Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.064
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34233163

RESUMEN

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Asunto(s)
Factor de Transcripción Asociado a Microftalmía/metabolismo , NADP Transhidrogenasas/metabolismo , Pigmentación de la Piel/efectos de la radiación , Rayos Ultravioleta , Animales , Línea Celular , Estudios de Cohortes , AMP Cíclico/metabolismo , Daño del ADN , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Predisposición Genética a la Enfermedad , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanosomas/efectos de los fármacos , Melanosomas/metabolismo , Melanosomas/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , NADP Transhidrogenasas/antagonistas & inhibidores , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Polimorfismo de Nucleótido Simple/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Proteolisis/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pigmentación de la Piel/efectos de los fármacos , Pigmentación de la Piel/genética , Ubiquitina/metabolismo , Pez Cebra
2.
Cell ; 184(12): 3163-3177.e21, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33964209

RESUMEN

Cancer cell genetic variability and similarity to host cells have stymied development of broad anti-cancer therapeutics. Our innate immune system evolved to clear genetically diverse pathogens and limit host toxicity; however, whether/how innate immunity can produce similar effects in cancer is unknown. Here, we show that human, but not murine, neutrophils release catalytically active neutrophil elastase (ELANE) to kill many cancer cell types while sparing non-cancer cells. ELANE proteolytically liberates the CD95 death domain, which interacts with histone H1 isoforms to selectively eradicate cancer cells. ELANE attenuates primary tumor growth and produces a CD8+T cell-mediated abscopal effect to attack distant metastases. Porcine pancreatic elastase (ELANE homolog) resists tumor-derived protease inhibitors and exhibits markedly improved therapeutic efficacy. Altogether, our studies suggest that ELANE kills genetically diverse cancer cells with minimal toxicity to non-cancer cells, raising the possibility of developing it as a broad anti-cancer therapy.


Asunto(s)
Carcinogénesis/patología , Elastasa de Leucocito/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Regulación Alostérica/efectos de los fármacos , Animales , Linfocitos T CD8-positivos/inmunología , Carcinogénesis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteína Catiónica del Eosinófilo/metabolismo , Histonas/metabolismo , Humanos , Ratones , Neoplasias/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/enzimología , Elastasa Pancreática/metabolismo , Inhibidores de Proteasas/farmacología , Dominios Proteicos , Isoformas de Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Porcinos , Receptor fas/química , Receptor fas/metabolismo
3.
Cell ; 182(4): 1009-1026.e29, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32730809

RESUMEN

Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.


Asunto(s)
Cisteína/metabolismo , Ligandos , Linfocitos T/metabolismo , Acetamidas/química , Acetamidas/farmacología , Acrilamidas/química , Acrilamidas/farmacología , Células Cultivadas , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Activación de Linfocitos/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteolisis/efectos de los fármacos , Proteoma/química , Proteoma/metabolismo , Estereoisomerismo , Linfocitos T/citología , Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/metabolismo
4.
Cell ; 178(4): 949-963.e18, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31353221

RESUMEN

Estrogen receptor-positive (ER+) breast cancers frequently remain dependent on ER signaling even after acquiring resistance to endocrine agents, prompting the development of optimized ER antagonists. Fulvestrant is unique among approved ER therapeutics due to its capacity for full ER antagonism, thought to be achieved through ER degradation. The clinical potential of fulvestrant is limited by poor physicochemical features, spurring attempts to generate ER degraders with improved drug-like properties. We show that optimization of ER degradation does not guarantee full ER antagonism in breast cancer cells; ER "degraders" exhibit a spectrum of transcriptional activities and anti-proliferative potential. Mechanistically, we find that fulvestrant-like antagonists suppress ER transcriptional activity not by ER elimination, but by markedly slowing the intra-nuclear mobility of ER. Increased ER turnover occurs as a consequence of ER immobilization. These findings provide proof-of-concept that small molecule perturbation of transcription factor mobility may enable therapeutic targeting of this challenging target class.


Asunto(s)
Neoplasias de la Mama/metabolismo , Antagonistas del Receptor de Estrógeno/farmacología , Fulvestrant/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Cinamatos/farmacología , Resistencia a Antineoplásicos , Antagonistas del Receptor de Estrógeno/uso terapéutico , Femenino , Fulvestrant/uso terapéutico , Células HEK293 , Xenoinjertos , Humanos , Indazoles/farmacología , Ligandos , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Polimorfismo de Nucleótido Simple , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
5.
Cell ; 173(1): 260-274.e25, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551266

RESUMEN

Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed "multiplexed proteome dynamics profiling" (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis. In three proof-of-concept studies, we uncover different responses induced by the bromodomain inhibitor JQ1 versus a JQ1 proteolysis targeting chimera; we elucidate distinct modes of action of estrogen receptor modulators; and we comprehensively classify HSP90 clients based on their requirement for HSP90 constitutively or during synthesis, demonstrating that constitutive HSP90 clients have lower thermal stability than non-clients, have higher affinity for the chaperone, vary between cell types, and change upon external stimuli. These findings highlight the potential of mPDP to identify dynamically controlled degradation mechanisms in cellular systems.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Proteoma/análisis , Proteómica/métodos , Azepinas/química , Azepinas/metabolismo , Azepinas/farmacología , Línea Celular , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Estradiol/farmacología , Humanos , Marcaje Isotópico , Células Jurkat , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Espectrometría de Masas en Tándem , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología
6.
Cell ; 168(1-2): 59-72.e13, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28065413

RESUMEN

Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.


Asunto(s)
Leucemia Bifenotípica Aguda/tratamiento farmacológico , Leucemia Bifenotípica Aguda/metabolismo , Proteolisis/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Enzimas Ubiquitina-Conjugadoras
7.
Nature ; 626(8000): 874-880, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297121

RESUMEN

Stress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health1-3. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress. Crucial to this process is the silencing factor of the integrated stress response (SIFI), a large E3 ligase complex mutated in ataxia and in early-onset dementia that degrades both unimported mitochondrial precursors and stress response components. By recognizing bifunctional substrate motifs that equally encode protein localization and stability, the SIFI complex turns off a general stress response after a specific stress event has been resolved. Pharmacological stress response silencing sustains cell survival even if stress resolution failed, which underscores the importance of signal termination and provides a roadmap for treating neurodegenerative diseases caused by mitochondrial import defects.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Mutación , Enfermedades Neurodegenerativas , Estrés Fisiológico , Ubiquitina-Proteína Ligasas , Apoptosis/efectos de los fármacos , Ataxia/genética , Supervivencia Celular/efectos de los fármacos , Demencia/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
8.
Mol Cell ; 81(15): 3110-3127.e14, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34233157

RESUMEN

SPT6 is a histone chaperone that tightly binds RNA polymerase II (RNAPII) during transcription elongation. However, its primary role in transcription is uncertain. We used targeted protein degradation to rapidly deplete SPT6 in human cells and analyzed defects in RNAPII behavior by a multi-omics approach and mathematical modeling. Our data indicate that SPT6 is a crucial factor for RNAPII processivity and is therefore required for the productive transcription of protein-coding genes. Unexpectedly, SPT6 also has a vital role in RNAPII termination, as acute depletion induced readthrough transcription for thousands of genes. Long-term depletion of SPT6 induced cryptic intragenic transcription, as observed earlier in yeast. However, this phenotype was not observed upon acute SPT6 depletion and therefore can be attributed to accumulated epigenetic perturbations in the prolonged absence of SPT6. In conclusion, targeted degradation of SPT6 allowed the temporal discrimination of its function as an epigenetic safeguard and RNAPII elongation factor.


Asunto(s)
ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Línea Celular , Replicación del ADN , Humanos , Ácidos Indolacéticos/farmacología , Poliadenilación , Proteolisis/efectos de los fármacos , ARN/biosíntesis , ARN Polimerasa II/genética , Factores de Transcripción/genética
9.
Nature ; 610(7933): 775-782, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36261529

RESUMEN

The ubiquitin E3 ligase substrate adapter cereblon (CRBN) is a target of thalidomide and lenalidomide1, therapeutic agents used in the treatment of haematopoietic malignancies2-4 and as ligands for targeted protein degradation5-7. These agents are proposed to mimic a naturally occurring degron; however, the structural motif recognized by the thalidomide-binding domain of CRBN remains unknown. Here we report that C-terminal cyclic imides, post-translational modifications that arise from intramolecular cyclization of glutamine or asparagine residues, are physiological degrons on substrates for CRBN. Dipeptides bearing the C-terminal cyclic imide degron substitute for thalidomide when embedded within bifunctional chemical degraders. Addition of the degron to the C terminus of proteins induces CRBN-dependent ubiquitination and degradation in vitro and in cells. C-terminal cyclic imides form adventitiously on physiologically relevant timescales throughout the human proteome to afford a degron that is endogenously recognized and removed by CRBN. The discovery of the C-terminal cyclic imide degron defines a regulatory process that may affect the physiological function and therapeutic engagement of CRBN.


Asunto(s)
Imidas , Proteolisis , Complejos de Ubiquitina-Proteína Ligasa , Humanos , Asparagina/química , Dipéptidos/farmacología , Glutamina/química , Imidas/química , Imidas/metabolismo , Lenalidomida/farmacología , Ligandos , Péptido Hidrolasas/metabolismo , Proteolisis/efectos de los fármacos , Proteoma/metabolismo , Talidomida/farmacología , Ubiquitinación/efectos de los fármacos , Secuencias de Aminoácidos , Ciclización
10.
Mol Cell ; 78(6): 1086-1095, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32407673

RESUMEN

Transcription is epigenetically regulated by the orchestrated function of chromatin-binding proteins that tightly control the expression of master transcription factors, effectors, and supportive housekeeping genes required for establishing and propagating the normal and malignant cell state. Rapid advances in chemical biology and functional genomics have facilitated exploration of targeting epigenetic proteins, yielding effective strategies to target transcription while reducing toxicities to untransformed cells. Here, we review recent developments in conventional active site and allosteric inhibitors, peptidomimetics, and novel proteolysis-targeted chimera (PROTAC) technology that have deepened our understanding of transcriptional processes and led to promising preclinical compounds for therapeutic translation, particularly in cancer.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Neoplasias/genética , Animales , Antineoplásicos/farmacología , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética/fisiología , Epigenómica/métodos , Humanos , Neoplasias/terapia , Proteolisis/efectos de los fármacos , Factores de Transcripción/metabolismo
11.
Mol Cell ; 79(6): 1008-1023.e4, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32871104

RESUMEN

TMPRSS2-ERG gene fusion occurs in approximately 50% of cases of prostate cancer (PCa), and the fusion product is a key driver of prostate oncogenesis. However, how to leverage cellular signaling to ablate TMPRSS2-ERG oncoprotein for PCa treatment remains elusive. Here, we demonstrate that DNA damage induces proteasomal degradation of wild-type ERG and TMPRSS2-ERG oncoprotein through ERG threonine-187 and tyrosine-190 phosphorylation mediated by GSK3ß and WEE1, respectively. The dual phosphorylation triggers ERG recognition and degradation by the E3 ubiquitin ligase FBW7 in a manner independent of a canonical degron. DNA damage-induced TMPRSS2-ERG degradation was abolished by cancer-associated PTEN deletion or GSK3ß inactivation. Blockade of DNA damage-induced TMPRSS2-ERG oncoprotein degradation causes chemotherapy-resistant growth of fusion-positive PCa cells in culture and in mice. Our findings uncover a previously unrecognized TMPRSS2-ERG protein destruction mechanism and demonstrate that intact PTEN and GSK3ß signaling are essential for effective targeting of ERG protein by genotoxic therapeutics in fusion-positive PCa.


Asunto(s)
Proteínas de Ciclo Celular/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Proteínas de Fusión Oncogénica/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Proteínas Tirosina Quinasas/genética , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Quimioterapia , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Xenoinjertos , Humanos , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
PLoS Biol ; 22(5): e3002550, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768083

RESUMEN

Alkenyl oxindoles have been characterized as autophagosome-tethering compounds (ATTECs), which can target mutant huntingtin protein (mHTT) for lysosomal degradation. In order to expand the application of alkenyl oxindoles for targeted protein degradation, we designed and synthesized a series of heterobifunctional compounds by conjugating different alkenyl oxindoles with bromodomain-containing protein 4 (BRD4) inhibitor JQ1. Through structure-activity relationship study, we successfully developed JQ1-alkenyl oxindole conjugates that potently degrade BRD4. Unexpectedly, we found that these molecules degrade BRD4 through the ubiquitin-proteasome system, rather than the autophagy-lysosomal pathway. Using pooled CRISPR interference (CRISPRi) screening, we revealed that JQ1-alkenyl oxindole conjugates recruit the E3 ubiquitin ligase complex CRL4DCAF11 for substrate degradation. Furthermore, we validated the most potent heterobifunctional molecule HL435 as a promising drug-like lead compound to exert antitumor activity both in vitro and in a mouse xenograft tumor model. Our research provides new employable proteolysis targeting chimera (PROTAC) moieties for targeted protein degradation, providing new possibilities for drug discovery.


Asunto(s)
Proteínas de Ciclo Celular , Oxindoles , Proteolisis , Ubiquitina-Proteína Ligasas , Humanos , Animales , Proteolisis/efectos de los fármacos , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Oxindoles/farmacología , Oxindoles/metabolismo , Oxindoles/química , Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Células HEK293 , Relación Estructura-Actividad , Complejo de la Endopetidasa Proteasomal/metabolismo , Azepinas/farmacología , Azepinas/química , Azepinas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Femenino , Proteínas que Contienen Bromodominio , Receptores de Interleucina-17
13.
Mol Cell ; 76(5): 797-810.e10, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31606272

RESUMEN

Protein silencing represents an essential tool in biomedical research. Targeted protein degradation (TPD) strategies exemplified by PROTACs are rapidly emerging as modalities in drug discovery. However, the scope of current TPD techniques is limited because many intracellular materials are not substrates of proteasomal clearance. Here, we described a novel targeted-clearance strategy (autophagy-targeting chimera [AUTAC]) that contains a degradation tag (guanine derivatives) and a warhead to provide target specificity. As expected from the substrate scope of autophagy, AUTAC degraded fragmented mitochondria as well as proteins. Mitochondria-targeted AUTAC accelerated both the removal of dysfunctional fragmented mitochondria and the biogenesis of functionally normal mitochondria in patient-derived fibroblast cells. Cytoprotective effects against acute mitochondrial injuries were also seen. Canonical autophagy is viewed as a nonselective bulk decomposition system, and none of the available autophagy-inducing agents exhibit useful cargo selectivity. With its target specificity, AUTAC provides a new modality for research on autophagy-based drugs.


Asunto(s)
Autofagia/fisiología , Guanina/química , Proteolisis/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Guanina/fisiología , Humanos , Mitocondrias/metabolismo , Mitofagia/fisiología , Ingeniería de Proteínas/métodos , Proteínas Quinasas/metabolismo , Estabilidad Proteica
14.
Mol Cell ; 74(6): 1215-1226.e4, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31053471

RESUMEN

Programmed death ligand 1 (PD-L1, also called B7-H1) is an immune checkpoint protein that inhibits immune function through its binding of the programmed cell death protein 1 (PD-1) receptor. Clinically approved antibodies block extracellular PD-1 and PD-L1 binding, yet the role of intracellular PD-L1 in cancer remains poorly understood. Here, we discovered that intracellular PD-L1 acts as an RNA binding protein that regulates the mRNA stability of NBS1, BRCA1, and other DNA damage-related genes. Through competition with the RNA exosome, intracellular PD-L1 protects targeted RNAs from degradation, thereby increasing cellular resistance to DNA damage. RNA immunoprecipitation and RNA-seq experiments demonstrated that PD-L1 regulates RNA stability genome-wide. Furthermore, we developed a PD-L1 antibody, H1A, which abrogates the interaction of PD-L1 with CMTM6, thereby promoting PD-L1 degradation. Intracellular PD-L1 may be a potential therapeutic target to enhance the efficacy of radiotherapy and chemotherapy in cancer through the inhibition of DNA damage response and repair.


Asunto(s)
Antígeno B7-H1/genética , Reparación del ADN , ADN de Neoplasias/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Regulación Neoplásica de la Expresión Génica , Receptor de Muerte Celular Programada 1/genética , Animales , Antineoplásicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Daño del ADN , ADN de Neoplasias/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Rayos gamma/uso terapéutico , Células HCT116 , Células HeLa , Humanos , Proteínas con Dominio MARVEL , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de la Mielina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Proteolisis/efectos de los fármacos , Proteolisis/efectos de la radiación , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/efectos de la radiación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Genes Dev ; 33(19-20): 1441-1455, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31467088

RESUMEN

Rapid perturbation of protein function permits the ability to define primary molecular responses while avoiding downstream cumulative effects of protein dysregulation. The auxin-inducible degron (AID) system was developed as a tool to achieve rapid and inducible protein degradation in nonplant systems. However, tagging proteins at their endogenous loci results in chronic auxin-independent degradation by the proteasome. To correct this deficiency, we expressed the auxin response transcription factor (ARF) in an improved inducible degron system. ARF is absent from previously engineered AID systems but is a critical component of native auxin signaling. In plants, ARF directly interacts with AID in the absence of auxin, and we found that expression of the ARF PB1 (Phox and Bem1) domain suppresses constitutive degradation of AID-tagged proteins. Moreover, the rate of auxin-induced AID degradation is substantially faster in the ARF-AID system. To test the ARF-AID system in a quantitative and sensitive manner, we measured genome-wide changes in nascent transcription after rapidly depleting the ZNF143 transcription factor. Transcriptional profiling indicates that ZNF143 activates transcription in cis and regulates promoter-proximal paused RNA polymerase density. Rapidly inducible degradation systems that preserve the target protein's native expression levels and patterns will revolutionize the study of biological systems by enabling specific and temporally defined protein dysregulation.


Asunto(s)
Técnicas Genéticas , Proteínas/metabolismo , Proteolisis , Línea Celular , Inhibidores de Cisteína Proteinasa/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ácidos Indolacéticos/farmacología , Leupeptinas/farmacología , Células MCF-7 , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Transactivadores/genética , Transactivadores/metabolismo
16.
EMBO J ; 41(1): e105026, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791698

RESUMEN

Intronic GGGGCC (G4C2) hexanucleotide repeat expansion within the human C9orf72 gene represents the most common cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of repeat-containing C9orf72 RNA results in the production of neurotoxic dipeptide-repeat proteins (DPRs). Here, we developed a high-throughput drug screen for the identification of positive and negative modulators of DPR levels. We found that HSP90 inhibitor geldanamycin and aldosterone antagonist spironolactone reduced DPR levels by promoting protein degradation via the proteasome and autophagy pathways respectively. Surprisingly, cAMP-elevating compounds boosting protein kinase A (PKA) activity increased DPR levels. Inhibition of PKA activity, by both pharmacological and genetic approaches, reduced DPR levels in cells and rescued pathological phenotypes in a Drosophila model of C9ALS/FTD. Moreover, knockdown of PKA-catalytic subunits correlated with reduced translation efficiency of DPRs, while the PKA inhibitor H89 reduced endogenous DPR levels in C9ALS/FTD patient-derived iPSC motor neurons. Together, our results suggest new and druggable pathways modulating DPR levels in C9ALS/FTD.


Asunto(s)
Proteína C9orf72/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Dipéptidos/metabolismo , Proteolisis , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular , Codón Iniciador/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Expansión de las Repeticiones de ADN/genética , Modelos Animales de Enfermedad , Drosophila/efectos de los fármacos , Demencia Frontotemporal/patología , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/patología , Isoquinolinas/farmacología , Longevidad/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Biosíntesis de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Interferencia de ARN , Sulfonamidas/farmacología
17.
J Cell Sci ; 137(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639717

RESUMEN

Activation of the Wnt-ß-catenin signaling pathway by CHIR99021, a specific inhibitor of GSK3ß, induces Tcf7l1 protein degradation, which facilitates the maintenance of an undifferentiated state in mouse embryonic stem cells (mESCs); however, the precise mechanism is still unclear. Here, we showed that the overexpression of transducin-ß-like protein 1 (Tbl1, also known as Tbl1x) or its family member Tblr1 (also known as Tbl1xr1) can decrease Tcf7l1 protein levels, whereas knockdown of each gene increases Tcf7l1 levels without affecting Tcf7l1 transcription. Interestingly, only Tbl1, and not Tblr1, interacts with Tcf7l1. Mechanistically, Tbl1 translocates from the cytoplasm into the nucleus in association with ß-catenin (CTNNB1) after the addition of CHIR99021 and functions as an adaptor to promote ubiquitylation of the Tcf7l1 protein. Functional assays further revealed that enforced expression of Tbl1 is capable of delaying mESC differentiation. In contrast, knockdown of Tbl1 attenuates the effect of CHIR99021 on Tcf7l1 protein stability and mESC self-renewal. Our results provide insight into the regulatory network of the Wnt-ß-catenin signaling pathway involved in promoting the maintenance of naïve pluripotency.


Asunto(s)
Células Madre Embrionarias de Ratones , Proteolisis , Proteína 1 Similar al Factor de Transcripción 7 , Ubiquitinación , Vía de Señalización Wnt , beta Catenina , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteína 1 Similar al Factor de Transcripción 7/metabolismo , Proteína 1 Similar al Factor de Transcripción 7/genética , beta Catenina/metabolismo , Proteolisis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Piridinas/farmacología , Proteínas con Repetición de beta-Transducina/metabolismo , Proteínas con Repetición de beta-Transducina/genética , Pirimidinas/farmacología , Humanos
18.
Nature ; 588(7836): 164-168, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33208943

RESUMEN

Effective and sustained inhibition of non-enzymatic oncogenic driver proteins is a major pharmacological challenge. The clinical success of thalidomide analogues demonstrates the therapeutic efficacy of drug-induced degradation of transcription factors and other cancer targets1-3, but a substantial subset of proteins are resistant to targeted degradation using existing approaches4,5. Here we report an alternative mechanism of targeted protein degradation, in which a small molecule induces the highly specific, reversible polymerization of a target protein, followed by its sequestration into cellular foci and subsequent degradation. BI-3802 is a small molecule that binds to the Broad-complex, Tramtrack and Bric-à-brac (BTB) domain of the oncogenic transcription factor B cell lymphoma 6 (BCL6) and leads to the proteasomal degradation of BCL66. We use cryo-electron microscopy to reveal how the solvent-exposed moiety of a BCL6-binding molecule contributes to a composite ligand-protein surface that engages BCL6 homodimers to form a supramolecular structure. Drug-induced formation of BCL6 filaments facilitates ubiquitination by the SIAH1 E3 ubiquitin ligase. Our findings demonstrate that a small molecule such as BI-3802 can induce polymerization coupled to highly specific protein degradation, which in the case of BCL6 leads to increased pharmacological activity compared to the effects induced by other BCL6 inhibitors. These findings open new avenues for the development of therapeutic agents and synthetic biology.


Asunto(s)
Polimerizacion/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-6/química , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Microscopía por Crioelectrón , Humanos , Técnicas In Vitro , Ligandos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/ultraestructura , Solventes , Biología Sintética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
19.
Nature ; 585(7824): 293-297, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32494016

RESUMEN

Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation1. Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets2. They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines3-5, we identify CR8-a cyclin-dependent kinase (CDK) inhibitor6-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues.


Asunto(s)
Ciclinas/deficiencia , Ciclinas/metabolismo , Proteolisis/efectos de los fármacos , Purinas/química , Purinas/farmacología , Piridinas/química , Piridinas/farmacología , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/química , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Purinas/toxicidad , Piridinas/toxicidad , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Ubiquitinación/efectos de los fármacos
20.
J Biol Chem ; 300(5): 107264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582446

RESUMEN

The ubiquitin (Ub)-proteasome system (UPS) is the major machinery mediating specific protein turnover in eukaryotic cells. By ubiquitylating unwanted, damaged, or harmful proteins and driving their degradation, UPS is involved in many important cellular processes. Several new UPS-based technologies, including molecular glue degraders and PROTACs (proteolysis-targeting chimeras) to promote protein degradation, and DUBTACs (deubiquitinase-targeting chimeras) to increase protein stability, have been developed. By specifically inducing the interactions between different Ub ligases and targeted proteins that are not otherwise related, molecular glue degraders and PROTACs degrade targeted proteins via the UPS; in contrast, by inducing the proximity of targeted proteins to deubiquitinases, DUBTACs are created to clear degradable poly-Ub chains to stabilize targeted proteins. In this review, we summarize the recent research progress in molecular glue degraders, PROTACs, and DUBTACs and their applications. We discuss immunomodulatory drugs, sulfonamides, cyclin-dependent kinase-targeting molecular glue degraders, and new development of PROTACs. We also introduce the principle of DUBTAC and its applications. Finally, we propose a few future directions of these three technologies related to targeted protein homeostasis.


Asunto(s)
Descubrimiento de Drogas , Complejo de la Endopetidasa Proteasomal , Proteolisis , Ubiquitinación , Humanos , Ubiquitinación/efectos de los fármacos , Proteolisis/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Ubiquitina/metabolismo , Animales , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA