Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.053
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(12): 3333-3348.e19, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34010619

RESUMEN

Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Invenciones , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Solanum lycopersicum/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas Fluorescentes Verdes/metabolismo , Solanum lycopersicum/citología , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , Especificidad de la Especie , Factores de Transcripción/metabolismo , Xilema/genética
2.
Cell ; 183(4): 875-889.e17, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33035453

RESUMEN

Banyan trees are distinguished by their extraordinary aerial roots. The Ficus genus includes species that have evolved a species-specific mutualism system with wasp pollinators. We sequenced genomes of the Chinese banyan tree, F. microcarpa, and a species lacking aerial roots, F. hispida, and one wasp genome coevolving with F. microcarpa, Eupristina verticillata. Comparative analysis of the two Ficus genomes revealed dynamic karyotype variation associated with adaptive evolution. Copy number expansion of auxin-related genes from duplications and elevated auxin production are associated with aerial root development in F. microcarpa. A male-specific AGAMOUS paralog, FhAG2, was identified as a candidate gene for sex determination in F. hispida. Population genomic analyses of Ficus species revealed genomic signatures of morphological and physiological coadaptation with their pollinators involving terpenoid- and benzenoid-derived compounds. These three genomes offer insights into and genomic resources for investigating the geneses of aerial roots, monoecy and dioecy, and codiversification in a symbiotic system.


Asunto(s)
Evolución Biológica , Ficus/genética , Genoma de Planta , Polinización/fisiología , Árboles/genética , Avispas/fisiología , Animales , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Anotación de Secuencia Molecular , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Duplicaciones Segmentarias en el Genoma/genética , Cromosomas Sexuales/genética , Compuestos Orgánicos Volátiles/análisis
3.
Cell ; 180(3): 440-453.e18, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32032516

RESUMEN

Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.


Asunto(s)
Arabidopsis/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Ascorbato Peroxidasas/metabolismo , Ascorbato Peroxidasas/efectos de la radiación , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Terapia por Láser/métodos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/efectos de la radiación , Microscopía Confocal , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de la radiación , Proteínas Quinasas/metabolismo , Proteínas Quinasas/efectos de la radiación , Receptores de Reconocimiento de Patrones/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Imagen de Lapso de Tiempo
4.
Cell ; 178(2): 400-412.e16, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31299202

RESUMEN

Root system architecture (RSA), the distribution of roots in soil, plays a major role in plant survival. RSA is shaped by multiple developmental processes that are largely governed by the phytohormone auxin, suggesting that auxin regulates responses of roots that are important for local adaptation. However, auxin has a central role in numerous processes, and it is unclear which molecular mechanisms contribute to the variation in RSA for environmental adaptation. Using natural variation in Arabidopsis, we identify EXOCYST70A3 as a modulator of the auxin system that causes variation in RSA by acting on PIN4 protein distribution. Allelic variation and genetic perturbation of EXOCYST70A3 lead to alteration of root gravitropic responses, resulting in a different RSA depth profile and drought resistance. Overall our findings suggest that the local modulation of the pleiotropic auxin pathway can gives rise to distinct RSAs that can be adaptive in specific environments.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Alelos , Apomorfina/análogos & derivados , Apomorfina/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequías , Exocitosis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Proteínas de Transporte de Membrana/metabolismo , Mutación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
5.
Annu Rev Cell Dev Biol ; 35: 239-257, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31382759

RESUMEN

Roots provide the primary mechanism that plants use to absorb water and nutrients from their environment. These functions are dependent on developmental mechanisms that direct root growth and branching into regions of soil where these resources are relatively abundant. Water is the most limiting factor for plant growth, and its availability is determined by the weather, soil structure, and salinity. In this review, we define the developmental pathways that regulate the direction of growth and branching pattern of the root system, which together determine the expanse of soil from which a plant can access water. The ability of plants to regulate development in response to the spatial distribution of water is a focus of many recent studies and provides a model for understanding how biological systems utilize positional cues to affect signaling and morphogenesis. A better understanding of these processes will inform approaches to improve crop water use efficiency to more sustainably feed a growing population.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Sequías , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Plantas , Salinidad , Suelo , Agua
6.
Cell ; 165(2): 464-74, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26997485

RESUMEN

A staggering diversity of endophytic fungi associate with healthy plants in nature, but it is usually unclear whether these represent stochastic encounters or provide host fitness benefits. Although most characterized species of the fungal genus Colletotrichum are destructive pathogens, we show here that C. tofieldiae (Ct) is an endemic endophyte in natural Arabidopsis thaliana populations in central Spain. Colonization by Ct initiates in roots but can also spread systemically into shoots. Ct transfers the macronutrient phosphorus to shoots, promotes plant growth, and increases fertility only under phosphorus-deficient conditions, a nutrient status that might have facilitated the transition from pathogenic to beneficial lifestyles. The host's phosphate starvation response (PSR) system controls Ct root colonization and is needed for plant growth promotion (PGP). PGP also requires PEN2-dependent indole glucosinolate metabolism, a component of innate immune responses, indicating a functional link between innate immunity and the PSR system during beneficial interactions with Ct.


Asunto(s)
Arabidopsis/microbiología , Colletotrichum/aislamiento & purificación , Fosfatos/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Colletotrichum/fisiología , Endófitos , Proteínas de Transporte de Fosfato/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , España , Simbiosis
7.
Cell ; 164(6): 1257-1268, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26967291

RESUMEN

Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth.


Asunto(s)
Desarrollo de la Planta , Plantas/metabolismo , Ambiente , Luz , Células Vegetales/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
8.
Nature ; 626(7999): 611-616, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297119

RESUMEN

Precise control of cell division is essential for proper patterning and growth during the development of multicellular organisms. Coordination of formative divisions that generate new tissue patterns with proliferative divisions that promote growth is poorly understood. SHORTROOT (SHR) and SCARECROW (SCR) are transcription factors that are required for formative divisions in the stem cell niche of Arabidopsis roots1,2. Here we show that levels of SHR and SCR early in the cell cycle determine the orientation of the division plane, resulting in either formative or proliferative cell division. We used 4D quantitative, long-term and frequent (every 15 min for up to 48 h) light sheet and confocal microscopy to probe the dynamics of SHR and SCR in tandem within single cells of living roots. Directly controlling their dynamics with an SHR induction system enabled us to challenge an existing bistable model3 of the SHR-SCR gene-regulatory network and to identify key features that are essential for rescue of formative divisions in shr mutants. SHR and SCR kinetics do not align with the expected behaviour of a bistable system, and only low transient levels, present early in the cell cycle, are required for formative divisions. These results reveal an uncharacterized mechanism by which developmental regulators directly coordinate patterning and growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ciclo Celular , Raíces de Plantas , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , División Celular/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Microscopía Confocal , Mutación
9.
EMBO J ; 43(9): 1822-1842, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565947

RESUMEN

A key question in plant biology is how oriented cell divisions are integrated with patterning mechanisms to generate organs with adequate cell type allocation. In the root vasculature, a gradient of miRNA165/6 controls the abundance of HD-ZIP III transcription factors, which in turn control cell fate and spatially restrict vascular cell proliferation to specific cells. Here, we show that vascular development requires the presence of ARGONAUTE10, which is thought to sequester miRNA165/6 and protect HD-ZIP III transcripts from degradation. Our results suggest that the miR165/6-AGO10-HDZIP III module acts by buffering cytokinin responses and restricting xylem differentiation. Mutants of AGO10 show faster growth rates and strongly enhanced survival under severe drought conditions. However, this superior performance is offset by markedly increased variation and phenotypic plasticity in sub-optimal carbon supply conditions. Thus, AGO10 is required for the control of formative cell division and coordination of robust cell fate specification of the vasculature, while altering its expression provides a means to adjust phenotypic plasticity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , División Celular , Regulación de la Expresión Génica de las Plantas , MicroARNs , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , División Celular/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular , Xilema/citología , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/genética
10.
EMBO J ; 43(9): 1843-1869, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565948

RESUMEN

The RNA-silencing effector ARGONAUTE10 influences cell fate in plant shoot and floral meristems. ARGONAUTE10 also accumulates in the root apical meristem (RAM), yet its function(s) therein remain elusive. Here, we show that ARGONAUTE10 is expressed in the root cell initials where it controls overall RAM activity and length. ARGONAUTE10 is also expressed in the stele, where post-transcriptional regulation confines it to the root tip's pro-vascular region. There, variations in ARGONAUTE10 levels modulate metaxylem-vs-protoxylem specification. Both ARGONAUTE10 functions entail its selective, high-affinity binding to mobile miR165/166 transcribed in the neighboring endodermis. ARGONAUTE10-bound miR165/166 is degraded, likely via SMALL-RNA-DEGRADING-NUCLEASES1/2, thus reducing miR165/166 ability to silence, via ARGONAUTE1, the transcripts of cell fate-influencing transcription factors. These include PHABULOSA (PHB), which controls meristem activity in the initials and xylem differentiation in the pro-vasculature. During early germination, PHB transcription increases while dynamic, spatially-restricted transcriptional and post-transcriptional mechanisms reduce and confine ARGONAUTE10 accumulation to the provascular cells surrounding the newly-forming xylem axis. Adequate miR165/166 concentrations are thereby channeled along the ARGONAUTE10-deficient yet ARGONAUTE1-proficient axis. Consequently, inversely-correlated miR165/166 and PHB gradients form preferentially along the axis despite ubiquitous PHB transcription and widespread miR165/166 delivery inside the whole vascular cylinder.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Regulación de la Expresión Génica de las Plantas , Meristema , MicroARNs , Raíces de Plantas , Xilema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , MicroARNs/metabolismo , MicroARNs/genética , Meristema/metabolismo , Meristema/crecimiento & desarrollo , Meristema/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética
11.
Nature ; 611(7934): 133-138, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289340

RESUMEN

The phytohormone auxin is the major coordinative signal in plant development1, mediating transcriptional reprogramming by a well-established canonical signalling pathway. TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFB) auxin receptors are F-box subunits of ubiquitin ligase complexes. In response to auxin, they associate with Aux/IAA transcriptional repressors and target them for degradation via ubiquitination2,3. Here we identify adenylate cyclase (AC) activity as an additional function of TIR1/AFB receptors across land plants. Auxin, together with Aux/IAAs, stimulates cAMP production. Three separate mutations in the AC motif of the TIR1 C-terminal region, all of which abolish the AC activity, each render TIR1 ineffective in mediating gravitropism and sustained auxin-induced root growth inhibition, and also affect auxin-induced transcriptional regulation. These results highlight the importance of TIR1/AFB AC activity in canonical auxin signalling. They also identify a unique phytohormone receptor cassette combining F-box and AC motifs, and the role of cAMP as a second messenger in plants.


Asunto(s)
Adenilil Ciclasas , Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ácidos Indolacéticos , Receptores de Superficie Celular , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Mutación , Gravitropismo , Raíces de Plantas/crecimiento & desarrollo , AMP Cíclico/metabolismo , Sistemas de Mensajero Secundario
12.
Plant Cell ; 36(5): 1377-1409, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382086

RESUMEN

Limited water availability is a major environmental factor constraining plant development and crop yields. One of the prominent adaptations of plants to water deficits is the maintenance of root growth that enables sustained access to soil water. Despite early recognition of the adaptive significance of root growth maintenance under water deficits, progress in understanding has been hampered by the inherent complexity of root systems and their interactions with the soil environment. We highlight selected milestones in the understanding of root growth responses to water deficits, with emphasis on founding studies that have shaped current knowledge and set the stage for further investigation. We revisit the concept of integrated biophysical and metabolic regulation of plant growth and use this framework to review central growth-regulatory processes occurring within root growth zones under water stress at subcellular to organ scales. Key topics include the primary processes of modifications of cell wall-yielding properties and osmotic adjustment, as well as regulatory roles of abscisic acid and its interactions with other hormones. We include consideration of long-recognized responses for which detailed mechanistic understanding has been elusive until recently, for example hydrotropism, and identify gaps in knowledge, ongoing challenges, and opportunities for future research.


Asunto(s)
Ácido Abscísico , Raíces de Plantas , Agua , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Agua/metabolismo , Ácido Abscísico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Sequías , Pared Celular/metabolismo , Suelo , Deshidratación
13.
Plant Cell ; 36(5): 1777-1790, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190205

RESUMEN

Crown roots are the main components of root systems in cereals. Elucidating the mechanisms of crown root formation is instrumental for improving nutrient absorption, stress tolerance, and yield in cereal crops. Several members of the WUSCHEL-related homeobox (WOX) and lateral organ boundaries domain (LBD) transcription factor families play essential roles in controlling crown root development in rice (Oryza sativa). However, the functional relationships among these transcription factors in regulating genes involved in crown root development remain unclear. Here, we identified LBD16 as an additional regulator of rice crown root development. We showed that LBD16 is a direct downstream target of WOX11, a key crown root development regulator in rice. Our results indicated that WOX11 enhances LBD16 transcription by binding to its promoter and recruiting its interaction partner JMJ706, a demethylase that removes histone H3 lysine 9 dimethylation (H3K9me2) from the LBD16 locus. In addition, we established that LBD16 interacts with WOX11, thereby impairing JMJ706-WOX11 complex formation and repressing its own transcriptional activity. Together, our results reveal a feedback system regulating genes that orchestrate crown root development in rice, in which LBD16 acts as a molecular rheostat.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Raíces de Plantas , Factores de Transcripción , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Regiones Promotoras Genéticas/genética
14.
Plant Cell ; 36(9): 3162-3176, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38366565

RESUMEN

Lateral roots (LRs) increase root surface area and allow plants greater access to soil water and nutrients. LR formation is tightly regulated by the phytohormone auxin. Whereas the transcription factor ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR13 (ERF13) prevents LR emergence in Arabidopsis (Arabidopsis thaliana), auxin activates MITOGEN-ACTIVATED PROTEIN KINASE14 (MPK14), which leads to ERF13 degradation and ultimately promotes LR emergence. In this study, we discovered interactions between ERF13 and the E3 ubiquitin ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B. As MAC3A and MAC3B gradually accumulate in the LR primordium, ERF13 levels gradually decrease. We demonstrate that MAC3A and MAC3B ubiquitinate ERF13, leading to its degradation and accelerating the transition of LR primordia from stages IV to V. Auxin enhances the MAC3A and MAC3B interaction with ERF13 by facilitating MPK14-mediated ERF13 phosphorylation. In summary, this study reveals the molecular mechanism by which auxin eliminates the inhibitory factor ERF13 through the MPK14-MAC3A and MAC3B signaling module, thus promoting LR emergence.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas , Factores de Transcripción , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ácidos Indolacéticos/metabolismo , Fosforilación , Ubiquitinación , Plantas Modificadas Genéticamente , Proteolisis
15.
Plant Cell ; 36(10): 4388-4403, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38917216

RESUMEN

Plants generally enhance their root growth in the form of greater biomass and/or root length to boost nutrient uptake in response to short-term low nitrogen (LN). However, the underlying mechanisms of short-term LN-mediated root growth remain largely elusive. Our genome-wide association study, haplotype analysis, and phenotyping of transgenic plants showed that the crucial nitrate signaling component NIN-LIKE PROTEIN3.2 (ZmNLP3.2), a positive regulator of root biomass, is associated with natural variations in root biomass of maize (Zea mays L.) seedlings under LN. The monocot-specific gene AUXIN/INDOLE-3-ACETIC ACID14 (ZmAux/IAA14) exhibited opposite expression patterns to ZmNLP3.2 in ZmNLP3.2 knockout and overexpression lines, suggesting that ZmNLP3.2 hampers ZmAux/IAA14 transcription. Importantly, ZmAux/IAA14 knockout seedlings showed a greater root dry weight (RDW), whereas ZmAux/IAA14 overexpression reduced RDW under LN compared with wild-type plants, indicating that ZmAux/IAA14 negatively regulates the RDW of LN-grown seedlings. Moreover, in vitro and vivo assays indicated that AUXIN RESPONSE FACTOR19 (ZmARF19) binds to and transcriptionally activates ZmAux/IAA14, which was weakened by the ZmNLP3.2-ZmARF19 interaction. The zmnlp3.2 ZmAux/IAA14-OE seedlings exhibited further reduced RDW compared with ZmAux/IAA14 overexpression lines when subjected to LN treatment, corroborating the ZmNLP3.2-ZmAux/IAA14 interaction. Thus, our study reveals a ZmNLP3.2-ZmARF19-ZmAux/IAA14 module regulating root biomass in response to nitrogen limitation in maize.


Asunto(s)
Biomasa , Regulación de la Expresión Génica de las Plantas , Nitrógeno , Proteínas de Plantas , Raíces de Plantas , Plantones , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Nitrógeno/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Ácidos Indolacéticos/metabolismo , Estudio de Asociación del Genoma Completo
16.
Plant Cell ; 36(11): 4716-4731, 2024 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-39179507

RESUMEN

EARLY NODULIN 93 (ENOD93) has been genetically associated with biological nitrogen fixation in legumes and nitrogen use efficiency in cereals, but its precise function is unknown. We show that hidden Markov models define ENOD93 as a homolog of the N-terminal domain of RESPIRATORY SUPERCOMPLEX FACTOR 2 (RCF2). RCF2 regulates cytochrome oxidase (CIV), influencing the generation of a mitochondrial proton motive force in yeast (Saccharomyces cerevisiae). Knockout of ENOD93 in Arabidopsis (Arabidopsis thaliana) causes a short root phenotype and early flowering. ENOD93 is associated with a protein complex the size of CIV in mitochondria, but neither CIV abundance nor its activity changed in ruptured organelles of enod93. However, a progressive loss of ADP-dependent respiration rate was observed in intact enod93 mitochondria, which could be recovered in complemented lines. Mitochondrial membrane potential was higher in enod93 in a CIV-dependent manner, but ATP synthesis and ADP depletion rates progressively decreased. The respiration rate of whole enod93 seedlings was elevated, and root ADP content was nearly double that in wild type without a change in ATP content. We propose that ENOD93 and HYPOXIA-INDUCED GENE DOMAIN 2 (HIGD2) are the functional equivalent of yeast RCF2 but have remained undiscovered in many eukaryotic lineages because they are encoded by 2 distinct genes.


Asunto(s)
Adenosina Trifosfato , Proteínas de Arabidopsis , Arabidopsis , Complejo IV de Transporte de Electrones , Mitocondrias , Raíces de Plantas , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Mitocondrias/metabolismo , Respiración de la Célula , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana , Proteínas de Plantas
17.
Plant Cell ; 36(9): 3751-3769, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38943676

RESUMEN

The cell wall shapes plant cell morphogenesis and affects the plasticity of organ growth. However, the way in which cell wall establishment is regulated by ethylene remains largely elusive. Here, by analyzing cell wall patterns, cell wall composition and gene expression in rice (Oryza sativa, L.) roots, we found that ethylene induces cell wall thickening and the expression of cell wall synthesis-related genes, including CELLULOSE SYNTHASE-LIKE C1, 2, 7, 9, 10 (OsCSLC1, 2, 7, 9, 10) and CELLULOSE SYNTHASE A3, 4, 7, 9 (OsCESA3, 4, 7, 9). Overexpression and mutant analyses revealed that OsCSLC2 and its homologs function in ethylene-mediated induction of xyloglucan biosynthesis mainly in the cell wall of root epidermal cells. Moreover, OsCESA-catalyzed cellulose deposition in the cell wall was enhanced by ethylene. OsCSLC-mediated xyloglucan biosynthesis likely plays an important role in restricting cell wall extension and cell elongation during the ethylene response in rice roots. Genetically, OsCSLC2 acts downstream of ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1)-mediated ethylene signaling, and OsCSLC1, 2, 7, 9 are directly activated by OsEIL1. Furthermore, the auxin signaling pathway is synergistically involved in these regulatory processes. These findings link plant hormone signaling with cell wall establishment, broadening our understanding of root growth plasticity in rice and other crops.


Asunto(s)
Pared Celular , Etilenos , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas , Oryza , Proteínas de Plantas , Raíces de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Pared Celular/metabolismo , Etilenos/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Glucanos/metabolismo , Xilanos/metabolismo , Celulosa/metabolismo
18.
Plant Cell ; 36(6): 2310-2327, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38442314

RESUMEN

The dynamic changes in membrane phospholipids affect membrane biophysical properties and cell signaling, thereby influencing numerous biological processes. Nonspecific phospholipase C (NPC) enzymes hydrolyze common phospholipids to release diacylglycerol (DAG), which is converted to phosphatidic acid (PA) and other lipids. In this study, 2 Arabidopsis (Arabidopsis thaliana) tandemly arrayed genes, NPC3 and NPC4, were identified as critical factors modulating auxin-controlled plant growth and tropic responses. Moreover, NPC3 and NPC4 were shown to interact with the auxin efflux transporter PIN-FORMED2 (PIN2). The loss of NPC3 and NPC4 enhanced the endocytosis and vacuolar degradation of PIN2, which disrupted auxin gradients and slowed gravitropic and halotropic responses. Furthermore, auxin-triggered activation of NPC3 and NPC4 is required for the asymmetric PA distribution that controls PIN2 trafficking dynamics and auxin-dependent tropic responses. Collectively, our study reveals an NPC-derived PA signaling pathway in Arabidopsis auxin fluxes that is essential for fine-tuning the balance between root growth and environmental responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Fosfolipasas de Tipo C , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Endocitosis , Gravitropismo , Ácidos Indolacéticos/metabolismo , Ácidos Fosfatidicos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas de Tipo C/genética
19.
Plant Cell ; 36(6): 2393-2409, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38489602

RESUMEN

Optimizing the root architecture of crops is an effective strategy for improving crop yields. Soil compaction is a serious global problem that limits crop productivity by restricting root growth, but the underlying molecular mechanisms are largely unclear. Here, we show that ethylene stimulates rice (Oryza sativa) crown root development in response to soil compaction. First, we demonstrate that compacted soil promotes ethylene production and the accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) in rice roots, stimulating crown root primordia initiation and development, thereby increasing crown root number in lower stem nodes. Through transcriptome profiling and molecular analyses, we reveal that OsEIL1 directly activates the expression of WUSCHEL-RELATED HOMEOBOX 11 (OsWOX11), an activator of crown root emergence and growth, and that OsWOX11 mutations delay crown root development, thus impairing the plant's response to ethylene and soil compaction. Genetic analysis demonstrates that OsWOX11 functions downstream of OsEIL1. In summary, our results demonstrate that the OsEIL1-OsWOX11 module regulates ethylene action during crown root development in response to soil compaction, providing a strategy for the genetic modification of crop root architecture and grain agronomic traits.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Raíces de Plantas , Factores de Transcripción , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Suelo/química , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
20.
Plant Cell ; 36(10): 4442-4456, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39012965

RESUMEN

During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas , Medicago truncatula , Proteínas de Plantas , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/fisiología , Medicago truncatula/crecimiento & desarrollo , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Nodulación de la Raíz de la Planta/fisiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA