process5-8, and its Toll/interleukin-1 receptor (TIR) domain exerts its pro-neurodegenerative action through NADase activity9,10. However, the mechanisms by which the activation of SARM1 is stringently controlled are unclear. Here we report the cryo-electron microscopy structures of full-length SARM1 proteins. We show that NAD+ is an unexpected ligand of the armadillo/heat repeat motifs (ARM) domain of SARM1. This binding of NAD+ to the ARM domain facilitated the inhibition of the TIR-domain NADase through the domain interface. Disruption of the NAD+-binding site or the ARM-TIR interaction caused constitutive activation of SARM1 and thereby led to axonal degeneration. These findings suggest that NAD+ mediates self-inhibition of this central pro-neurodegenerative protein.


Asunto(s)
Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/metabolismo , NAD/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Animales , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/genética , Sitios de Unión , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Femenino , Células HEK293 , Humanos , Ligandos , Ratones , Modelos Moleculares , NAD+ Nucleosidasa/metabolismo , Unión Proteica , Dominios Proteicos , Células Sf9
12.
Annu Rev Cell Dev Biol ; 28: 655-85, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22881460

RESUMEN

Epithelial tissue formation and function requires the apical-basal polarization of individual epithelial cells. Apical polarity regulators (APRs) are an evolutionarily conserved group of key factors that govern polarity and several other aspects of epithelial differentiation. APRs compose a diverse set of molecules including a transmembrane protein (Crumbs), a serine/threonine kinase (aPKC), a lipid phosphatase (PTEN), a small GTPase (Cdc42), FERM domain proteins (Moesin, Yurt), and several adaptor or scaffolding proteins (Bazooka/Par3, Par6, Stardust, Patj). These proteins form a dynamic cooperative network that is engaged in negative-feedback regulation with basolateral polarity factors to set up the epithelial apical-basal axis. APRs support the formation of the apical junctional complex and the segregation of the junctional domain from the apical membrane. It is becoming increasingly clear that APRs interact with the cytoskeleton and vesicle trafficking machinery, regulate morphogenesis, and modulate epithelial cell growth and survival. Not surprisingly, APRs have multiple fundamental links to human diseases such as cancer and blindness.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila/citología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Secuencia de Aminoácidos , Animales , Proliferación Celular , Supervivencia Celular , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Retroalimentación Fisiológica , Humanos , Uniones Intercelulares/metabolismo , Datos de Secuencia Molecular , Morfogénesis
13.
J Biol Chem ; 300(6): 107336, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718863

RESUMEN

FtsZ, the tubulin homolog essential for bacterial cell division, assembles as the Z-ring at the division site, and directs peptidoglycan synthesis by treadmilling. It is unclear how FtsZ achieves kinetic polarity that drives treadmilling. To obtain insights into fundamental features of FtsZ assembly dynamics independent of peptidoglycan synthesis, we carried out structural and biochemical characterization of FtsZ from the cell wall-less bacteria, Spiroplasma melliferum (SmFtsZ). Interestingly the structures of SmFtsZ, bound to GDP and GMPPNP respectively, were captured as domain swapped dimers. SmFtsZ was found to be a slower GTPase with a higher critical concentration (CC) compared to Escherichia coli FtsZ (EcFtsZ). In FtsZs, a conformational switch from R-state (close) to T-state (open) favors polymerization. We identified that Phe224, located at the interdomain cleft of SmFtsZ, is crucial for R- to T-state transition. SmFtsZF224M exhibited higher GTPase activity and lower CC, whereas the corresponding EcFtsZM225F resulted in cell division defects in E. coli. Our results demonstrate that relative rotation of the domains is a rate-limiting step of polymerization. Our structural analysis suggests that the rotation is plausibly triggered upon addition of a GTP-bound monomer to the filament through interaction of the preformed N-terminal domain (NTD). Hence, addition of monomers to the NTD-exposed end of filament is slower in comparison to the C-terminal domain (CTD) end, thus explaining kinetic polarity. In summary, the study highlights the importance of interdomain interactions and conformational changes in regulating FtsZ assembly dynamics.


Asunto(s)
Proteínas Bacterianas , Proteínas del Citoesqueleto , Escherichia coli , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Dominios Proteicos , Multimerización de Proteína , Guanosina Difosfato/metabolismo , Guanosina Difosfato/química , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química , División Celular
14.
EMBO J ; 40(23): e108819, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34694004

RESUMEN

The human replisome is an elaborate arrangement of molecular machines responsible for accurate chromosome replication. At its heart is the CDC45-MCM-GINS (CMG) helicase, which, in addition to unwinding the parental DNA duplex, arranges many proteins including the leading-strand polymerase Pol ε, together with TIMELESS-TIPIN, CLASPIN and AND-1 that have key and varied roles in maintaining smooth replisome progression. How these proteins are coordinated in the human replisome is poorly understood. We have determined a 3.2 Šcryo-EM structure of a human replisome comprising CMG, Pol ε, TIMELESS-TIPIN, CLASPIN and AND-1 bound to replication fork DNA. The structure permits a detailed understanding of how AND-1, TIMELESS-TIPIN and Pol ε engage CMG, reveals how CLASPIN binds to multiple replisome components and identifies the position of the Pol ε catalytic domain. Furthermore, the intricate network of contacts contributed by MCM subunits and TIMELESS-TIPIN with replication fork DNA suggests a mechanism for strand separation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , ADN Polimerasa II/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , ADN Polimerasa II/química , ADN Polimerasa II/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/genética , Conformación Proteica
15.
Proc Natl Acad Sci U S A ; 119(50): e2208227119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36490318

RESUMEN

The spatiotemporal regulation of cell division is a fundamental issue in cell biology. Bacteria have evolved a variety of different systems to achieve proper division site placement. In many cases, the underlying molecular mechanisms are still incompletely understood. In this study, we investigate the function of the cell division regulator MipZ from Caulobacter crescentus, a P-loop ATPase that inhibits the polymerization of the treadmilling tubulin homolog FtsZ near the cell poles, thereby limiting the assembly of the cytokinetic Z ring to the midcell region. We show that MipZ interacts with FtsZ in both its monomeric and polymeric forms and induces the disassembly of FtsZ polymers in a manner that is not dependent but enhanced by the FtsZ GTPase activity. Using a combination of biochemical and genetic approaches, we then map the MipZ-FtsZ interaction interface. Our results reveal that MipZ employs a patch of surface-exposed hydrophobic residues to interact with the C-terminal region of the FtsZ core domain. In doing so, it sequesters FtsZ monomers and caps the (+)-end of FtsZ polymers, thereby promoting their rapid disassembly. We further show that MipZ influences the conformational dynamics of interacting FtsZ molecules, which could potentially contribute to modulating their assembly kinetics. Together, our findings show that MipZ uses a combination of mechanisms to control FtsZ polymerization, which may be required to robustly regulate the spatiotemporal dynamics of Z ring assembly within the cell.


Asunto(s)
Caulobacter crescentus , Proteínas del Citoesqueleto , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/química , Polímeros , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Caulobacter crescentus/genética , División Celular
16.
Proc Natl Acad Sci U S A ; 119(35): e2208457119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994671

RESUMEN

The nicotinamide adenine dinucleotide hydrolase (NADase) sterile alpha toll/interleukin receptor motif containing-1 (SARM1) acts as a central executioner of programmed axon death and is a possible therapeutic target for neurodegenerative disorders. While orthosteric inhibitors of SARM1 have been described, this multidomain enzyme is also subject to intricate forms of autoregulation, suggesting the potential for allosteric modes of inhibition. Previous studies have identified multiple cysteine residues that support SARM1 activation and catalysis, but which of these cysteines, if any, might be selectively targetable by electrophilic small molecules remains unknown. Here, we describe the chemical proteomic discovery of a series of tryptoline acrylamides that site-specifically and stereoselectively modify cysteine-311 (C311) in the noncatalytic, autoregulatory armadillo repeat (ARM) domain of SARM1. These covalent compounds inhibit the NADase activity of WT-SARM1, but not C311A or C311S SARM1 mutants, show a high degree of proteome-wide selectivity for SARM1_C311 and stereoselectively block vincristine- and vacor-induced neurite degeneration in primary rodent dorsal root ganglion neurons. Our findings describe selective, covalent inhibitors of SARM1 targeting an allosteric cysteine, pointing to a potentially attractive therapeutic strategy for axon degeneration-dependent forms of neurological disease.


Asunto(s)
Proteínas del Dominio Armadillo , Cisteína , Proteínas del Citoesqueleto , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/genética , Axones , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Homeostasis , NAD+ Nucleosidasa , Proteómica
17.
Biochem Biophys Res Commun ; 714: 149947, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657442

RESUMEN

Here, we characterized the p.Arg583His (R583H) Kv7.1 mutation, identified in two unrelated families suffered from LQT syndrome. This mutation is located in the HС-HD linker of the cytoplasmic portion of the Kv7.1 channel. This linker, together with HD helix are responsible for binding the A-kinase anchoring protein 9 (AKAP9), Yotiao. We studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1 along with KCNE1 subunit and Yotiao protein, using the whole-cell patch-clamp technique. We found that R583H mutation, even at the heterozygous state, impedes IKs activation. Molecular modeling showed that HС and HD helixes of the C-terminal part of Kv7.1 channel are swapped along the C-terminus length of the channel and that R583 position is exposed to the outer surface of HC-HD tandem coiled-coil. Interestingly, the adenylate cyclase activator, forskolin had a smaller effect on the mutant channel comparing with the WT protein, suggesting that R583H mutation may disrupt the interaction of the channel with the adaptor protein Yotiao and, therefore, may impair phosphorylation of the KCNQ1 channel.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Proteínas del Citoesqueleto , Canal de Potasio KCNQ1 , Síndrome de QT Prolongado , Animales , Femenino , Humanos , Masculino , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/química , Células CHO , Cricetulus , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/química , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Modelos Moleculares , Mutación , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica
18.
Mol Cell ; 64(2): 236-250, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27746017

RESUMEN

Caspase-8 activation can be triggered by death receptor-mediated formation of the death-inducing signaling complex (DISC) and by the inflammasome adaptor ASC. Caspase-8 assembles with FADD at the DISC and with ASC at the inflammasome through its tandem death effector domain (tDED), which is regulated by the tDED-containing cellular inhibitor cFLIP and the viral inhibitor MC159. Here we present the caspase-8 tDED filament structure determined by cryoelectron microscopy. Extensive assembly interfaces not predicted by the previously proposed linear DED chain model were uncovered, and were further confirmed by structure-based mutagenesis in filament formation in vitro and Fas-induced apoptosis and ASC-mediated caspase-8 recruitment in cells. Structurally, the two DEDs in caspase-8 use quasi-equivalent contacts to enable assembly. Using the tDED filament structure as a template, structural analyses reveal the interaction surfaces between FADD and caspase-8 and the distinct mechanisms of regulation by cFLIP and MC159 through comingling and capping, respectively.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/química , Caspasa 8/química , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Proteína de Dominio de Muerte Asociada a Fas/química , Proteínas Virales/química , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Sitios de Unión , Proteínas Adaptadoras de Señalización CARD , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Dominio Efector de Muerte , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Expresión Génica , Humanos , Células Jurkat , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transfección , Proteínas Virales/genética , Proteínas Virales/metabolismo , Receptor fas/farmacología
19.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34871179

RESUMEN

The radial spoke (RS) heads of motile cilia and flagella contact projections of the central pair (CP) apparatus to coordinate motility, but the morphology is distinct for protozoa and metazoa. Here we show the murine RS head is compositionally distinct from that of Chlamydomonas Our reconstituted murine RS head core complex consists of Rsph1, Rsph3b, Rsph4a, and Rsph9, lacking Rsph6a and Rsph10b, whose orthologs exist in the protozoan RS head. We resolve its cryo-electron microscopy (cryo-EM) structure at 3.2-Å resolution. Our atomic model further reveals a twofold symmetric brake pad-shaped structure, in which Rsph4a and Rsph9 form a compact body extended laterally with two long arms of twisted Rsph1 ß-sheets and potentially connected dorsally via Rsph3b to the RS stalk. Furthermore, our modeling suggests that the core complex contacts the periodic CP projections either rigidly through its tooth-shaped Rsph4a regions or elastically through both arms for optimized RS-CP interactions and mechanosignal transduction.


Asunto(s)
Axonema/química , Axonema/metabolismo , Microscopía por Crioelectrón/métodos , Animales , Antígenos de Superficie , Chlamydomonas , Cilios , Proteínas del Citoesqueleto/química , Proteínas de Unión al ADN/química , Epítopos , Flagelos , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Mutación , Conformación Proteica , Proteínas Recombinantes
20.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468661

RESUMEN

Axon degeneration is an active program of self-destruction mediated by the protein SARM1. In healthy neurons, SARM1 is autoinhibited and, upon injury autoinhibition is relieved, activating the SARM1 enzyme to deplete NAD+ and induce axon degeneration. SARM1 forms a homomultimeric octamer with each monomer composed of an N-terminal autoinhibitory ARM domain, tandem SAM domains that mediate multimerization, and a C-terminal TIR domain encoding the NADase enzyme. Here we discovered multiple intramolecular and intermolecular domain interfaces required for SARM1 autoinhibition using peptide mapping and cryo-electron microscopy (cryo-EM). We identified a candidate autoinhibitory region by screening a panel of peptides derived from the SARM1 ARM domain, identifying a peptide mediating high-affinity inhibition of the SARM1 NADase. Mutation of residues in full-length SARM1 within the region encompassed by the peptide led to loss of autoinhibition, rendering SARM1 constitutively active and inducing spontaneous NAD+ and axon loss. The cryo-EM structure of SARM1 revealed 1) a compact autoinhibited SARM1 octamer in which the TIR domains are isolated and prevented from oligomerization and enzymatic activation and 2) multiple candidate autoinhibitory interfaces among the domains. Mutational analysis demonstrated that five distinct interfaces are required for autoinhibition, including intramolecular and intermolecular ARM-SAM interfaces, an intermolecular ARM-ARM interface, and two ARM-TIR interfaces formed between a single TIR and two distinct ARM domains. These autoinhibitory regions are not redundant, as point mutants in each led to constitutively active SARM1. These studies define the structural basis for SARM1 autoinhibition and may enable the development of SARM1 inhibitors that stabilize the autoinhibited state.


Asunto(s)
Proteínas del Dominio Armadillo/química , Proteínas del Citoesqueleto/química , Ganglios Espinales/enzimología , NAD/química , Neuronas/enzimología , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Ganglios Espinales/citología , Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Mutación , NAD/metabolismo , Neuronas/citología , Péptidos/síntesis química , Cultivo Primario de Células , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA