RESUMEN
TGF-ß1 is a major mediator of airway tissue remodelling during atopic asthma and affects tight junctions (TJs) of airway epithelia. However, its impact on TJs of ciliated epithelia is sparsely investigated. Herein we elaborated effects of TGF-ß1 on TJs of primary human bronchial epithelial cells. We demonstrate that TGF-ß1 activates TGF-ß1 receptors TGFBR1 and TGFBR2 resulting in ALK5-mediated phosphorylation of SMAD2. We observed that TGFBR1 and -R2 localize specifically on motile cilia. TGF-ß1 activated accumulation of phosphorylated SMAD2 (pSMAD2-C) at centrioles of motile cilia and at cell nuclei. This triggered an increase in paracellular permeability via cellular redistribution of claudin 3 (CLDN3) from TJs into cell nuclei followed by disruption of epithelial integrity and formation of epithelial lesions. Only ciliated cells express TGF-ß1 receptors; however, nuclear accumulations of pSMAD2-C and CLDN3 redistribution were observed with similar time course in ciliated and non-ciliated cells. In summary, we demonstrate a role of motile cilia in TGF-ß1 sensing and showed that TGF-ß1 disturbs TJ permeability of conductive airway epithelia by redistributing CLDN3 from TJs into cell nuclei. We conclude that the observed effects contribute to loss of epithelial integrity during atopic asthma.
Asunto(s)
Bronquios/efectos de los fármacos , Cilios/efectos de los fármacos , Claudina-3/metabolismo , Células Epiteliales/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Bronquios/metabolismo , Células Cultivadas , Cilios/metabolismo , Claudina-3/genética , Impedancia Eléctrica , Células Epiteliales/metabolismo , Humanos , Permeabilidad , Fosforilación , Transporte de Proteínas , Receptor Tipo I de Factor de Crecimiento Transformador beta/agonistas , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/agonistas , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Uniones Estrechas/genética , Uniones Estrechas/metabolismoRESUMEN
Pentachloropseudilin (PClP) is a chlorinated phenylpyrrole compound that was first isolated from Actinoplanes (ATCC33002), and its structure has been confirmed by chemical synthesis. PClP shows broad antimicrobial activity against Gram-negative and Gram-positive bacteria, protozoa, fungi, and yeast. In mammalian cells, PClP is known to act as a reversible and allosteric inhibitor of myosinâ 1c (Myo1c). Herein, we report that PCIP is a potent inhibitor of transforming growth factor-ß (TGF-ß)-stimulated signaling. PCIP inhibits TGF-ß-stimulated Smad2/3 phosphorylation and plasminogen activator inhibitor-1 (PAI-1) promoter activation with an IC50 of 0.1â µm in target cells (A549, HepG2, and Mv1Lu cells). In addition, PCIP attenuates TGF-ß-stimulated expression of vimentin, N-cadherin, and fibronectin and, thus, blocks TGF-ß-induced epithelial to mesenchymal transition (EMT) in these cells. Furthermore, cell-surface labeling and immunoblot analysis indicates that PCIP suppresses TGF-ß-stimulated cellular responses by attenuating cell-surface expression of the typeâ II TGF-ß receptor through accelerating caveolae-mediated internalization followed by primarily lysosome-dependent degradation of the receptor, as demonstrated by sucrose density gradient analysis and immune fluorescence staining.
Asunto(s)
Hidrocarburos Clorados/farmacología , Pirroles/farmacología , Receptor Tipo II de Factor de Crecimiento Transformador beta/agonistas , Factor de Crecimiento Transformador beta/efectos de los fármacos , Animales , Línea Celular , Transición Epitelial-Mesenquimal/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Precartilaginous stem cells (PSCs) are adult stem cells which could self-renew or differentiate into chondrocytes to promote bone growth. In this study, we aimed to understand the role of transforming growth factor-ß1 (TGF-ß1) in precartilaginous stem cell (PSC) differentiation and to study the mechanisms that underlie this role. We purified PSCs from the neonatal murine perichondrial mesenchyme using immunomagnetic beads, and primary cultured them. Their phenotype was confirmed by the PSC marker fibroblast growth factor receptor-3 (FGFR-3) overexpression. TGF-ß1 was added to induce PSCs differentiation. TGF-ß1 increased mRNA expression of chondrogenesis-related genes (collagen type II, Sox 9 and aggrecan) in the cultured PSCs. This was abolished by TGF-ß receptor II (TGFRII) and Casein kinase 1 epsilon (CK1ε) lentiviral shRNA depletion. Meanwhile, we found that TGF-ß1 induced CK1ε activation, glycogen synthase kinase-3ß (GSK3ß) phosphorylation and ß-catenin nuclear translocation in the mouse PSCs, which was almost completely blocked by TGFRII and CK1ε shRNA knockdown. Based on these results, we suggest that TGF-ß1 induces CK1ε activation to promote ß-catenin nuclear accumulation, which then regulates chondrogenesis-related gene transcription to eventually promote mouse PSC differentiation.
Asunto(s)
Células Madre Adultas/efectos de los fármacos , Caseína Cinasa 1 épsilon/metabolismo , Diferenciación Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Receptor Tipo II de Factor de Crecimiento Transformador beta/agonistas , Factor de Crecimiento Transformador beta1/farmacología , beta Catenina/metabolismo , Células Madre Adultas/enzimología , Agrecanos/genética , Agrecanos/metabolismo , Animales , Animales Recién Nacidos , Caseína Cinasa 1 épsilon/genética , Diferenciación Celular/genética , Células Cultivadas , Condrocitos/enzimología , Condrogénesis/genética , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones Endogámicos C57BL , Técnicas de Transferencia Nuclear , Fenotipo , Fosforilación , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
BACKGROUND: Although massive studies have been conducted to investigate the mechanisms of esophageal squamous cell carcinoma (ESCC) carcinogenesis, the understanding of molecular alterations during the malignant transformation of epithelial dysplasia is still lacking, especially regarding epigenetic changes. RESULTS: To better characterize the methylation changes during the malignant transformation of epithelial dysplasia, a whole-genome bisulfite sequencing analysis was performed on a series of tumor, dysplastic, and non-neoplastic epithelial tissue samples from esophageal squamous cell carcinoma (ESCC) patients. Promoter hypermethylation in TGF-ß receptor type II (TGFBR2), an important mediator of TGF-ß signaling, was identified. Further, we evaluated the methylation and expression of TGFBR2 in tumor samples through The Cancer Genome Atlas multiplatform data as well as immunohistochemistry. Moreover, treatment of ESCC cell lines with5-Aza-2'-deoxycytidine, a DNA methyltransferase inhibitor, reactivated the expression of TGFBR2. The lentiviral mediating the overexpression of TGFBR2 inhibited the proliferation of ESCC cell line by inducing cell cycle G2/M arrest. Furthermore, the overexpression of TGFBR2 inhibited the tumor growth obviously in vivo. CONCLUSIONS: The characterization of methylation silencing of TGFBR2 in ESCC will enable us to further explore whether this epigenetic change could be considered as a predictor of malignant transformation in esophageal epithelial dysplasia and whether use of a TGFBR2 agonist may lead to a new therapeutic strategy in patients with ESCC.