Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Environ Toxicol ; 39(1): 398-408, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37782686

RESUMEN

Long non-coding RNAs (lncRNAs) are important in tumorigenesis and the development of multiple malignant human tumors, including colorectal cancer (CRC). We aimed to determine the regulatory mechanism of LINC01485 and its biological function in CRC. We estimated the expression of miR-383-5p, KRT80, and LINC01485 in CRC cells and tissues using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. The results were confirmed using RNA immunoprecipitation (RIP) and dual-luciferase assays. Binding relationships among miR-383-5p, LINC01485, and KRT80 were assessed. We explored the molecular mechanisms and functions of the LINC01485/miR-383-5p/KRT80 axis using CCK-8 and colony formation assays. Expression of the apoptotic markers Bcl-2 and Bax was quantified by western blotting, and the effects of LINC01485 on tumor development in vivo were investigated using xenograft tumors. Both LINC01485 and KRT80 were upregulated, whereas miR-383-5p was downregulated in CRC cells and tissues. Knockdown of LINC01485 attenuated CRC cell growth and xenograft tumor formation in vivo, whereas LINC01485 enhanced the proliferative capacity of CRC cells but inhibited apoptosis by sponging miR-383-5p to increase KRT80 expression in CRC cells. The regulatory molecular mechanism of the LINC01485/miR-383-5p/KRT80 axis plays a crucial role in CRC progression. Our findings highlight novel pathways and promising biomarkers for diagnostic and therapeutic application to patients with CRC.


Asunto(s)
Neoplasias Colorrectales , Queratinas Tipo II , MicroARNs , ARN Largo no Codificante , Humanos , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , Queratinas Tipo II/genética
2.
Clin Infect Dis ; 72(10): e515-e525, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32830257

RESUMEN

BACKGROUND: Our goal was to identify genetic risk factors for cutaneous leishmaniasis (CL) caused by Leishmania braziliensis. METHODS: Genotyping 2066 CL cases and 2046 controls using Illumina HumanCoreExomeBeadChips provided data for 4 498 586 imputed single-nucleotide variants (SNVs). A genome-wide association study (GWAS) using linear mixed models took account of genetic diversity/ethnicity/admixture. Post-GWAS positional, expression quantitative trait locus (eQTL) and chromatin interaction mapping was performed in Functional Mapping and Annotation (FUMA). Transcriptional data were compared between lesions and normal skin, and cytokines measured using flow cytometry and Bioplex assay. RESULTS: Positional mapping identified 32 genomic loci associated with CL, none achieving genome-wide significance (P < 5 × 10-8). Lead SNVs at 23 loci occurred at protein coding or noncoding RNA genes, 15 with eQTLs for functionally relevant cells/tissues and/or showing differential expression in lesions. Of these, the 6 most plausible genetic risk loci were SERPINB10 (Pimputed_1000G = 2.67 × 10-6), CRLF3 (Pimputed_1000G = 5.12 × 10-6), STX7 (Pimputed_1000G = 6.06 × 10-6), KRT80 (Pimputed_1000G = 6.58 × 10-6), LAMP3 (Pimputed_1000G = 6.54 × 10-6), and IFNG-AS1 (Pimputed_1000G = 1.32 × 10-5). LAMP3 (Padjusted = 9.25 × 10-12; +6-fold), STX7 (Padjusted = 7.62 × 10-3; +1.3-fold), and CRLF3 (Padjusted = 9.19 × 10-9; +1.97-fold) were expressed more highly in CL biopsies compared to normal skin; KRT80 (Padjusted = 3.07 × 10-8; -3-fold) was lower. Multiple cis-eQTLs across SERPINB10 mapped to chromatin interaction regions of transcriptional/enhancer activity in neutrophils, monocytes, B cells, and hematopoietic stem cells. Those at IFNG-AS1 mapped to transcriptional/enhancer regions in T, natural killer, and B cells. The percentage of peripheral blood CD3+ T cells making antigen-specific interferon-γ differed significantly by IFNG-AS1 genotype. CONCLUSIONS: This first GWAS for CL identified multiple genetic risk loci including a novel lead to understanding CL pathogenesis through regulation of interferon-γ by IFNG antisense RNA 1.


Asunto(s)
Predisposición Genética a la Enfermedad , Leishmaniasis Cutánea , Brasil/epidemiología , Estudio de Asociación del Genoma Completo , Humanos , Interferón gamma , Queratinas Tipo II , Leishmaniasis Cutánea/epidemiología , Leishmaniasis Cutánea/genética , Proteínas de Membrana de los Lisosomas , Proteínas de Neoplasias , Polimorfismo de Nucleótido Simple , Receptores de Citocinas , Serpinas
3.
Allergy ; 76(10): 3053-3065, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33721346

RESUMEN

BACKGROUND: Alopecia areata (AA) is characterized by immune dysregulation in both scalp and blood, but a large-scale approach establishing biomarkers of AA incorporating both scalp tissue and serum compartments is lacking. We aimed to characterize the transcriptomic signature of AA lesional and nonlesional scalp compared to healthy scalp and determine its relationship with the blood proteome in the same individuals, with comparative correlations to clinical AA disease severity. METHODS: We evaluated lesional and nonlesional scalp tissues and serum from patients with moderate-to-severe AA (n = 18) and healthy individuals (n = 8). We assessed 33,118 genes in AA scalp tissue using RNAseq transcriptomic evaluation and 340 inflammatory proteins in serum using OLINK high-throughput proteomics. Univariate and multivariate approaches were used to correlate disease biomarkers with Severity of Alopecia Tool (SALT). RESULTS: A total of 608 inflammatory genes were differentially expressed in lesional AA scalp (fold change/FCH>1.5, false discovery rate/FDR<0.05) including Th1 (IFNG/IL12B/CXCL11), Th2 (IL13/CCL18), and T-cell activation-related (ICOS) products. Th1/Th2-related markers were significantly correlated with AA clinical severity in lesional/nonlesional tissue, while keratins (KRT35/KRT83/KRT81) were significantly downregulated in lesional compared to healthy scalp (p < .05). Expression of cardiovascular/atherosclerosis-related markers (MMP9/CCL2/IL1RL1/IL33R/ST2/AGER) in lesional scalp correlated with their corresponding serum expression (p < .05). AA scalp demonstrated significantly greater biomarker dysregulation compared to blood. An integrated multivariate approach combining scalp and serum biomarkers improved correlations with disease severity/SALT. CONCLUSION: This study contributes a unique understanding of the phenotype of moderate-to-severe AA with an integrated scalp and serum biomarker model suggesting the systemic nature of the disease, advocating for the need for immune-based systemic treatment.


Asunto(s)
Alopecia Areata , Alopecia Areata/diagnóstico , Alopecia Areata/genética , Biomarcadores , Humanos , Queratinas Específicas del Pelo , Queratinas Tipo II , Activación de Linfocitos , Cuero Cabelludo , Índice de Severidad de la Enfermedad
4.
Cell Commun Signal ; 19(1): 25, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627146

RESUMEN

BACKGROUND: Cholesteatoma disease is an expanding lesion in the middle ear. Hearing loss and facial paralysis alongside with other intracranial complications are found. No pharmaceutical treatment is available today and recurrence after surgical extraction occurs. We investigated possible TLR4-based mechanisms promoting recurrence and explore possible treatments strategies. METHODS: We isolated fibroblasts and epidermal stem cells from cholesteatoma tissue and healthy auditory canal skin. Subsequently, their expression under standard culture conditions and after stimulation with LPS was investigated by RT-qPCR. Cell metabolism and proliferation were analysed upon LPS treatment, with and without TLR4 antagonist. An indirect co-culture of fibroblasts and epidermal stem cells isolated from cholesteatoma tissue was utilized to monitor epidermal differentiation upon LPS treatment by RT-qPCR and immunocytochemistry. RESULTS: Under standard culture conditions, we detected a tissue-independent higher expression of IL-1ß and IL-8 in stem cells, an upregulation of KGF and IGF-2 in both cell types derived from cholesteatoma and higher expression of TLR4 in stem cells derived from cholesteatoma tissue. Upon LPS challenge, we could detect a significantly higher expression of IL-1α, IL-1ß, IL-6 and IL-8 in stem cells and of TNF-a, GM-CSF and CXCL-5 in stem cells and fibroblasts derived from cholesteatoma. The expression of the growth factors KGF, EGF, EREG, IGF-2 and HGF was significantly higher in fibroblasts, particularly when derived from cholesteatoma. Upon treatment with LPS the metabolism was elevated in stem cells and fibroblasts, proliferation was only enhanced in fibroblasts derived from cholesteatoma. This could be reversed by the treatment with a TLR4 antagonist. The cholesteatoma fibroblasts could be triggered by LPS to promote the epidermal differentiation of the stem cells, while no LPS treatment or LPS treatment without the presence of fibroblasts did not result in such a differentiation. CONCLUSION: We propose that cholesteatoma recurrence is based on TLR4 signalling imprinted in the cholesteatoma cells. It induces excessive inflammation of stem cells and fibroblasts, proliferation of perimatrix fibroblasts and the generation of epidermal cells from stem cells thru paracrine signalling by fibroblasts. Treatment of the operation site with a TLR4 antagonist might reduce the chance of cholesteatoma recurrence. Video Abstract.


Asunto(s)
Colesteatoma del Oído Medio , Receptor Toll-Like 4/genética , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colesteatoma del Oído Medio/genética , Colesteatoma del Oído Medio/metabolismo , Citocinas/genética , Conducto Auditivo Externo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Queratinas Tipo II/metabolismo , Lipopolisacáridos , Recurrencia , Piel/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
5.
BMC Dev Biol ; 20(1): 3, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32028879

RESUMEN

BACKGROUND: Uterine receptivity is one of the determinants of embryo implantation, which is responsible for pregnancy success. Aberrant embryo implantation due to disrupted uterine receptivity is usually found in ovarian hyperstimulation induced hyperoestrogen patients. RESULTS: This study identified keratin 86 (KRT86), a fibrous structural protein, which was upregulated in uterine endometrium during peri-implantation. Using a hyperoestrogen mouse model established in a previous study, we found abnormal oestradiol (E2) levels during pre-implantation could trigger high expression of Krt86 in the uterine epithelium. In an ovariectomised mouse model, combining oestrogen receptors ERα and ERß knockout mice models, uterine Krt86 was found to be up-regulated after E2 treatment, mediated by nuclear ERα. Furthermore, we found progesterone (P4) could ameliorate Krt86 expression, induced by abnormal E2. CONCLUSIONS: These results revealed the dynamic expression and regulation of Krt86, especially in hyperoestrogen treated mice, indicating it might act as a marker for non-receptive uterus.


Asunto(s)
Implantación del Embrión/fisiología , Estradiol/farmacología , Queratinas Tipo II/metabolismo , Útero/citología , Animales , Receptor alfa de Estrógeno/metabolismo , Femenino , Queratinas Tipo II/genética , Ratones Noqueados , Progesterona/farmacología , Útero/metabolismo
6.
J Drugs Dermatol ; 18(3): 246-250, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30909328

RESUMEN

The purpose of this review is to discuss the disease process and wide variety of treatment options for psuedofolliculitis barbae (PFB), or razor bumps. PFB is caused by hair follicles penetrating the skin and causing an inflammatory response. PFB can occur to anyone who shaves, and is more likely in those with curly hair. PFB can cause significant hyperpigmentation and scarring, more noticeable in darker skin types. PFB can be treated with a variety of topical, systemic, or light/laser therapies. Minimal progress has been made in treating PFB in recent years, partially due to the success of well-established current treatments discussed in this review. The most effective treatments involve a multifaceted approach including behavioral changes in shaving habits as well as the use of topical therapies. J Drugs Dermatol. 2019;18(3):246-250.


Asunto(s)
Fármacos Dermatológicos/uso terapéutico , Enfermedades del Cabello/terapia , Remoción del Cabello/efectos adversos , Terapia por Luz de Baja Intensidad/métodos , Fotoquimioterapia/métodos , Administración Cutánea , Administración Oral , Antibacterianos/uso terapéutico , Cara , Hábitos , Enfermedades del Cabello/epidemiología , Enfermedades del Cabello/etiología , Folículo Piloso/patología , Folículo Piloso/efectos de la radiación , Humanos , Queratinas Específicas del Pelo/genética , Queratinas Tipo II/genética , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
7.
J Med Genet ; 54(3): 186-189, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27965375

RESUMEN

BACKGROUND: Progressive symmetric erythrokeratoderma (PSEK) is a rare skin disorder characterised by symmetrically distributed demarcated hyperkeratotic plaques, often with associated palmoplantar hyperkeratosis, with new plaques appearing over time. Most cases are inherited in an autosomal dominant manner, although a few cases exhibit apparent autosomal recessive inheritance. OBJECTIVE: To identify the gene underlying autosomal recessive PSEK in a large Pakistani kindred. METHODS: We first carried out autozygosity mapping using microsatellite markers in candidate regions of the genome. We then carried out exome sequencing of five family members, autozygosity mapping and mutation analysis using the exome data and verification by Sanger sequencing. RESULTS: Autozygosity mapping and exome sequencing identified a homozygous frameshift deletion (c.811delA; p.Ser271fs) in KRT83, which co-segregated with the PSEK phenotype in the family and which is expected to abolish keratin 83, a type II keratin of hair and skin. CONCLUSIONS: At least some cases of PSEK result from loss-of-function mutations in KRT83. Heterozygous missense substitutions in KRT83 have been implicated in autosomal dominant monilethrix, a rare hair disorder. Our findings indicate that at least some cases of autosomal recessive PSEK and autosomal dominant monilethrix are allelic, respectively resulting from loss-of-function and missense mutations in the KRT83 gene. Together, these findings indicate that different types of mutations in KRT83 can result in quite different skin and hair phenotypes.


Asunto(s)
Eritroqueratodermia Variable/genética , Queratinas Específicas del Pelo/genética , Queratinas Tipo II/genética , Moniletrix/genética , Alelos , Eritroqueratodermia Variable/patología , Exoma/genética , Femenino , Cabello/metabolismo , Cabello/patología , Heterocigoto , Homocigoto , Humanos , Masculino , Moniletrix/patología , Mutación Missense , Pakistán , Linaje , Fenotipo , Eliminación de Secuencia , Piel/metabolismo , Piel/patología
8.
Proteomics ; 17(11)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28445005

RESUMEN

Rhizochalinin (Rhiz) is a novel marine natural sphingolipid-like compound, which shows promising in vitro and in vivo activity in human castration-resistant prostate cancer. In the present study, a global proteome screening approach was applied to investigate molecular targets and biological processes affected by Rhiz in castration-resistant prostate cancer. Bioinformatical analysis of the data predicted an antimigratory effect of Rhiz on cancer cells. Validation of proteins involved in the cancer-associated processes, including cell migration and invasion, revealed downregulation of specific isoforms of stathmin and LASP1, as well as upregulation of Grp75, keratin 81, and precursor IL-1ß by Rhiz. Functional analyses confirmed an antimigratory effect of Rhiz in PC-3 cells. Additionally, predicted ERK1/2 activation was confirmed by Western blotting analysis, and revealed prosurvival effects in Rhiz-treated prostate cancer cells indicating a potential mechanism of resistance. A combination of Rhiz with MEK/ERK inhibitors PD98059 (non-ATP competitive MEK1 inhibitor) and FR180204 (ATP-competitive ERK1/2 inhibitor) resulted in synergistic effects. This work provides further insights into the molecular mechanisms underlying Rhiz bioactivity. Furthermore, our research is exemplary for the ability of proteomics to predict drug targets and mode of action of natural anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Alcoholes Grasos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Proteoma/análisis , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Interleucina-1beta/metabolismo , Queratinas Específicas del Pelo/metabolismo , Queratinas Tipo II/metabolismo , Proteínas con Dominio LIM/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Proteínas de la Membrana/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Proteómica/métodos , Rhizoctonia/química , Estatmina/metabolismo
10.
Biochem Biophys Res Commun ; 469(2): 251-6, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26646290

RESUMEN

Atmospheric oxygen is important for the epidermis, as the skin epidermis is not greatly affected by blood circulation. Therefore, it is necessary to understand the effect of hypoxic signals on the epidermis as some environmental stimuli can induce skin hypoxia. Here, we investigated how hypoxia (1% O2) affected skin equivalents (SEs) and normal human epidermal keratinocytes. We found that hypoxia specifically decreased the protein levels of keratin 1 (K1)/keratin 10 (K10), a representative marker of the epidermal spinous layer in the epidermis. However, hypoxia-inducible factors, the major regulators of hypoxia, did not affect hypoxia-induced down-regulation of K1/K10. We also found that N-acetyl-l-cysteine (NAC), a reactive oxygen species scavenger, antagonized the hypoxia-induced reduction of K1/K10 in keratinocytes and SEs. In contrast to the findings for NAC, inhibitors that blocked reactive oxygen species generation did not cause recovery of K1/K10 protein levels under hypoxic conditions. Taken together, these results indicate that hypoxia leads to abnormal keratinocyte differentiation by down-regulating K1/K10 and that this phenomenon can be ameliorated by NAC.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Queratinas Tipo II/metabolismo , Oxígeno/metabolismo , Transducción de Señal/fisiología , Diferenciación Celular/fisiología , Hipoxia de la Célula/fisiología , Células Cultivadas , Humanos
11.
Development ; 140(24): 4870-80, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24198274

RESUMEN

The formation of epithelial tubes underlies the development of diverse organs. In the skin, hair follicles resemble tube-like structures with lumens that are generated through poorly understood cellular rearrangements. Here, we show that creation of the hair follicle lumen is mediated by early outward movement of keratinocytes from within the cores of developing hair buds. These migratory keratinocytes express keratin 79 (K79) and stream out of the hair germ and into the epidermis prior to lumen formation in the embryo. Remarkably, this process is recapitulated during hair regeneration in the adult mouse, when K79(+) cells migrate out of the reactivated secondary hair germ prior to formation of a new hair canal. During homeostasis, K79(+) cells line the hair follicle infundibulum, a domain we show to be multilayered, biochemically distinct and maintained by Lrig1(+) stem cell-derived progeny. Upward movement of these cells sustains the infundibulum, while perturbation of this domain during acne progression is often accompanied by loss of K79. Our findings uncover previously unappreciated long-distance cell movements throughout the life cycle of the hair follicle, and suggest a novel mechanism by which the follicle generates its hollow core through outward cell migration.


Asunto(s)
Acné Vulgar/metabolismo , Folículo Piloso/embriología , Queratinocitos/metabolismo , Queratinas/metabolismo , Regeneración , Animales , Línea Celular , Movimiento Celular , Células HEK293 , Cabello/embriología , Folículo Piloso/metabolismo , Humanos , Queratinas/genética , Queratinas Específicas del Pelo , Queratinas Tipo II , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Morfogénesis , Proteínas del Tejido Nervioso/metabolismo
12.
Cell Tissue Res ; 363(3): 735-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26340985

RESUMEN

Among the 26 human type II keratins, K78 is the only one that has not yet been explored with regard to its expression characteristics. Here, we show that, at both the transcriptional and translational levels, K78 is strongly expressed in the basal and parabasal cell layers with decreasing intensity in the lower suprabasal cells of keratinising and non-keratinising squamous epithelia and keratinocyte cultures. The same pattern has been detected at the transcriptional level in the corresponding mouse epithelia. Murine K78 protein, which contains an extraordinary large extension of its tail domain, which is unique among all known keratins, is not detectable by the antibody used. Concomitant studies in human epithelia have confirmed K78 co-expression with the classical basal keratins K5 and K14. Similarly, K78 co-expression with the differentiation-related type I keratins K10 (epidermis) and K13 (non-keratinising epithelia) occurs in the parabasal cell layer, whereas that of the corresponding type II keratins K1 (epidermis) and K4 (non-keratinising epithelia) unequivocally starts subsequent to the respective type I keratins. Our data concerning K78 expression modify the classical concept of keratin pair K5/K14 representing the basal compartment and keratin pairs K1/K10 or K4/K13 defining the differentiating compartment of stratified epithelia. Moreover, the K78 expression pattern and the decoupled K1/K10 and K4/K13 expression define the existence of a hitherto unperceived early differentiation stage in the parabasal layer characterized by K78/K10 or K78/K13 expression.


Asunto(s)
Epitelio/metabolismo , Regulación de la Expresión Génica , Queratinas Tipo II/genética , Queratinas Tipo II/metabolismo , Adulto , Secuencia de Aminoácidos , Animales , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Desarrollo Embrionario , Epidermis/metabolismo , Evolución Molecular , Técnica del Anticuerpo Fluorescente , Sitios Genéticos , Humanos , Hibridación in Situ , Queratinocitos/metabolismo , Queratinas Tipo II/química , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de Proteína
13.
Ann Oncol ; 26(6): 1142-1148, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25716425

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) have a key role in carcinogenesis through negative regulation of their target genes. Therefore, genetic variations in miRNAs or their target sites may affect miRNA-mRNA interactions, thereby result in altered expression of target genes. This study was conducted to investigate the associations between single-nucleotide polymorphisms (SNP) located in the miRNA target sites (poly-miRTSs) and survival of patients with early-stage non-small-cell lung cancer (NSCLC). METHODS: Using public SNP database and miRNA target sites prediction program, 354 poly-miRTSs were selected for genotyping. Among these, 154 SNPs applicable to Sequenom's MassARRAY platform were investigated in 357 patients. A replication study was carried out on an independent patient population (n = 479). Renilla luciferase assay and reverse transcription-polymerase chain reaction were conducted to examine functional relevance of potentially functional poly-miRTSs. RESULTS: Of the 154 SNPs analyzed in a discovery set, 14 SNPs were significantly associated with survival outcomes. Among these, KRT81 rs3660G>C was found to be associated with survival outcomes in the validation cohort. In the combined analysis, patients with the rs3660 GC + CC genotype had a significantly better overall survival compared with those with GG genotype [adjusted hazard ratio (aHR) for OS, 0.65; 95% confidence interval (CI) 0.50-0.85; P = 0.001]. An increased expression of the reporter gene for the C allele of rs3660 compared with the G allele was observed by luciferase assay. Consistently, the C allele was associated with higher relative expression level of KRT81 in tumor tissues. CONCLUSION: The rs3660G>C affects KRT81 expression and thus influences survival in early-stage NSCLC. The analysis of the rs3660G>C polymorphism may be useful to identify patients at high risk of a poor disease outcome.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Queratinas Específicas del Pelo/genética , Queratinas Tipo II/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Polimorfismo de Nucleótido Simple , Regiones no Traducidas 3' , Anciano , Sitios de Unión , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Biología Computacional , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Estimación de Kaplan-Meier , Queratinas Específicas del Pelo/metabolismo , Queratinas Tipo II/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Estadificación de Neoplasias , Fenotipo , Modelos de Riesgos Proporcionales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Riesgo , Factores de Tiempo , Transfección
14.
Exp Dermatol ; 24(3): 222-4, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25557232

RESUMEN

Monilethrix is an autosomal dominant hair disorder caused by mutations in the hard keratins KRT81, KRT83 and KRT86. The affected hairs are fragile and break easily, leading to scarring alopecia. Follicular hyperkeratosis in the neck and on extensor sides of extremities is a frequently associated finding. The disorder is rare, but probably underreported because its manifestations may be mild. Mutations in KRT81 and KRT86 are the most common. Here, we report new cases from Venezuela, the Netherlands, Belgium and France. The Venezuelan kindred is special for having patients with digenic novel nucleotide changes, a KRT86 mutation associated with monilethrix and a KRT81 variant of unknown clinical significance. In the French and Dutch patients, we found novel KRT86 and KRT83 mutations. Our findings expand the mutational spectrum associated with monilethrix.


Asunto(s)
Queratinas Específicas del Pelo/genética , Queratinas Tipo II/genética , Moniletrix/genética , Fenotipo , Femenino , Humanos , Masculino , Mutación
15.
Br J Dermatol ; 172(4): 878-84, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25255890

RESUMEN

Pseudofolliculitis cutis (PFC) is a troublesome and potentially disfiguring cutaneous disorder characterized by a chronic inflammatory response to ingrown hair. Despite a simple precipitating stimulus, ingrown hair, PFC has a relatively complex aetiology that can involve grooming practices, hair type, genetic predisposition and medication history. Curly hair and a single-nucleotide substitution in the gene encoding keratin 75 may act synergistically to increase the risk for developing this condition. PFC is most common in men of sub-Saharan African lineage, but can occur in men and women of many different ethnicities, particularly in body areas where hair is coarse, abundant and subject to traumatic removal. Treatment options for PFC can be divided into three main categories: modifying hair removal practices, managing symptoms with medication, and long-term hair removal with laser therapy. Laser hair removal is safe and effective in most skin types and has become increasingly popular among dermatologists in the treatment of PFC. However, it is imperative that the laser system and parameters are specifically matched to the patient's skin type.


Asunto(s)
Foliculitis/etiología , Diagnóstico Diferencial , Femenino , Foliculitis/diagnóstico , Foliculitis/terapia , Remoción del Cabello/efectos adversos , Humanos , Queratinas Específicas del Pelo/genética , Queratinas Tipo II/genética , Masculino , Polimorfismo de Nucleótido Simple/genética , Pronóstico
16.
Clin Exp Dermatol ; 40(7): 781-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25809918

RESUMEN

BACKGROUND: Monilethrix is a rare monogenic dystrophic hair loss disorder with high levels of intrafamilial and interfamilial variability. It is characterized by diffuse occipital or temporal alopecia, hair fragility and follicular hyperkeratosis of the occipital region. Mutations in the keratin genes KRT81, KRT83 and KRT86 lead to autosomal dominant monilethrix, whereas mutations in the desmoglein 4 gene (DSG4) cause an autosomal recessive form. AIM: To identify the mutation in a consanguineous Turkish family with three affected children and apparently unaffected parents. METHODS: Sequencing analysis of the genes DSG4 and KRT86 was performed. SNaPshot analysis was conducted to quantify the proportion of cells carrying the KRT86 mutation and to confirm maternal mosaicism of KRT86. RESULTS: No pathogenic mutation was found by sequencing analysis of DSG4; however, analysis of KRT86 revealed a novel mutation, c.1231G>T;p.Glu411*, in exon 7 in the three affected children and their mother. The mutation signal was weaker in the mother than in the three siblings, and SNaPshot analysis revealed substantial mutation-level variation between the children and their mother. CONCLUSIONS: Our results extend the spectrum of KRT86 mutations and indicate KRT86 mosaicism in the family examined. This study is the first, to our knowledge, to describe mosaicism for a monogenic hair loss disorder, and suggests that mosaicism leads to a mild manifestation of monilethrix.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Queratinas Específicas del Pelo/genética , Queratinas Tipo II/genética , Moniletrix/genética , Mosaicismo , Mutación , Adolescente , Pueblo Asiatico , Niño , Desmogleínas/genética , Femenino , Humanos , Masculino , Linaje , Turquía
17.
Cell Struct Funct ; 39(1): 31-43, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24430440

RESUMEN

Multiple type I and II hair keratins are expressed in hair-forming cells but the role of each protein in hair fiber formation remains obscure. In this study, recombinant proteins of human type I hair keratins (K35, K36 and K38) and type II hair keratins (K81 and K85) were prepared using bacterial expression systems. The heterotypic subunit interactions between the type I and II hair keratins were characterized using two-dimensional gel electrophoresis and surface plasmon resonance (SPR). Gel electrophoresis showed that the heterotypic complex-forming urea concentrations differ depending on the combination of keratins. K35-K85 and K36-K81 formed relatively stable heterotypic complexes. SPR revealed that soluble K35 bound to immobilized K85 with a higher affinity than to immobilized K81. The in vitro intermediate filament (IF) assembly of the hair keratins was explored by negative-staining electron microscopy. While K35-K81, K36-K81 and K35-K36-K81 formed IFs, K35-K85 afforded tight bundles of short IFs and large paracrystalline assemblies, and K36-K85 formed IF tangles. K85 promotes lateral association rather than elongation of short IFs. The in vitro assembly properties of hair keratins depended on the combination of type I and II hair keratins. Our data suggest the functional significance of K35-K85 and K36-K81 with distinct assembly properties in the formation of macrofibrils.


Asunto(s)
Queratinas Tipo II/química , Queratinas Tipo II/metabolismo , Queratinas Tipo I/química , Queratinas Tipo I/metabolismo , Multimerización de Proteína , Regulación de la Expresión Génica , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
19.
J Adv Res ; 57: 1-13, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37137429

RESUMEN

INTRODUCTION: Fine-wool sheep are the most common breed used by the wool industry worldwide. Fine-wool sheep have over a three-fold higher follicle density and a 50% smaller fiber diameter than coarse-wool sheep. OBJECTIVES: This study aims to clarify the underlying genetic basis for the denser and finer wool phenotype in fine-wool breeds. METHOD: Whole-genome sequences of 140 samples, Ovine HD630K SNP array data of 385 samples, including fine, semi-fine, and coarse wool sheep, as well as skin transcriptomes of nine samples were integrated for genomic selection signature analysis. RESULTS: Two loci at keratin 74 (KRT74) and ectodysplasin receptor (EDAR) were revealed. Fine-scale analysis in 250 fine/semi-fine and 198 coarse wool sheep narrowed this association to one C/A missense variant of KRT74 (OAR3:133,486,008, P = 1.02E-67) and one T/C SNP in the regulatory region upstream of EDAR (OAR3:61,927,840, P = 2.50E-43). Cellular over-expression and ovine skin section staining assays confirmed that C-KRT74 activated the KRT74 protein and specifically enlarged cell size at the Huxley's layer of the inner root sheath (P < 0.01). This structure enhancement shapes the growing hair shaft into the finer wool than the wild type. Luciferase assays validated that the C-to-T mutation upregulated EDAR mRNA expression via a newly created SOX2 binding site and potentially led to the formation of more hair placodes. CONCLUSIONS: Two functional mutations driving finer and denser wool production were characterized and offered new targets for genetic breeding during wool sheep selection. This study not only provides a theoretical basis for future selection of fine wool sheep breeds but also contributes to improving the value of wool commodities.


Asunto(s)
Receptor Edar , Queratinas Tipo II , Mutación Missense , Lana , Animales , Receptor Edar/genética , Ovinos/genética , Queratinas Tipo II/genética
20.
Cancer Biol Ther ; 25(1): 2302162, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38241178

RESUMEN

Keratin 80 (KRT80) is a filament protein that makes up one of the major structural fibers of epithelial cells, and involved in cell differentiation and epithelial barrier integrity. Here, KRT80 mRNA expression was found to be higher in esophageal cancer than normal epithelium by RT-PCR and bioinformatics analysis (p < .05), opposite to KRT80 methylation (p < .05). There was a negative relationship between promoter methylation and expression level of KRT80 gene in esophageal cancer (p < .05). KRT80 mRNA expression was positively correlated with the differentiation, infiltration of immune cells, and poor prognosis of esophageal cancer (p < .05). KRT80 mRNA expression was positively linked to no infiltration of immune cells, the short survival time of esophageal cancers (p < .05). The differential genes of KRT80 mRNA were involved in fat digestion and metabolism, peptidase inhibitor, and intermediate filament, desosome, keratinocyte differentiation, epidermis development, keratinization, ECM regulator, complement cascade, metabolism of vitamins and co-factor (p < .05). KRT-80-related genes were classified into endocytosis, cell adhesion molecule binding, cadherin binding, cell-cell junction, cell leading edge, epidermal cell differentiation and development, T cell differentiation and receptor complex, plasma membrane receptor complex, external side of plasma membrane, metabolism of amino acids and catabolism of small molecules, and so forth (p < .05). KRT80 knockdown suppressed anti-apoptosis, anti-pyroptosis, migration, invasion, chemoresistance, and lipogenesis in esophageal cancer cells (p < .05), while ACC1 and ACLY overexpression reversed the inhibitory effects of KRT80 on lipogenesis and chemoresistance. These findings indicated that up-regulated expression of KRT80 might be involved in esophageal carcinogenesis and subsequent progression, aggravate aggressive phenotypes, and induced chemoresistance by lipid droplet assembly and ACC1- and ACLY-mediated lipogenesis.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Esofágicas , Queratinas Tipo II , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Resistencia a Antineoplásicos/genética , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Lipogénesis/genética , ARN Mensajero , Queratinas Tipo II/genética , Queratinas Tipo II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA