Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 955
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 48(2): 286-298.e6, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29396162

RESUMEN

Glucocorticoids are steroid hormones with strong anti-inflammatory and immunosuppressive effects that are produced in a diurnal fashion. Although glucocorticoids have the potential to induce interleukin-7 receptor (IL-7R) expression in T cells, whether they control T cell homeostasis and responses at physiological concentrations remains unclear. We found that glucocorticoid receptor signaling induces IL-7R expression in mouse T cells by binding to an enhancer of the IL-7Rα locus, with a peak at midnight and a trough at midday. This diurnal induction of IL-7R supported the survival of T cells and their redistribution between lymph nodes, spleen, and blood by controlling expression of the chemokine receptor CXCR4. In mice, T cell accumulation in the spleen at night enhanced immune responses against soluble antigens and systemic bacterial infection. Our results reveal the immunoenhancing role of glucocorticoids in adaptive immunity and provide insight into how immune function is regulated by the diurnal rhythm.


Asunto(s)
Ritmo Circadiano/fisiología , Glucocorticoides/farmacología , Receptores CXCR4/fisiología , Receptores de Interleucina-7/fisiología , Linfocitos T/inmunología , Animales , Células Cultivadas , Quimiocina CXCL12/biosíntesis , Femenino , Memoria Inmunológica , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/fisiología
2.
Immunity ; 47(5): 848-861.e5, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29126798

RESUMEN

CD4+ T cells optimize the cytotoxic T cell (CTL) response in magnitude and quality, by unknown molecular mechanisms. We here present the transcriptomic changes in CTLs resulting from CD4+ T cell help after anti-cancer vaccination or virus infection. The gene expression signatures revealed that CD4+ T cell help during priming optimized CTLs in expression of cytotoxic effector molecules and many other functions that ensured efficacy of CTLs throughout their life cycle. Key features included downregulation of PD-1 and other coinhibitory receptors that impede CTL activity, and increased motility and migration capacities. "Helped" CTLs acquired chemokine receptors that helped them reach their tumor target tissue and metalloprotease activity that enabled them to invade into tumor tissue. A very large part of the "help" program was instilled in CD8+ T cells via CD27 costimulation. The help program thus enhances specific CTL effector functions in response to vaccination or a virus infection.


Asunto(s)
Ligando CD27/fisiología , Linfocitos T CD4-Positivos/fisiología , Linfocitos T Citotóxicos/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/fisiología , Animales , Receptor 1 de Quimiocinas CX3C/fisiología , Diferenciación Celular , Movimiento Celular , Regulación hacia Abajo , Ratones , Ratones Endogámicos C57BL , Receptores CXCR4/fisiología
3.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33850015

RESUMEN

Central B cell tolerance, the process restricting the development of many newly generated autoreactive B cells, has been intensely investigated in mouse cells while studies in humans have been hampered by the inability to phenotypically distinguish autoreactive and nonautoreactive immature B cell clones and the difficulty in accessing fresh human bone marrow samples. Using a human immune system mouse model in which all human Igκ+ B cells undergo central tolerance, we discovered that human autoreactive immature B cells exhibit a distinctive phenotype that includes lower activation of ERK and differential expression of CD69, CD81, CXCR4, and other glycoproteins. Human B cells exhibiting these characteristics were observed in fresh human bone marrow tissue biopsy specimens, although differences in marker expression were smaller than in the humanized mouse model. Furthermore, the expression of these markers was slightly altered in autoreactive B cells of humanized mice engrafted with some human immune systems genetically predisposed to autoimmunity. Finally, by treating mice and human immune system mice with a pharmacologic antagonist, we show that signaling by CXCR4 is necessary to prevent both human and mouse autoreactive B cell clones from egressing the bone marrow, indicating that CXCR4 functionally contributes to central B cell tolerance.


Asunto(s)
Tolerancia Central/fisiología , Células Precursoras de Linfocitos B/metabolismo , Receptores CXCR4/metabolismo , Animales , Autoanticuerpos/metabolismo , Autoantígenos/inmunología , Autoinmunidad/inmunología , Linfocitos B/inmunología , Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Tolerancia Central/inmunología , Femenino , Humanos , Tolerancia Inmunológica/genética , Recién Nacido , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Fenotipo , Células Precursoras de Linfocitos B/fisiología , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores CXCR4/inmunología , Receptores CXCR4/fisiología , Transducción de Señal/genética
4.
Blood ; 137(20): 2770-2784, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33512478

RESUMEN

Dendritic cells (DCs) encompass several cell subsets that collaborate to initiate and regulate immune responses. Proper DC localization determines their function and requires the tightly controlled action of chemokine receptors. All DC subsets express CXCR4, but the genuine contribution of this receptor to their biology has been overlooked. We addressed this question using natural CXCR4 mutants resistant to CXCL12-induced desensitization and harboring a gain of function that cause the warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS), a rare immunodeficiency associated with high susceptibility to the pathogenesis of human papillomavirus (HPV). We report a reduction in the number of circulating plasmacytoid DCs (pDCs) in WHIM patients, whereas that of conventional DCs is preserved. This pattern was reproduced in an original mouse model of WS, enabling us to show that the circulating pDC defect can be corrected upon CXCR4 blockade and that pDC differentiation and function are preserved, despite CXCR4 dysfunction. We further identified proper CXCR4 signaling as a critical checkpoint for Langerhans cell and DC migration from the skin to lymph nodes, with corollary alterations of their activation state and tissue inflammation in a model of HPV-induced dysplasia. Beyond providing new hypotheses to explain the susceptibility of WHIM patients to HPV pathogenesis, this study shows that proper CXCR4 signaling establishes a migration threshold that controls DC egress from CXCL12-containing environments and highlights the critical and subset-specific contribution of CXCR4 signal termination to DC biology.


Asunto(s)
Células Dendríticas/fisiología , Inflamación/patología , Enfermedades de Inmunodeficiencia Primaria/fisiopatología , Receptores CXCR4/fisiología , Verrugas/fisiopatología , Alphapapillomavirus/genética , Animales , Bencilaminas/farmacología , Recuento de Células , Diferenciación Celular , Quimiocina CXCL12/fisiología , Quimiotaxis , Ciclamas/farmacología , Células Dendríticas/clasificación , Epidermis/patología , Femenino , Técnicas de Sustitución del Gen , Genes Virales , Humanos , Inflamación/metabolismo , Células de Langerhans/fisiología , Tejido Linfoide/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Transgénicos , Especificidad de Órganos , Parabiosis , Enfermedades de Inmunodeficiencia Primaria/sangre , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/patología , Proteínas Recombinantes/metabolismo , Verrugas/sangre , Verrugas/genética , Verrugas/patología
5.
Dev Biol ; 477: 70-84, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34015362

RESUMEN

The C-X-C chemokine receptor CXCR4 and its ligand CXCL12 play an important role in organ-specific vascular branching morphogenesis. CXCR4 is preferentially expressed by arterial endothelial cells, and local secretion of CXCL12 determines the organotypic pattern of CXCR4+ arterial branching. Previous loss-of-function studies clearly demonstrated that CXCL12-CXCR4 signaling is necessary for proper arterial branching in the developing organs such as the skin and heart. To further understand the role of CXCL12-CXCR4 signaling in organ-specific vascular development, we generated a mouse model carrying the Cre recombinase-inducible Cxcr4 transgene. Endothelial cell-specific Cxcr4 gain-of-function embryos exhibited defective vascular remodeling and formation of a hierarchical vascular branching network in the developing skin and heart. Ectopic expression of CXCR4 in venous endothelial cells, but not in lymphatic endothelial cells, caused blood-filled, enlarged lymphatic vascular phenotypes, accompanied by edema. These data suggest that CXCR4 expression is tightly regulated in endothelial cells for appropriate vascular development in an organ-specific manner.


Asunto(s)
Vasos Sanguíneos/embriología , Células Endoteliales/fisiología , Neovascularización Fisiológica/fisiología , Receptores CXCR4/fisiología , Animales , Vasos Sanguíneos/anatomía & histología , Células Endoteliales/metabolismo , Mutación con Ganancia de Función , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Receptores CXCR4/biosíntesis , Remodelación Vascular/fisiología
6.
PLoS Biol ; 17(8): e3000203, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31430272

RESUMEN

Zebrafish dorsal forerunner cells (DFCs) undergo vigorous proliferation during epiboly and then exit the cell cycle to generate Kupffer's vesicle (KV), a ciliated organ necessary for establishing left-right (L-R) asymmetry. DFC proliferation defects are often accompanied by impaired cilia elongation in KV, but the functional and molecular interaction between cell-cycle progression and cilia formation remains unknown. Here, we show that chemokine receptor Cxcr4a is required for L-R laterality by controlling DFC proliferation and KV ciliogenesis. Functional analysis revealed that Cxcr4a accelerates G1/S transition in DFCs and stabilizes forkhead box j1a (Foxj1a), a master regulator of motile cilia, by stimulating Cyclin D1 expression through extracellular regulated MAP kinase (ERK) 1/2 signaling. Mechanistically, Cyclin D1-cyclin-dependent kinase (CDK) 4/6 drives G1/S transition during DFC proliferation and phosphorylates Foxj1a, thereby disrupting its association with proteasome 26S subunit, non-ATPase 4b (Psmd4b), a 19S regulatory subunit. This prevents the ubiquitin (Ub)-independent proteasomal degradation of Foxj1a. Our study uncovers a role for Cxcr4 signaling in L-R patterning and provides fundamental insights into the molecular linkage between cell-cycle progression and ciliogenesis.


Asunto(s)
Cilios/metabolismo , Factores de Determinación Derecha-Izquierda/metabolismo , Receptores CXCR4/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo/genética , Ciclo Celular/fisiología , División Celular , Proliferación Celular , Quimiocinas/metabolismo , Embrión no Mamífero/metabolismo , Factores de Transcripción Forkhead/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Morfogénesis , Receptores CXCR4/fisiología , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
7.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163700

RESUMEN

Neurogenesis is a physiological response after cerebral ischemic injury to possibly repair the damaged neural network. Therefore, promoting neurogenesis is very important for functional recovery after cerebral ischemic injury. Our previous research indicated that hyperbaric oxygen therapy (HBOT) exerted neuroprotective effects, such as reducing cerebral infarction volume. The purposes of this study were to further explore the effects of HBOT on the neurogenesis and the expressions of cell migration factors, including the stromal cell-derived factor 1 (SDF1) and its target receptor, the CXC chemokine receptor 4 (CXCR4). Thirty-two Sprague-Dawley rats were divided into the control or HBO group after receiving transient middle cerebral artery occlusion (MCAO). HBOT began to intervene 24 h after MCAO under the pressure of 3 atmospheres for one hour per day for 21 days. Rats in the control group were placed in the same acrylic box without HBOT during the experiment. After the final intervention, half of the rats in each group were cardio-perfused with ice-cold saline followed by 4% paraformaldehyde under anesthesia. The brains were removed, dehydrated and cut into serial 20µm coronal sections for immunofluorescence staining to detect the markers of newborn cell (BrdU+), mature neuron cell (NeuN+), SDF1, and CXCR4. The affected motor cortex of the other half rats in each group was separated under anesthesia and used to detect the expressions of brain-derived neurotrophic factor (BDNF), SDF1, and CXCR4. Motor function was tested by a ladder-climbing test before and after the experiment. HBOT significantly enhanced neurogenesis in the penumbra area and promoted the expressions of SDF1 and CXCR4. The numbers of BrdU+/SDF1+, BrdU+/CXCR4+, and BrdU+/NeuN+ cells and BDNF concentrations in the penumbra were all significantly increased in the HBO group when compared with the control group. The motor functions were improved in both groups, but there was a significant difference between groups in the post-test. Our results indicated that HBOT for 21 days enhanced neurogenesis and promoted cell migration toward the penumbra area in transient brain ischemic rats. HBOT also increased BDNF expression, which might further promote the reconstructions of the impaired neural networks and restore motor function.


Asunto(s)
Isquemia Encefálica/metabolismo , Movimiento Celular , Quimiocina CXCL12/fisiología , Oxigenoterapia Hiperbárica , Neuronas/metabolismo , Receptores CXCR4/fisiología , Animales , Isquemia Encefálica/fisiopatología , Factor Neurotrófico Derivado del Encéfalo , Quimiocina CXCL12/genética , Regulación de la Expresión Génica , Masculino , Neurogénesis , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores CXCR4/genética
8.
Osteoarthritis Cartilage ; 29(3): 313-322, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33253889

RESUMEN

Stromal cell-derived factor 1 (SDF-1), also known as CXC motif chemokine ligand 12 (CXCL12), is recognized as a homeostatic cytokine with strong chemotactic potency. It plays an important role in physiological and pathological processes, such as the development of multiple tissues and organs, the regulation of cell distribution, and tumour metastasis. SDF-1 has two receptors, CXC chemokine receptor type 4 (CXCR4) and CXC chemokine receptor type 7 (CXCR7). SDF-1 affects the proliferation, survival, differentiation and maturation of chondrocytes by binding to CXCR4 on chondrocytes. Therefore, SDF-1 has been used as an exogenous regulatory target in many studies to explore the mechanism of cartilage development. SDF-1 is also a potential therapeutic target for osteoarthritis (OA) and rheumatoid arthritis (RA), because of its role in pathological initiation and regulation. In addition, SDF-1 shows potent capacity in the repair of cartilage defects by recruiting endogenous stem cells in a cartilage tissue engineering context. To summarize the specific role of SDF-1 on cartilage development and disease, all articles had been screened out in PubMed by May 30, 2020. The search was limited to studies published in English. Search terms included SDF-1; CXCL12; CXCR4; chondrocyte; cartilage; OA; RA, and forty-seven papers were studied. Besides, we reviewed references in the articles we searched to get additional relevant backgrounds. The review aims to conclude the current knowledge regarding the physiological and pathological role of SDF-1 on the cartilage and chondrocyte. More investigations are required to determine methods targeted SDF-1 to cartilage development and interventions to cartilage diseases.


Asunto(s)
Artritis Reumatoide/metabolismo , Quimiocina CXCL12/metabolismo , Condrocitos/fisiología , Condrogénesis/fisiología , Osteoartritis/metabolismo , Artritis Reumatoide/fisiopatología , Enfermedades de los Cartílagos/metabolismo , Enfermedades de los Cartílagos/fisiopatología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular , Quimiocina CXCL12/fisiología , Humanos , Osteoartritis/fisiopatología , Receptores CXCR/fisiología , Receptores CXCR4/fisiología
9.
J Immunol ; 203(9): 2401-2414, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31548329

RESUMEN

Ligand-engaged chemoattractant receptors trigger Gαi subunit nucleotide exchange, stimulating the activation of downstream effector molecules. Activated chemoattractant receptors also dock G protein-coupled receptor kinases (GRKs) that help mediate receptor desensitization. In this study, we show that the B cell-specific loss of GRK2 severely disrupts B cell trafficking and immune cell homeostasis. The GRK2 deficiency in developing murine B cells leads to a severe immune phenotype, including a major reduction of bone marrow IgD+ cells, splenomegaly with a loss of white pulp and grossly expanded red pulp, a deficit of Peyer patches, and small lymph nodes with marked reductions in B cell numbers. The major phenotypes in these mice arise from excessive S1PR1 signaling combined with inadequate homeostatic chemokine receptor signaling. CXCL13 signaling is the most severely compromised. In B cells, our data also indicate that S1PR1 signals constitutively, as blocking S1PR1 signaling with an S1PR1 antagonist enhanced CXCL13-triggered wild-type B cell migration. Furthermore, blocking S1PR1 signaling in the GRK2-deficient B cells partially corrected their poor response to chemokines. Treating mice lacking GRK2 expression in their B cells with an S1PR1 antagonist partially normalized B cell trafficking into lymph node and splenic follicles. These findings reveal the critical interdependence of Gαi-linked signaling pathways in controlling B lymphocyte trafficking.


Asunto(s)
Linfocitos B/fisiología , Homeostasis , Tejido Linfoide/fisiología , Receptores de Quimiocina/fisiología , Receptores de Esfingosina-1-Fosfato/fisiología , Animales , Calcio/metabolismo , Movimiento Celular , Quimiocina CXCL13/fisiología , Quinasa 2 del Receptor Acoplado a Proteína-G/fisiología , Leucocitosis/inmunología , Lisofosfolípidos/farmacología , Ratones , Ratones Endogámicos C57BL , Receptores CXCR4/fisiología , Transducción de Señal/fisiología , Esfingosina/análogos & derivados , Esfingosina/farmacología
10.
Exp Cell Res ; 389(1): 111893, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32035133

RESUMEN

Compared with noninvasive tumor cells, glioma cells overexpress chemokine receptor type 4 (CXCR4), which exhibits significantly greater expression in invasive tumor cells than in noninvasive tumor cells. C-X-C motif chemokine ligand 12 (CXCL12, also known as stromal derived factor-1, SDF-1) and its cell surface receptor CXCR4 activate a signaling axis that induces the expression of membrane type-2 matrix metalloproteinase (MT2-MMP), which plays a pivotal role in the invasion and migration of various cancer cells; however, the specific mechanism involved in this is unclear. Recently, studies have shown that invadopodia can recruit and secrete related enzymes, such as matrix metalloproteinases (MMPs), to degrade the surrounding extracellular matrix (ECM), promoting the invasion and migration of tumor cells. Phosphorylated cortactin (pY421-cortactin) is required for the formation and maturation of invadopodia, but the upstream regulatory factors and kinases involved in phosphorylation have not been elucidated. In this study, we found that CXCL12/CXCR4 was capable of inducing glioma cell invadopodia formation, probably by regulating cortactin phosphorylation. The interaction of cortactin and Arg (also known as Abl-related nonreceptor tyrosine kinase, ABL2) in glioma cells was demonstrated. The silencing of Arg inhibited glioma cell invadopodia formation and invasion by blocking cortactin phosphorylation. Moreover, CXCL12 could not induce glioma cell invasion in Arg-knockdown glioma cells. Based on these results, it can be concluded that Arg mediates CXCL12/CXCR4-induced glioma cell invasion, and CXCL12/CXCR4 regulates invadopodia maturation through the Arg-cortactin pathway, which indicates that Arg could be a candidate therapeutic target to inhibit glioma cell invasion.


Asunto(s)
Neoplasias Encefálicas/patología , Quimiocina CXCL12/fisiología , Glioma/patología , Podosomas/fisiología , Proteínas Tirosina Quinasas/fisiología , Receptores CXCR4/fisiología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Quimiocina CXCL12/metabolismo , Glioma/genética , Glioma/metabolismo , Humanos , Invasividad Neoplásica , Fosforilación , Podosomas/metabolismo , Procesamiento Proteico-Postraduccional , Receptores CXCR4/metabolismo , Transducción de Señal/genética
11.
Br J Haematol ; 189(5): 815-825, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32135579

RESUMEN

Acute myeloid leukaemia (AML) is the most common adult acute leukaemia with the lowest survival rate. It is characterised by a build-up of immature myeloid cells anchored in the protective niche of the bone marrow (BM) microenvironment. The CXCL12/CXCR4 axis is central to the pathogenesis of AML as it has fundamental control over AML cell adhesion into the protective BM niche, adaptation to the hypoxic environment, cellular migration and survival. High levels of CXCR4 expression are associated with poor relapse-free and overall survival. The CXCR4 ligand, CXCL12 (SDF-1), is expressed by multiple cells types in the BM, facilitating the adhesion and survival of the malignant clone. Blocking the CXCL12/CXCR4 axis is an attractive therapeutic strategy providing a 'multi-hit' therapy that both prevents essential survival signals and releases the AML cells from the BM into the circulation. Once out of the protective niche of the BM they would be more susceptible to destruction by conventional chemotherapeutic drugs. In this review, we disentangle the diverse roles of the CXCL12/CXCR4 axis in AML. We then describe multiple CXCR4 inhibitors, including small molecules, peptides, or monoclonal antibodies, which have been developed to date and their progress in pre-clinical and clinical trials. Finally, the review leads us to the conclusion that there is a need for further investigation into the development of a 'multi-hit' therapy that targets several signalling pathways related to AML cell adhesion and maintenance in the BM.


Asunto(s)
Quimiocina CXCL12/fisiología , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/fisiología , Receptores CXCR4/fisiología , Transducción de Señal/fisiología , Animales , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/sangre , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bencilaminas , Médula Ósea/patología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Hipoxia de la Célula , Movimiento Celular/fisiología , Micropartículas Derivadas de Células , Ensayos Clínicos como Asunto , Ciclamas , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/fisiología , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico , Humanos , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Ratones , Terapia Molecular Dirigida , Proteínas de Neoplasias/antagonistas & inhibidores , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Péptidos/uso terapéutico , Péptidos Cíclicos/uso terapéutico , Piridinas/uso terapéutico , Receptores CXCR4/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Nicho de Células Madre , Células del Estroma/metabolismo , Células del Estroma/patología , Microambiente Tumoral
13.
BMC Pregnancy Childbirth ; 20(1): 87, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041571

RESUMEN

BACKGROUND: CXCL12(chemokine ligand 12, CXCL12) and its receptors CXCR4 are widely expressed in maternal-fetal interface and plays an adjust role in materno-fetal dialogue and immune tolerance during early pregnancy. This study aimed to evaluate the role and mechanism of self-derived CXCL12 in modulating the functions of human first-trimester endometrial epithelial cells (EECs) and to identify the potential protein kinase signaling pathways involved in the CXCL12/CXCR4's effect on EECs. METHODS: The expression of CXCL12 and CXCR4 in EECs was measured by using immunohistochemistry, immunofluorescence, real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The effects of EEC-conditioned medium (EEC-CM) and recombinant human CXCL12 (rhCXCL12) on EEC migration and invasion in vitro were evaluated with migration and invasion assays. In-cell western blot analysis was used to examine the phosphorylation of protein kinase B (AKT), extracellular regulated protein kinases (ERKs) and phosphatidylinositol 3-kinase (PI3K) after CXCL12 treatment. RESULTS: CXCL12 and CXCR4 were both expressed in human first-trimester EECs at the mRNA and protein level. Both EEC-CM and rhCXCL12 significantly increased the migration and invasion of EECs (P < 0.05), which could be blocked by neutralizing antibodies against CXCR4 (P < 0.05) or CXCL12 (P < 0.05), respectively. CXCL12 activated both PI3K/AKT and ERK1/2 signaling and CXCR4 neutralizing antibody effectively reduced CXCL12-induced phosphorylation of AKT and ERK1/2. LY294002, a PI3K-AKT inhibitor, was able to reverse the promotive effect of EEC-CM or rhCXCL12 on EEC migration and invasion. CONCLUSIONS: Human first-trimester EECs promoted their own migration and invasion through the autocrine mechanism with CXCL12/CXCR4 axis involvement by activating PI3K/AKT signaling. This study contributes to a better understanding of the epithelium function mediated by chemokine and chemokine receptor during normal pregnancy.


Asunto(s)
Comunicación Autocrina/genética , Movimiento Celular/genética , Quimiocina CXCL12/fisiología , Endometrio/citología , Receptores CXCR4/fisiología , Técnicas de Cultivo de Célula , Células Epiteliales/fisiología , Femenino , Humanos , Fosfatidilinositol 3-Quinasa/fisiología , Embarazo , Primer Trimestre del Embarazo/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal/genética
14.
Ophthalmic Res ; 63(4): 392-403, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31935734

RESUMEN

BACKGROUND: CCL2 (also known as monocyte chemoattractant protein 1) and CX3CR1 (also known as Fractalkine receptor)-deficient mice have damaged photoreceptors. OBJECTIVES: We examined the interaction of SDF1 and CXCR4 on the differentiation of retinal progenitors into rhodopsin-positive photoreceptors. METHODS: Cloned retinal progenitors were obtained by Pax6 gene transfection of mouse iPS cells followed by serial dilution. Clones were selected by expression of nestin, Musashi1, Six3, and Chx10 mRNA. Cell surface protein expression was analyzed by flow cytometry. The levels of mRNA and intracellular protein were examined by real-time PCR and immunochemistry, respectively. Transient transfection experiments of retinal progenitors were conducted using a human rhodopsin promoter luciferase plasmid. RESULTS: We selected 10 clones that expressed Six3, Chx10, Crx, Rx1, Nrl, CD73, and rhodopsin mRNA, which, except for rhodopsin, are photoreceptor precursor markers. Clones expressed both CD73 and CXCR4 on the cell surface and differentiated into rhodopsin-positive photoreceptors, which was reinforced by the addition of exogenous SDF1. A CXCR4 inhibitor AMD3100 blocked SDF1-mediated differentiation of progenitors into photoreceptors. SDF1 enhanced human rhodopsin promoter transcription activity, possibly via the NFκB pathway. Addition of SDF1 to the cell culture induced nuclear translocation of NFκB on retinal progenitor cell clones. Neonatal and newborn mouse retinas expressed SDF1 and CXCR4. Cells in the outer nuclear layer where photoreceptors are located expressed CXCR4 at P14 and P56. Cells in the inner nuclear layer expressed SDF1. CONCLUSIONS: These findings suggest that retinal progenitor cell differentiation was at least partly regulated by SDF1 and CXCR4 via upregulation of NFκB activity.


Asunto(s)
Diferenciación Celular/fisiología , Quimiocina CXCL12/fisiología , FN-kappa B/metabolismo , Factor de Transcripción PAX6/genética , Células Fotorreceptoras de Vertebrados/citología , Receptores CXCR4/fisiología , Animales , Animales Recién Nacidos , Bencilaminas/farmacología , Quimiocina CXCL12/farmacología , Células Clonales , Ciclamas/farmacología , Citometría de Flujo , Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Células Fotorreceptoras de Vertebrados/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores CXCR4/antagonistas & inhibidores , Rodopsina/genética , Transducción de Señal/fisiología , Transfección , Regulación hacia Arriba
15.
Int J Mol Sci ; 21(13)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630806

RESUMEN

Matrine, a quinolizidine alkaloid, is commonly employed for treating various viral and inflammatory disorders. Here, we have evaluated matrine for its activity on C-X-C chemokine receptor type 4 (CXCR4) and matrix metalloproteinases (MMP-9/2) expression, and its potential to affect tumor metastasis and invasion. The effects of matrine on CXCR4, MMP-9/2, and nuclear factor κB (NF-κB) activation in lung (A549), prostate (DU145), and pancreas (MIA PaCa-2) cells were investigated by diverse techniques. The expression level of CXCR4 and MMP-9/2 was analyzed by western blot analysis and reverse transcription polymerase chain reaction. NF-κB activation was also evaluated by western blot analysis, electrophoretic mobility shift assay as well as immunocytochemical experiments. Furthermore, we monitored cell invasion and metastasis activities by wound healing and Boyden chamber assays. We noted that matrine induced a down-regulation of CXCR4 and MMP-9/2 at both protein and mRNA levels. In addition, matrine negatively regulated human epidermal growth factor receptor 2 (HER2) and C-X-C Motif Chemokine Ligand 12 (CXCL12)-induced CXCR4 expression. Moreover, NF-κB suppression by matrine led to inhibition of metastatic potential of tumor cells. Our results suggest that matrine can block the cancer metastasis through the negative regulation of CXCR4 and MMP-9/2 and consequently it can be considered as a potential candidate for cancer therapy.


Asunto(s)
Alcaloides/metabolismo , Alcaloides/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Quinolizinas/metabolismo , Quinolizinas/farmacología , Células A549 , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , FN-kappa B/metabolismo , Invasividad Neoplásica/genética , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR4/fisiología , Transducción de Señal/efectos de los fármacos , Matrinas
16.
Mol Pharmacol ; 96(6): 737-752, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31548340

RESUMEN

The two G protein-coupled receptors (GPCRs) C-X-C chemokine receptor type 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are part of the class A chemokine GPCR family and represent important drug targets for human immunodeficiency virus (HIV) infection, cancer, and inflammation diseases. CXCR4 is one of only three chemokine receptors with a US Food and Drug Administration approved therapeutic agent, the small-molecule modulator AMD3100. In this review, known modulators of the two receptors are discussed in detail. Initially, the structural relationship between receptors and ligands is reviewed on the basis of common structural motifs and available crystal structures. To date, no atypical chemokine receptor has been crystallized, which makes ligand design and predictions for these receptors more difficult. Next, the selectivity, receptor activation, and the resulting ligand-induced signaling output of chemokines and other peptide ligands are reviewed. Binding of pepducins, a class of lipid-peptides whose basis is the internal loop of a GPCR, to CXCR4 is also discussed. Finally, small-molecule modulators of CXCR4 and ACKR3 are reviewed. These modulators have led to the development of radio- and fluorescently labeled tool compounds, enabling the visualization of ligand binding and receptor characterization both in vitro and in vivo. SIGNIFICANCE STATEMENT: To investigate the pharmacological modulation of CXCR4 and ACKR3, significant effort has been focused on the discovery and development of a range of ligands, including small-molecule modulators, pepducins, and synthetic peptides. Imaging tools, such as fluorescent probes, also play a pivotal role in the field of drug discovery. This review aims to provide an overview of the aforementioned modulators that facilitate the study of CXCR4 and ACKR3 receptors.


Asunto(s)
Receptores CXCR4/fisiología , Receptores CXCR/fisiología , Secuencia de Aminoácidos , Animales , Bencilaminas , Ciclamas , Compuestos Heterocíclicos/metabolismo , Compuestos Heterocíclicos/farmacología , Humanos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores CXCR/agonistas , Receptores CXCR/antagonistas & inhibidores , Receptores CXCR4/agonistas , Receptores CXCR4/antagonistas & inhibidores
17.
Clin Infect Dis ; 68(4): 684-687, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30020413

RESUMEN

Allogeneic stem cell transplantation (alloSCT) of homozygous CCR5 Δ32 stem cells once resulted in the cure of human immunodeficiency virus (HIV) infection. We have recently reported a viral breakthrough in a similar setting. Here, we demonstrate that the rapid rebound after alloSCT was related to a highly replicative CXCR4-tropic HIV variant, which could already be detected before alloSCT.


Asunto(s)
Infecciones por VIH/terapia , VIH/aislamiento & purificación , Trasplante de Células Madre/métodos , Trasplante Homólogo/métodos , Carga Viral , Tropismo Viral , VIH/fisiología , Humanos , Receptores CCR5/deficiencia , Receptores CXCR4/fisiología , Resultado del Tratamiento
18.
Br J Cancer ; 121(3): 249-256, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31239542

RESUMEN

BACKGROUND: The CXCL12/CXCR4 chemokine pathway is involved in cervical cancer pathogenesis and radiation treatment (RT) response. We previously reported that radiochemotherapy (RTCT) and concurrent administration of the CXCR4 inhibitor plerixafor improved primary tumour response. The aims of this study were to determine optimal sequencing of RTCT and plerixafor, the mechanisms responsible for improved response and the effect of plerixafor on late intestinal toxicity. METHODS: Orthotopic cervical cancer xenografts were treated with RTCT (30 Gy in 2 Gy fractions and cisplatin) with or without concurrent, adjuvant or continuous plerixafor. The endpoints were growth delay and molecular and immune cell changes at the end of treatment. Late intestinal toxicity was assessed by histologic examination of the rectum 90 days after a single 20 Gy fraction. RESULTS: RTCT increased CXCL12/CXCR4 signalling and the intratumoral accumulation of myeloid cells; the addition of plerixafor mitigated these effects. All of the RTCT and plerixafor arms showed prolonged tumour growth delay compared to RTCT alone, with the adjuvant arm showing the greatest improvement. Plerixafor also reduced late intestinal toxicity. CONCLUSION: Adding Plerixafor to RTCT blunts treatment-induced increases in CXCL12/CXCR4 signalling, improves primary tumour response and reduces intestinal side effects. This combination warrants testing in future clinical trials.


Asunto(s)
Quimiocina CXCL12/antagonistas & inhibidores , Quimioradioterapia , Compuestos Heterocíclicos/uso terapéutico , Células Mieloides/efectos de los fármacos , Receptores CXCR4/antagonistas & inhibidores , Neoplasias del Cuello Uterino/terapia , Animales , Bencilaminas , Quimiocina CXCL12/fisiología , Quimioradioterapia/efectos adversos , Ciclamas , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Células Mieloides/fisiología , Receptores CXCR4/fisiología , Transducción de Señal/efectos de los fármacos
19.
Respir Res ; 20(1): 79, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31023308

RESUMEN

BACKGROUND: C-X-C chemokine receptor type 4 (CXCR4) may be involved in the development of pulmonary arterial hypertension (PAH). CXCR4 inhibitor AMD3100 was described to have a positive effect on the prevention of pulmonary arterial muscularization in PAH models. Silibinin is a traditional medicine that has an antagonistic effect on CXCR4. We investigated the effect of silibinin using rat models of PAH. METHODS: PAH was induced by a single subcutaneous injection of monocrotaline. The rats were maintained in a chronic hypoxic condition (10% O2) with or without silibinin. To evaluate the efficacy of silibinin on PAH, right ventricular systolic pressure (RVSP), Fulton index (weight ratio of right ventricle to the left ventricle and septum), percent medial wall thickness (% MT), and vascular occlusion score (VOS) were measured and calculated. Immunohistochemical analysis was performed targeting CXCR4 and c-Kit. Reverse transcription-quantitative polymerase chain reaction was performed for the stem cell markers CXCR4, stromal cell derived factor-1 (SDF-1), c-Kit, and stem cell factor (SCF), and the inflammatory markers monocyte chemoattractant protein 1 (MCP1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα). Statistical analyses were performed using t-test and one-way analysis of variance with Bonferroni's post hoc test. RESULTS: Silibinin treatment for 1 week reduced RVSP and Fulton index. Treatment for 2 weeks reduced RVSP, Fulton index, % MT, and VOS, as well as downregulating the expression of CXCR4, SDF-1, and TNFα in pulmonary arteries. In contrast, treatment for 3 weeks failed to ameliorate PAH. The time-course study demonstrated that RVSP, Fulton index, % MT, and VOS gradually increased over time, with a decrease in the expression of CXCR4 and TNFα occurring after 2 weeks of PAH development. After 3 weeks, SDF-1, c-Kit, and SCF began to decrease and, after 5 weeks, MCP1 and IL-6 gradually accumulated. CONCLUSIONS: The CXCR4 inhibitor silibinin can ameliorate PAH, possibly through the suppression of the CXCR4/SDF-1 axis, until the point where PAH becomes a severe and irreversible condition. Silibinin results in reduced pulmonary arterial pressure and delays pulmonary arteriolar occlusion and pulmonary vascular remodeling.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Monocrotalina/toxicidad , Receptores CXCR4/antagonistas & inhibidores , Silibina/uso terapéutico , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Hipoxia/inducido químicamente , Hipoxia/metabolismo , Masculino , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Sprague-Dawley , Receptores CXCR4/fisiología , Resultado del Tratamiento
20.
PLoS Comput Biol ; 14(6): e1006209, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29912865

RESUMEN

Chemokines and their receptors (members of the GPCR super-family) are involved in a wide variety of physiological processes and diseases; thus, understanding the specificity of the chemokine receptor family could help develop new receptor specific drugs. Here, we explore the evolutionary mechanisms that led to the emergence of the chemokine receptors. Based on GPCR hierarchical classification, we analyzed nested GPCR sets with an eigen decomposition approach of the sequence covariation matrix and determined three key residues whose mutation was crucial for the emergence of the chemokine receptors and their subsequent divergence into homeostatic and inflammatory receptors. These residues are part of the allosteric sodium binding site. Their structural and functional roles were investigated by molecular dynamics simulations of CXCR4 and CCR5 as prototypes of homeostatic and inflammatory chemokine receptors, respectively. This study indicates that the three mutations crucial for the evolution of the chemokine receptors dramatically altered the sodium binding mode. In CXCR4, the sodium ion is tightly bound by four protein atoms and one water molecule. In CCR5, the sodium ion is mobile within the binding pocket and moves between different sites involving from one to three protein atoms and two to five water molecules. Analysis of chemokine receptor evolution reveals that a highly constrained sodium binding site characterized most ancient receptors, and that the constraints were subsequently loosened during the divergence of this receptor family. We discuss the implications of these findings for the evolution of the chemokine receptor functions and mechanisms of action.


Asunto(s)
Receptores CCR5/genética , Receptores CXCR4/genética , Sodio/metabolismo , Sitio Alostérico , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Sitios de Unión/fisiología , Evolución Biológica , Quimiocinas/genética , Quimiocinas/metabolismo , Simulación por Computador , Evolución Molecular , Humanos , Simulación de Dinámica Molecular , Mutación/genética , Filogenia , Análisis de Componente Principal/métodos , Unión Proteica/genética , Conformación Proteica , Receptores CCR5/fisiología , Receptores CXCR4/fisiología , Receptores de Quimiocina/genética , Receptores de Quimiocina/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA