Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.148
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chem Rev ; 123(1): 105-229, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36399832

RESUMEN

The presence of positron emission tomography (PET) centers at most major hospitals worldwide, along with the improvement of PET scanner sensitivity and the introduction of total body PET systems, has increased the interest in the PET tracer development using the short-lived radionuclides carbon-11. In the last few decades, methodological improvements and fully automated modules have allowed the development of carbon-11 tracers for clinical use. Radiolabeling natural compounds with carbon-11 by substituting one of the backbone carbons with the radionuclide has provided important information on the biochemistry of the authentic compounds and increased the understanding of their in vivo behavior in healthy and diseased states. The number of endogenous and natural compounds essential for human life is staggering, ranging from simple alcohols to vitamins and peptides. This review collates all the carbon-11 radiolabeled endogenous and natural exogenous compounds synthesised to date, including essential information on their radiochemistry methodologies and preclinical and clinical studies in healthy subjects.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos , Humanos , Radioisótopos de Carbono/química , Radioquímica
2.
J Am Chem Soc ; 146(15): 10581-10590, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38580459

RESUMEN

Positron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis. However, to date, HTE has rarely been applied to radiochemistry. This is largely because of the short lifetime of common radioisotopes, which presents major challenges for efficient parallel reaction setup and analysis using standard equipment and workflows. Herein, we demonstrate an effective HTE workflow and apply it to the optimization of copper-mediated radiofluorination of pharmaceutically relevant boronate ester substrates. The workflow utilizes commercial equipment and allows for rapid analysis of reactions for optimizing reactions, exploring chemical space using pharmaceutically relevant aryl boronates for radiofluorinations, and constructing large radiochemistry data sets.


Asunto(s)
Cobre , Tomografía de Emisión de Positrones , Radioquímica , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Radioisótopos de Flúor
3.
Eur J Nucl Med Mol Imaging ; 51(9): 2583-2596, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38644432

RESUMEN

INTRODUCTION: Bacterial infections are a major problem in medicine, and the rapid and accurate detection of such infections is essential for optimal patient outcome. Bacterial infections can be diagnosed by nuclear imaging, but most currently available modalities are unable to discriminate infection from sterile inflammation. Bacteria-targeted positron emission tomography (PET) tracers have the potential to overcome this hurdle. In the present study, we compared three 18F-labelled PET tracers based on the clinically applied antibiotic vancomycin for targeted imaging of Gram-positive bacteria. METHODS: [18F]FB-NHS and [18F]BODIPY-FL-NHS were conjugated to vancomycin. The resulting conjugates, together with our previously developed [18F]PQ-VE1-vancomycin, were tested for stability, lipophilicity, selective binding to Gram-positive bacteria, antimicrobial activity and biodistribution. For the first time, the pharmacokinetic properties of all three tracers were compared in healthy animals to identify potential binding sites. RESULTS: [18F]FB-vancomycin, [18F]BODIPY-FL-vancomycin, and [18F]PQ-VE1-vancomycin were successfully synthesized with radiochemical yields of 11.7%, 2.6%, and 0.8%, respectively. [18F]FB-vancomycin exhibited poor in vitro and in vivo stability and, accordingly, no bacterial binding. In contrast, [18F]BODIPY-FL-vancomycin and [18F]PQ-VE1-vancomycin showed strong and specific binding to Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), which was outcompeted by unlabeled vancomycin only at concentrations exceeding clinically relevant vancomycin blood levels. Biodistribution showed renal clearance of [18F]PQ-VE1-vancomycin and [18F]BODIPY-FL-vancomycin with low non-specific accumulation in muscles, fat and bones. CONCLUSION: Here we present the synthesis and first evaluation of the vancomycin-based PET tracers [18F]BODIPY-FL-vancomycin and [18F]PQ-VE1-vancomycin for image-guided detection of Gram-positive bacteria. Our study paves the way towards real-time bacteria-targeted diagnosis of soft tissue and implant-associated infections that are oftentimes caused by Gram-positive bacteria, even after prophylactic treatment with vancomycin.


Asunto(s)
Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Vancomicina , Animales , Vancomicina/farmacología , Vancomicina/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor/química , Distribución Tisular , Ratones , Infecciones Bacterianas/diagnóstico por imagen , Trazadores Radiactivos , Técnicas de Química Sintética , Radioquímica , Radiofármacos/síntesis química , Radiofármacos/farmacocinética
4.
Eur J Nucl Med Mol Imaging ; 51(8): 2193-2203, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38441662

RESUMEN

PURPOSE: Histone deacetylase 6 (HDAC6) has emerged as a therapeutic target for neurodegenerative diseases such as Alzheimer's disease. Noninvasive imaging of HDAC6 in the brain by positron emission tomography (PET) would accelerate research into its roles in these diseases. We recently discovered an 18F-labeled derivative of the selective HDAC6 inhibitor SW-100 ([18F]FSW-100) as a potential candidate for brain HDAC6 radioligand. As a mandatory step prior to clinical translation, we performed preclinical validation of [18F]FSW-100. METHODS: Process validation of [18F]FSW-100 radiosynthesis for clinical use and assessment of preclinical toxicity and radiation dosimetry estimated from mouse distribution data were performed. In vitro selectivity of FSW-100 for 28 common receptors in the brain and HDAC isoforms was characterized. [18F]FSW-100 PET imaging was performed in non-human primates in a conscious state to estimate the feasibility of HDAC6 imaging in humans. RESULTS: Three consecutive validation runs of the automated radiosynthesis gave [18F]FSW-100 injections with radiochemical yields of 12%, and the injections conformed to specified quality control criteria for batch release. No acute toxicity was observed for non-radiolabeled FSW-100 or radioactivity decayed [18F]FSW-100 injection, and the former was negative in the Ames test. The whole-body effective dose estimated from biodistribution in mice was within the range of that of previously reported 18F-radioligands in humans. In vitro selectivity against common receptors and other HDAC isoforms was confirmed. [18F]FSW-100 demonstrated good penetration in monkey brain, and in vivo blocking studies suggested that the uptake was specific. CONCLUSION: These results support the clinical utility of [18F]FSW-100 for in vivo imaging of HDAC6 in the brain.


Asunto(s)
Encéfalo , Histona Desacetilasa 6 , Tomografía de Emisión de Positrones , Animales , Tomografía de Emisión de Positrones/métodos , Ratones , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ligandos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Masculino , Humanos , Distribución Tisular , Radioquímica , Radiofármacos/farmacocinética , Radiofármacos/química , Radioisótopos de Flúor
5.
Eur J Nucl Med Mol Imaging ; 51(7): 2023-2035, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38376806

RESUMEN

Integrin receptor αvß3 and gastrin-releasing peptide receptor (GRPR) expression of tumors could be detected using PET imaging with radiolabeled Arg-Gly-Asp (RGD) and the antagonistic bombesin analog RM26, respectively. The purpose of this study was to investigate the dual receptor-targeting property of the heterodimer RGD-RM26-03 (denoted as LNC1015), demonstrate the tumor diagnostic value of [68Ga]Ga-LNC1015 in preclinical experiments, and evaluate its preliminary clinical feasibility. METHODS: LNC1015 was designed and synthesized by linking cyclic RGD and the RM26 peptide. Preclinical pharmacokinetics were detected in a PC3 xenograft model using microPET and biodistribution studies. The clinical feasibility of [68Ga]Ga-LNC1015 PET/CT was performed in patients with breast cancer, and the results were compared with those of 18F-fluorodeoxyglucose (FDG). RESULTS: [68Ga]Ga-LNC1015 had good stability in saline for at least 2 h, and favorable binding affinity and specificity were demonstrated in vitro and in vivo. The tumor uptake and retention of [68Ga]Ga-LNC1015 during PET imaging were improved compared with its monomeric counterparts [68Ga]Ga-RGD and [68Ga]Ga-RM26 at all the time points examined. In our initial clinical studies, the tumor uptake and tumor-to-background ratio (TBR) of primary and metastatic lesions in [68Ga]Ga-LNC1015 PET/CT were significantly higher than those in [18F]FDG PET/CT, resulting in high lesion detection rate and tumor delineation. CONCLUSION: The dual targeting radiotracer [68Ga]Ga-LNC1015 showed significantly improved tumor uptake and retention, as well as lower liver uptake than [68Ga]Ga-RGD and [68Ga]Ga-RM26 monomer. The first-in-human study showed high TBRs in patients, suggesting favorable pharmacokinetics and high clinical feasibility for PET/CT imaging of cancer.


Asunto(s)
Radioisótopos de Galio , Integrina alfaVbeta3 , Oligopéptidos , Receptores de Bombesina , Receptores de Bombesina/metabolismo , Humanos , Animales , Ratones , Femenino , Integrina alfaVbeta3/metabolismo , Oligopéptidos/farmacocinética , Oligopéptidos/química , Distribución Tisular , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioquímica , Persona de Mediana Edad , Línea Celular Tumoral , Trazadores Radiactivos , Radiofármacos/farmacocinética , Radiofármacos/síntesis química , Radiofármacos/química , Técnicas de Química Sintética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo
6.
Eur J Nucl Med Mol Imaging ; 51(9): 2819-2832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38683349

RESUMEN

PURPOSE: A series of new 68Ga-labeled tracers based on [68Ga]Ga-PSMA-617 were developed to augment the tumor-to-kidney ratio and reduce the activity accumulation in bladder, ultimately minimize radiation toxicity to the urinary system. METHODS: We introduced quinoline group, phenylalanine and decanoic acid into different tracers to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Their binding affinity onto LNCaP cells was determined through in vitro saturation assays and competition binding assays. In vivo metabolic study, PET imaging and biodistribution experiment were performed in LNCaP tumor-bearing B-NSG male mice. The most promising tracer was selected for first-in-human study. RESULTS: Four radiotracers were synthesized with radiochemical purity (RCP) > 95% and molar activity in a range of 20.0-25.5 GBq/µmol. The binding affinities (Ki) of TWS01, TWS02 to PSMA were in the low nanomolar range (< 10 nM), while TWS03 and TWS04 exhibited binding affinities with Ki > 20 nM (59.42 nM for TWS03 and 37.14 nM for TWS04). All radiotracers exhibited high stability in vivo except [68Ga]Ga-TWS03. Micro PET/CT imaging and biodistribution analysis revealed that [68Ga]Ga-TWS02 enabled clear tumor visualization in PET images at 1.5 h post-injection, with higher tumor-to-kidney ratio (T/K, 0.93) and tumor-to-muscle ratio (T/M, 107.62) compared with [68Ga]Ga-PSMA-617 (T/K: 0.39, T/M: 15.01) and [68Ga]Ga-PSMA-11 (T/K: 0.15, T/M: 24.00). In first-in-human study, [68Ga]Ga-TWS02 effectively detected PCa-associated lesions including primary and metastatic lesions, with lower accumulation in urinary system, suggesting that [68Ga]Ga-TWS02 might be applied in the detection of bladder invasion, with minimized radiation toxicity to the urinary system. CONCLUSION: Introduction of quinoline group, phenylalanine and decanoic acid into different tracers can modulate the binding affinity and pharmacokinetics of PSMA in vivo. [68Ga]Ga-TWS02 showed high binding affinity to PSMA, excellent pharmacokinetic properties and clear imaging of PCa-associated lesions, making it a promising radiotracer for the clinical diagnosis of PCa. Moreover, TWS02 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for PCa treatment without significant side effects. TRIAL REGISTRATION: The clinical evaluation of this study was registered On October 30, 2021 at https://www.chictr.org.cn/ (No: ChiCTR2100052545).


Asunto(s)
Glutamato Carboxipeptidasa II , Tomografía de Emisión de Positrones , Humanos , Masculino , Ratones , Animales , Distribución Tisular , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/metabolismo , Tomografía de Emisión de Positrones/métodos , Trazadores Radiactivos , Radioisótopos de Galio/farmacocinética , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/radioterapia , Antígenos de Superficie/metabolismo , Radiofármacos/farmacocinética , Radiofármacos/química , Radioquímica , Dipéptidos/farmacocinética , Dipéptidos/química , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
7.
Mol Pharm ; 21(2): 822-830, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38173242

RESUMEN

Titanium-45 (45Ti) is a radionuclide with excellent physical characteristics for use in positron emission tomography (PET) imaging, including a moderate half-life (3.08 h), decay by positron emission (85%), and a low mean positron energy of 0.439 MeV. However, challenges associated with titanium chemistry have led to the underdevelopment of this radionuclide for incorporation into radiopharmaceuticals. Expanding on our recent studies, which showed promising results for the complexation of 45Ti with the tris hydroxypyridinone (THPMe) chelator, the current work aimed to optimize the chemistry and imaging attributes of [45Ti]Ti-THP-PSMA as a new PET radiopharmaceutical. Methods. Radiolabeling of THP-PSMA was optimized with [45Ti]Ti-citrate at varying pHs and masses of the precursor. The stability of the radiolabeled complex was assessed in mouse serum for up to 6 h. The affinity of [45Ti]Ti-THP-PSMA for prostate-specific membrane antigen (PSMA) was assessed using LNCaP (PSMA +) and PC3 (PSMA -) cell lines. In vivo imaging and biodistribution analysis were performed in tumor-bearing xenograft mouse models to confirm the specificity of the tumor uptake. Results. > 95% of radiolabeling was achieved with a high specific activity of 5.6 MBq/nmol under mild conditions. In vitro cell binding studies showed significant binding of the radiolabeled complex with the PSMA-expressing LNCaP cell line (11.9 ± 1.5%/mg protein-bound activity) compared to that with the nonexpressing PC3 cells (1.9 ± 0.4%/mg protein-bound activity). In vivo imaging and biodistribution studies confirmed specific uptake in LNCaP tumors (1.6 ± 0.27% ID/g) compared to that in PC3 tumors (0.39 ± 0.2% ID/g). Conclusion. This study showed a simple one-step radiolabeling method for 45Ti with THP-PSMA under mild conditions (pH 8 and 37 °C). In vitro cell studies showed promise, but in vivo tumor xenograft studies indicated low tumor uptake. Overall, this study shows the need for more chelators for 45Ti for the development of a PET radiopharmaceutical for cancer imaging.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos , Neoplasias de la Próstata/metabolismo , Radioquímica , Distribución Tisular , Titanio , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Tomografía de Emisión de Positrones , Radioisótopos , Quelantes , Línea Celular Tumoral
8.
Bioorg Chem ; 146: 107279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513325

RESUMEN

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic strategy for various neurodegenerative disorders. The development of a positron emission tomography (PET) probe for brain RIPK1 imaging could offer a valuable tool to assess therapeutic effectiveness and uncover the neuropathology associated with RIPK1. In this study, we present the development and characterization of two new PET radioligands, [11C]PB218 and [11C]PB220, which have the potential to facilitate brain RIPK1 imaging. [11C]PB218 and [11C]PB220 were successfully synthesized with a high radiochemical yield (34 % - 42 %) and molar activity (293 - 314 GBq/µmol). PET imaging characterization of two radioligands was conducted in rodents, demonstrating that both newly developed tracers have good brain penetration (maximum SUV = 0.9 - 1.0) and appropriate brain clearance kinetic profiles. Notably, [11C]PB218 has a more favorable binding specificity than [11C]PB220. A PET/MR study of [11C]PB218 in a non-human primate exhibited good brain penetration, desirable kinetic properties, and a safe profile, thus supporting the translational applicability of our new probe. These investigations enable further translational exploration of [11C]PB218 for drug discovery and PET probe development targeting RIPK1.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Animales , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radiofármacos/química , Radioquímica , Piridinas/metabolismo
9.
J Labelled Comp Radiopharm ; 67(4): 155-164, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369901

RESUMEN

The radioligand [18F]FPEB, used for PET imaging of the brain's metabotropic glutamate receptor subtype 5 (mGluR5), undergoes a thorough validation process to ensure its safety, efficacy, and quality for clinical use. The process starts by optimizing the synthesis of [18F]FPEB to achieve high radiochemical yield and purity. This study focuses on optimizing the radiolabeling process using an aryl-chloro precursor and validating the GMP production for clinical applications. Fully automated radiolabeling was achieved via one-step nucleophilic substitution reaction. [18F]FPEB was produced and isolated in high radioactivity and radiochemical purity. Throughout the validation process, thorough quality control measures are implemented. Radiopharmaceutical batch release criteria are established, including testing for physical appearance, filter integrity, pH, radiochemical purity, molar activity, radiochemical identity, chemical impurity, structural identity, stability, residual solvent, sterility, and endotoxin levels. In conclusion, the validation of [18F]FPEB involved a comprehensive process of synthesis optimization, quality control, which ensure the safety, efficacy, and quality of [18F]FPEB, enabling its reliable use in clinical PET. Here, we successfully radiolabeled and validated [18F]FPEB using aryl-chloro precursor according to GMP production for clinical application.


Asunto(s)
Nitrilos , Piridinas , Radiofármacos , Tomografía de Emisión de Positrones/métodos , Radioquímica
10.
J Labelled Comp Radiopharm ; 67(9): 308-313, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982015

RESUMEN

Due to the continuous rise in global incidence and severity of invasive fungal infections (IFIs), particularly among immunocompromised and immunodeficient patients, there is an urgent demand for swift and accurate fungal pathogen diagnosis. Therefore, the need for fungal-specific positron emission tomography (PET) imaging agents that can detect the infection in the early stages is increasing. Cellobiose, a disaccharide, is readily metabolized by fungal pathogens such as Aspergillus species. Recently, our group reported fluorine-18 labeled cellobiose, 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB), for specific imaging of Aspergillus infection. The positive imaging findings with very low background signal on delayed imaging make this ligand a promising fungal-specific imaging ligand. Inspired by this result, the decision was made to automate the radiolabeling procedure for better reproducibility and to facilitate clinical translation. A Trasis AllInOne (Trasis AIO) automated module was used for this purpose. The reagent vials contain commercially available 2-deoxy-2-[18F]fluoroglucose ([18F]FDG), glucose-1-phosphate, and enzyme (cellobiose phosphorylase). A Sep-Pak cartridge was used to purify the tracer. The overall radiochemical yield was 50%-70% (n = 6, decay corrected) in 75-min synthesis time with a radiochemical purity of > 98%. This is a highly reliable protocol to produce current good manufacturing practice (cGMP)-compliant [18F]FCB for clinical PET imaging.


Asunto(s)
Celobiosa , Celobiosa/síntesis química , Celobiosa/química , Celobiosa/análogos & derivados , Técnicas de Química Sintética , Automatización , Radioquímica
11.
J Labelled Comp Radiopharm ; 67(2): 67-75, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38116667

RESUMEN

Primary aldosteronism (PA) is the leading secondary cause of hypertension. Determining whether one (unilateral) or both (bilateral) adrenal glands are the source of PA in a patient remains challenging, and yet it is a critical step in the decision whether to recommend potentially curative surgery (adrenalectomy) or lifelong medical therapy (typically requiring multiple drugs). Recently, we have developed a fluorine-18 radiopharmaceutical [18 F]CETO to permit greater access to PA molecular imaging. Herein, we report an automated synthesis of this radiotracer. To manufacture the radiopharmaceutical routinely for clinical PET studies, we implemented an automated radiosynthesis method on a Synthra RNplus© synthesiser for which Cl-tosyletomidate was used as the precursor for radiolabelling via nucleophilic [18 F]fluorination. [18 F]CETO was produced with 35 ± 1% (n = 7), decay corrected and 25 ± 4% (n = 7) non-decay corrected radiochemical yield with molar activities ranging from 150 to 400 GBq/µmol. The GMP compliant manufacturing process produces a sterile formulated [18 F]CETO injectable solution for human use as demonstrated by the results of quality control. Automation of the radiosynthesis of [18 F]CETO should facilitate uptake by other adrenal centres and increase access to molecular imaging in PA.


Asunto(s)
Radioisótopos de Flúor , Radiofármacos , Humanos , Radioisótopos de Flúor/química , Imagen Molecular , Glándulas Suprarrenales , Radioquímica/métodos , Tomografía de Emisión de Positrones/métodos
12.
J Labelled Comp Radiopharm ; 67(7): 273-276, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38641899

RESUMEN

Mitochondrial membrane translocator protein 18 kDa (TSPO) expression is increased in activated microglia, established as a plausible target of neuroinflammation imaging. [11C]ER176, specifically binding to TSPO, has been developed as the third generation of radioligand for PET imaging of TSPO, which showed the potential in better quantifying neuroinflammation than its predecessors. In the current study, we developed an automated radiosynthesis with an improved HPLC purification method for [11C]ER176 clinical production. The improved HPLC separation was integrated into the automated production of [11C]ER176 using a reverse phase semi-preparative HPLC column with an isocratic pump and the mixture of methanol and 50 mM ammonium acetate as the mobile phase. The fraction corresponding to [11C]ER176 was collected around 8.5-9.0 min without the risk of getting contaminations from nearby impurities. The automated production process took about 30 min after end of bombardment (EOB) and the quality of the final product [11C]ER176 met all specifications for clinical use based on current US Pharmacopeia and FDA CGMP requirements.


Asunto(s)
Radiofármacos , Receptores de GABA , Cromatografía Líquida de Alta Presión/métodos , Receptores de GABA/metabolismo , Radiofármacos/síntesis química , Radiofármacos/química , Radioisótopos de Carbono/química , Ligandos , Humanos , Radioquímica
13.
J Labelled Comp Radiopharm ; 67(9): 324-329, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38845124

RESUMEN

A new automated radiosynthesis of [11C]2-(2,6-difluoro-4-((2-(N-methylphenylsulfonamido)ethyl)thio)phenoxy)acetamide ([11C]K2), a radiopharmaceutical for the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, is reported. Although manual syntheses have been described, these are unsuitable for routine production of larger batches of [11C]K2 for (pre)clinical PET imaging applications. To meet demands for the imaging agent from our functional neuroimaging collaborators, herein, we report a current good manufacturing practice (cGMP)-compliant synthesis of [11C]K2 using a commercial synthesis module. The new synthesis is fully automated and has been validated for clinical use. The total synthesis time is 33 min from end of bombardment, and the production method provides 2.66 ± 0.3 GBq (71.9 ± 8.6 mCi) of [11C]K2 in 97.7 ± 0.5% radiochemical purity and 754.1 ± 231.5 TBq/mmol (20,382.7 ± 6256.1 Ci/mmol) molar activity (n = 3). Batches passed all requisite quality control testing confirming suitability for clinical use.


Asunto(s)
Acetamidas , Radioisótopos de Carbono , Tomografía de Emisión de Positrones , Radiofármacos , Receptores AMPA , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Radiofármacos/química , Radioisótopos de Carbono/química , Acetamidas/síntesis química , Acetamidas/química , Receptores AMPA/metabolismo , Radioquímica/métodos , Automatización , Técnicas de Química Sintética , Sulfonamidas/síntesis química , Sulfonamidas/química
14.
J Labelled Comp Radiopharm ; 67(6): 245-249, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38124264

RESUMEN

AZD4747 is a KRASG12C inhibitor recently shown to cross the non-human primate blood-brain barrier efficiently. In the current study, a GMP-compliant production of [11C]AZD4747 was developed to enable PET studies in human subjects. The validated procedure afforded [11C]AZD4747 as an injectable solution in good radioactivity yield (1656 ± 532 MBq), excellent radiochemical purity (100%), and a molar activity of 77 ± 13 GBq/µmol at the end of the synthesis, which took 46 ± 1 min from the end of the bombardment. Quality control on the final product was performed satisfactorily and met all acceptance criteria.


Asunto(s)
Radioisótopos de Carbono , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Radioisótopos de Carbono/química , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Radioquímica , Radiofármacos/síntesis química , Radiofármacos/farmacocinética
15.
Angew Chem Int Ed Engl ; 63(14): e202317136, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38135665

RESUMEN

This review discusses recent advances in light-driven radiochemistry for three key isotopes: fluorine-18, carbon-11, and zirconium-89, and their applications in positron emission tomography (PET). In the case of fluorine-18, the predominant approach involves the use of cyclotron-produced [18F]fluoride or reagents derived thereof. Light serves to activate either the substrate or the fluorine-18 labeled reagent. Advancements in carbon-11 photo-mediated radiochemistry have been leveraged for the radiolabeling of small molecules, achieving various transformations, including 11C-methylation, 11C-carboxylation, 11C-carbonylation, and 11C-cyanation. Contrastingly, zirconium-89 photo-mediated radiochemistry differs from fluorine-18 and carbon-11 approaches. In these cases, light facilitates a postlabeling click reaction, which has proven valuable for the labeling of large biomolecules such as monoclonal antibodies (mAbs). New technological developments, such as the incorporation of photoreactors in commercial radiosynthesizers, illustrate the commitment the field is making in embracing photochemistry. Taken together, these advances in photo-mediated radiochemistry enable radiochemists to apply new retrosynthetic strategies in accessing novel PET radiotracers.


Asunto(s)
Radioisótopos de Carbono , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radioisótopos , Circonio , Radioquímica/métodos , Radioisótopos de Flúor/química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química
16.
J Am Chem Soc ; 145(35): 19265-19273, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37625118

RESUMEN

We report the first one-pot formal alkene carboradiofluorination reaction employing easily accessible alkenes as both prosthetic group precursors and coupling partners. The methodology features rapid sequential Markovnikov-selective iodofluorination and photoinduced Pd(0/I/II)-catalyzed alkyl Heck reaction as a mild and robust fluorine-18 (18F) radiochemical approach for positron emission tomography (PET) imaging probe development. A new class of prosthetic groups for PET imaging probe synthesis was isolated as iodofluorinated intermediates in moderate to excellent yields. The one-pot formal alkenylfluorination reaction was carried out to produce over 30 analogues of a wide range of bioactive molecules. Further application of the Pd(0/I/II) manifold in PET probe development was illustrated by the direct carbo(radio)fluorination of electron-rich alkenes. The methods were successfully translated to radiolabel a broad scope of medicinally relevant small molecules in generally good radiochemical conversion. The protocol was further optimized to accommodate no-carrier-added conditions with similar efficiency for future (pre)clinical translation. Moreover, the radiosynthesis of prosthetic groups was automated in a radiochemistry module to facilitate its practical use in multistep radiochemical reactions.


Asunto(s)
Alquenos , Electrones , Tomografía de Emisión de Positrones , Radioquímica , Radiofármacos
17.
Bioconjug Chem ; 34(11): 1925-1950, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37737084

RESUMEN

The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.


Asunto(s)
Azidas , Química Clic , Radioquímica , Azidas/química , Radiofármacos/química , Reacción de Cicloadición , Alquinos/química
18.
Chemistry ; 29(2): e202202965, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36214204

RESUMEN

Cu-mediated radiofluorination is a versatile tool for the preparation of 18 F-labeled (hetero)aromatics. In this work, we systematically evaluated a series of complexes and identified several generally applicable mediators for highly efficient radiofluorination of aryl boronic and stannyl substrates. Utilization of these mediators in nBuOH/DMI or DMI significantly improved 18 F-labeling yields despite use of lower precursor amounts. Impressively, application of 2.5 µmol aryl boronic acids was sufficient to achieve 18 F-labeling yields of up to 75 %. The practicality of the novel mediators was demonstrated by efficient production of five PET-tracers and transfer of the method to an automated radiosynthesis module. In addition, (S)-3-[18 F]FPhe and 6-[18 F]FDOPA were prepared in activity yields of 23±1 % and 30±3 % using only 2.5 µmol of the corresponding boronic acid or trimethylstannyl precursor.


Asunto(s)
Cobre , Radioisótopos de Flúor , Cobre/química , Radioisótopos de Flúor/química , Radiofármacos/química , Ácidos Borónicos/química , Tomografía de Emisión de Positrones , Radioquímica/métodos
19.
Mol Pharm ; 20(2): 1061-1071, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36638322

RESUMEN

Molecules that feature a sulfonyl fluoride (SO2F) moiety have been gaining increasing interest due to their unique reactivity and potential applications in synthetic chemistry, medicinal chemistry, and other biological uses. A particular interest is towards 18F-radiochemistry where sulfonyl fluorides can be used as a method to radiolabel biomolecules or can be used as radiofluoride relay reagents that facilitate radiolabeling of other molecules. The low metabolic stability of sulfonyl fluoride S-F bonds, however, presents an issue and limits the applicability of sulfonyl fluorides. The aim of this work was to increase understanding of what features contribute to the metabolic instability of the S-F bond in model aryl sulfonyl fluorides and identify approaches to increasing sulfonyl fluoride stability for 18F-radiochemistry and other medicinal, synthetic chemistry and biological applications. To undertake this, 14 model aryl sulfonyl fluorides compounds with varying functional groups and substitution patterns were investigated, and their stabilities were examined in various media, including phosphate-buffered saline and rat serum as a model for biological conditions. The results indicate that both electronic and steric factors affect the stability of the S-F bond, with the 2,4,6-trisubstituted model aryl sulfonyl fluorides examined displaying the highest in vitro metabolic stability.


Asunto(s)
Química Farmacéutica , Fluoruros , Animales , Ratas , Radioquímica/métodos , Fluoruros/química , Ácidos Sulfínicos
20.
J Labelled Comp Radiopharm ; 66(2): 47-54, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36627757

RESUMEN

A radiochemical synthesis of [18 F]DK222, a peptide binder of programmed death ligand 1 protein, suitable for human PET studies is described, and results from validation productions are presented. The high specific activity radiotracer product is prepared as a sterile, apyrogenic solution that conforms to current Good Manufacturing Practice (cGMP) requirements. In addition, the production is extended to use a commercial synthesizer platform (General Electric FASTlab 2).


Asunto(s)
Antígeno B7-H1 , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor , Radiofármacos , Radioquímica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA