Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.086
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 176(3): 468-478.e11, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30639099

RESUMEN

"Biased" G protein-coupled receptor (GPCR) agonists preferentially activate pathways mediated by G proteins or ß-arrestins. Here, we use double electron-electron resonance spectroscopy to probe the changes that ligands induce in the conformational distribution of the angiotensin II type I receptor. Monitoring distances between 10 pairs of nitroxide labels distributed across the intracellular regions enabled mapping of four underlying sets of conformations. Ligands from different functional classes have distinct, characteristic effects on the conformational heterogeneity of the receptor. Compared to angiotensin II, the endogenous agonist, agonists with enhanced Gq coupling more strongly stabilize an "open" conformation with an accessible transducer-binding site. ß-arrestin-biased agonists deficient in Gq coupling do not stabilize this open conformation but instead favor two more occluded conformations. These data suggest a structural mechanism for biased ligand action at the angiotensin receptor that can be exploited to rationally design GPCR-targeting drugs with greater specificity of action.


Asunto(s)
Angiotensinas/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Antagonistas de Receptores de Angiotensina/metabolismo , Arrestinas/metabolismo , Línea Celular , Humanos , Ligandos , Conformación Proteica , Receptores de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Espectroscopía de Pérdida de Energía de Electrones/métodos , beta-Arrestinas/metabolismo
2.
EMBO J ; 42(11): e112940, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37038975

RESUMEN

The peptide hormone angiotensin II regulates blood pressure mainly through the type 1 angiotensin II receptor AT1 R and its downstream signaling proteins Gq and ß-arrestin. AT1 R blockers, clinically used as antihypertensive drugs, inhibit both signaling pathways, whereas AT1 R ß-arrestin-biased agonists have shown great potential for the treatment of acute heart failure. Here, we present a cryo-electron microscopy (cryo-EM) structure of the human AT1 R in complex with a balanced agonist, Sar1 -AngII, and Gq protein at 2.9 Å resolution. This structure, together with extensive functional assays and computational modeling, reveals the molecular mechanisms for AT1 R signaling modulation and suggests that a major hydrogen bond network (MHN) inside the receptor serves as a key regulator of AT1 R signal transduction from the ligand-binding pocket to both Gq and ß-arrestin pathways. Specifically, we found that the MHN mutations N1113.35 A and N2947.45 A induce biased signaling to Gq and ß-arrestin, respectively. These insights should facilitate AT1 R structure-based drug discovery for the treatment of cardiovascular diseases.


Asunto(s)
Angiotensina II , Transducción de Señal , Humanos , Microscopía por Crioelectrón , Transducción de Señal/fisiología , beta-Arrestinas/metabolismo , Angiotensina II/química , Angiotensina II/metabolismo , Angiotensina II/farmacología , Receptores de Angiotensina/metabolismo
3.
Physiol Rev ; 98(3): 1627-1738, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29873596

RESUMEN

The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.


Asunto(s)
Angiotensina II/metabolismo , Receptores de Angiotensina/metabolismo , Transducción de Señal , Adipocitos/metabolismo , Animales , Vasos Sanguíneos/metabolismo , Encéfalo/metabolismo , Cardiopatías/metabolismo , Humanos , Inflamación/metabolismo , Riñón/metabolismo , Enfermedades Renales/metabolismo
4.
Cell Mol Life Sci ; 81(1): 77, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315242

RESUMEN

BACKGROUND: Obesity-associated dysfunctional intestinal permeability contributes to systemic chronic inflammation leading to the development of metabolic diseases. The inflammasomes constitute essential components in the regulation of intestinal homeostasis. We aimed to determine the impact of the inflammasomes in the regulation of gut barrier dysfunction and metabolic inflammation in the context of obesity and type 2 diabetes (T2D). METHODS: Blood samples obtained from 80 volunteers (n = 20 normal weight, n = 21 OB without T2D, n = 39 OB with T2D) and a subgroup of jejunum samples were used in a case-control study. Circulating levels of intestinal damage markers and expression levels of inflammasomes as well as their main effectors (IL-1ß and IL-18) and key inflammation-related genes were analyzed. The impact of inflammation-related factors, different metabolites and Akkermansia muciniphila in the regulation of inflammasomes and intestinal integrity genes was evaluated. The effect of blocking NLRP6 by using siRNA in inflammation was also studied. RESULTS: Increased circulating levels (P < 0.01) of the intestinal damage markers endotoxin, LBP, and zonulin in patients with obesity decreased (P < 0.05) after weight loss. Patients with obesity and T2D exhibited decreased (P < 0.05) jejunum gene expression levels of NLRP6 and its main effector IL18 together with increased (P < 0.05) mRNA levels of inflammatory markers. We further showed that while NLRP6 was primarily localized in goblet cells, NLRP3 was localized in the intestinal epithelial cells. Additionally, decreased (P < 0.05) mRNA levels of Nlrp1, Nlrp3 and Nlrp6 in the small intestinal tract obtained from rats with diet-induced obesity were found. NLRP6 expression was regulated by taurine, parthenolide and A. muciniphila in the human enterocyte cell line CCL-241. Finally, a significant decrease (P < 0.01) in the expression and release of MUC2 after the knockdown of NLRP6 was observed. CONCLUSIONS: The increased levels of intestinal damage markers together with the downregulation of NLRP6 and IL18 in the jejunum in obesity-associated T2D suggest a defective inflammasome sensing, driving to an impaired epithelial intestinal barrier that may regulate the progression of multiple obesity-associated comorbidities.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inflamasomas , Humanos , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Funcion de la Barrera Intestinal , Estudios de Casos y Controles , Inflamación , Obesidad/complicaciones , ARN Mensajero/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Vasopresinas/metabolismo
5.
J Pathol ; 260(3): 353-364, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37256677

RESUMEN

Alport syndrome (AS), a type IV collagen disorder, leads to glomerular disease and, in some patients, hearing loss. AS is treated with inhibitors of the renin-angiotensin system; however, a need exists for novel therapies, especially those addressing both major pathologies. Sparsentan is a single-molecule dual endothelin type-A and angiotensin II type 1 receptor antagonist (DEARA) under clinical development for focal segmental glomerulosclerosis and IgA nephropathy. We report the ability of sparsentan to ameliorate both renal and inner ear pathologies in an autosomal-recessive Alport mouse model. Sparsentan significantly delayed onset of glomerulosclerosis, interstitial fibrosis, proteinuria, and glomerular filtration rate decline. Sparsentan attenuated glomerular basement membrane defects, blunted mesangial filopodial invasion into the glomerular capillaries, increased lifespan more than losartan, and lessened changes in profibrotic/pro-inflammatory gene pathways in both the glomerular and the renal cortical compartments. Notably, treatment with sparsentan, but not losartan, prevented accumulation of extracellular matrix in the strial capillary basement membranes in the inner ear and reduced susceptibility to hearing loss. Improvements in lifespan and in renal and strial pathology were observed even when sparsentan was initiated after development of renal pathologies. These findings suggest that sparsentan may address both renal and hearing pathologies in Alport syndrome patients. © 2023 Travere Therapeutics, Inc and The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Oído Interno , Nefritis Hereditaria , Animales , Ratones , Nefritis Hereditaria/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Angiotensina/uso terapéutico , Membrana Basal Glomerular/metabolismo , Colágeno Tipo IV/genética , Oído Interno/metabolismo , Oído Interno/patología , Endotelinas/metabolismo , Endotelinas/uso terapéutico
6.
Can J Physiol Pharmacol ; 102(2): 86-104, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748204

RESUMEN

Angiotensin II (Ang II) is formed by the action of angiotensin-converting enzyme (ACE) in the renin-angiotensin system. This hormone is known to induce cardiac hypertrophy and heart failure and its actions are mediated by the interaction of both pro- and antihypertrophic Ang II receptors (AT1R and AT2R). Ang II is also metabolized by ACE 2 to Ang-(1-7), which elicits the activation of Mas receptors (MasR) for inducing antihypertrophic actions. Since heart failure under different pathophysiological situations is preceded by adaptive and maladaptive cardiac hypertrophy, we have reviewed the existing literature to gain some information regarding the roles of AT1R, AT2R, and MasR in both acute and chronic conditions of cardiac hypertrophy. It appears that the activation of AT1R may be involved in the development of adaptive and maladaptive cardiac hypertrophy as well as subsequent heart failure because both ACE inhibitors and AT1R antagonists exert beneficial effects. On the other hand, the activation of both AT2R and MasR may prevent the occurrence of maladaptive cardiac hypertrophy and delay the progression of heart failure, and thus therapy with different activators of these antihypertrophic receptors under chronic pathological stages may prove beneficial. Accordingly, it is suggested that a great deal of effort should be made to develop appropriate activators of both AT2R and MasR for the treatment of heart failure subjects.


Asunto(s)
Insuficiencia Cardíaca , Receptores de Angiotensina , Humanos , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Cardiomegalia , Angiotensina II/farmacología , Receptor de Angiotensina Tipo 1/metabolismo
7.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38279313

RESUMEN

The present review draws attention to the specific role of angiotensin peptides [angiotensin II (Ang II), angiotensin-(1-7) (Ang-(1-7)], vasopressin (AVP), and insulin in the regulation of the coronary blood flow and cardiac contractions. The interactions of angiotensin peptides, AVP, and insulin in the heart and in the brain are also discussed. The intracardiac production and the supply of angiotensin peptides and AVP from the systemic circulation enable their easy access to the coronary vessels and the cardiomyocytes. Coronary vessels and cardiomyocytes are furnished with AT1 receptors, AT2 receptors, Ang (1-7) receptors, vasopressin V1 receptors, and insulin receptor substrates. The presence of some of these molecules in the same cells creates good conditions for their interaction at the signaling level. The broad spectrum of actions allows for the engagement of angiotensin peptides, AVP, and insulin in the regulation of the most vital cardiac processes, including (1) cardiac tissue oxygenation, energy production, and metabolism; (2) the generation of the other cardiovascular compounds, such as nitric oxide, bradykinin (Bk), and endothelin; and (3) the regulation of cardiac work by the autonomic nervous system and the cardiovascular neurons of the brain. Multiple experimental studies and clinical observations show that the interactions of Ang II, Ang(1-7), AVP, and insulin in the heart and in the brain are markedly altered during heart failure, hypertension, obesity, and diabetes mellitus, especially when these diseases coexist. A survey of the literature presented in the review provides evidence for the belief that very individualized treatment, including interactions of angiotensins and vasopressin with insulin, should be applied in patients suffering from both the cardiovascular and metabolic diseases.


Asunto(s)
Angiotensina II , Diabetes Mellitus , Insulina , Obesidad , Vasopresinas , Humanos , Angiotensina II/metabolismo , Arginina Vasopresina/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Vasopresinas , Vasopresinas/metabolismo
8.
PLoS Comput Biol ; 18(2): e1009732, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35202400

RESUMEN

In vertebrates, the octopeptide angiotensin II (AngII) is an important in vivo regulator of the cardiovascular system. It acts mainly through two G protein-coupled receptors, AT1 and AT2. To better understand distinctive features of these receptors, we carried out a phylogenetic analysis that revealed a mirror evolution of AT1 and AT2, each one split into two clades, separating fish from terrestrial receptors. It also revealed that hallmark mutations occurred at, or near, the sodium binding site in both AT1 and AT2. Electrostatics computations and molecular dynamics simulations support maintained sodium binding to human AT1 with slow ingress from the extracellular side and an electrostatic component of the binding free energy around -3kT, to be compared to around -2kT for human AT2 and the δ opioid receptor. Comparison of the sodium binding modes in wild type and mutated AT1 and AT2 from humans and eels indicates that the allosteric control by sodium in both AT1 and AT2 evolved during the transition from fish to amniota. The unusual S7.46N mutation in AT1 is mirrored by a L3.36M mutation in AT2. In the presence of sodium, the N7.46 pattern in amniota AT1 stabilizes the inward orientation of N3.35 in the apo receptor, which should contribute to efficient N3.35 driven biased signaling. The M3.36 pattern in amniota AT2 favours the outward orientation of N3.35 and the receptor promiscuity. Both mutations have physiological consequences for the regulation of the renin-angiotensin system.


Asunto(s)
Angiotensina II , Receptor de Angiotensina Tipo 2 , Angiotensina II/genética , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Filogenia , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Sodio , Vertebrados/genética
9.
Bioorg Med Chem Lett ; 90: 129349, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236375

RESUMEN

Molecular design, synthesis, in vitro and in vivo studies of novel derivatives of indole-3-carboxylic acid new series of angiotensin II receptor 1 antagonists is presented. Radioligand binding studies using [125I]-angiotensin II displayed that new derivatives of indole-3-carboxylic acid have a high nanomolar affinity for the angiotensin II receptor (AT1 subtype) on a par with the known pharmaceuticals such as losartan. Biological studies of synthesized compounds in spontaneously hypertensive rats have demonstrated that compounds can lower blood pressure when administered orally. Maximum the decrease in blood pressure was 48 mm Hg with oral administration of 10 mg/kg and antihypertensive effect was observed for 24 h, which is superior to losartan.


Asunto(s)
Antihipertensivos , Hipertensión , Ratas , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Losartán/farmacología , Hipertensión/tratamiento farmacológico , Antagonistas de Receptores de Angiotensina/química , Antagonistas de Receptores de Angiotensina/farmacología , Presión Sanguínea , Ratas Endogámicas SHR , Receptores de Angiotensina/metabolismo , Angiotensina II/farmacología , Tetrazoles/química , Compuestos de Bifenilo/química
10.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768653

RESUMEN

The renin-angiotensin system (RAS) is one of the main regulatory systems of cardiovascular homeostasis. It is mainly composed of angiotensin-converting enzyme (ACE) and angiotensin II receptors AT1 and AT2. ACE and AT1 are targets of choice for the treatment of hypertension, whereas the AT2 receptor is still not exploited due to the lack of knowledge of its physiological properties. Peptide toxins from venoms display multiple biological functions associated with varied chemical and structural properties. If Brazilian viper toxins have been described to inhibit ACE, no animal toxin is known to act on AT1/AT2 receptors. We screened a library of toxins on angiotensin II receptors with a radioligand competition binding assay. Functional characterization of the selected toxin was conducted by measuring second messenger production, G-protein activation and ß-arrestin 2 recruitment using bioluminescence resonance energy transfer (BRET) based biosensors. We identified one original toxin, A-CTX-cMila, which is a 7-residues cyclic peptide from Conus miliaris with no homology sequence with known angiotensin peptides nor identified toxins, displaying a 100-fold selectivity for AT1 over AT2. This toxin shows a competitive antagonism mode of action on AT1, blocking Gαq, Gαi3, GαoA, ß-arrestin 2 pathways and ERK1/2 activation. These results describe the first animal toxin active on angiotensin II receptors.


Asunto(s)
Hipertensión , Receptor de Angiotensina Tipo 1 , Humanos , Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina , Arrestina beta 2/metabolismo , Péptidos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiología , Animales
11.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511174

RESUMEN

In angiotensin II (Ang II)-dependent hypertension, Ang II activates angiotensin II type 1 receptors (AT1R) on renal vascular smooth muscle cells, leading to renal vasoconstriction with eventual glomerular and tubular injury and interstitial inflammation. While afferent arteriolar vasoconstriction is initiated by the increased intrarenal levels of Ang II activating AT1R, the progressive increases in arterial pressure stimulate the paracrine secretion of adenosine triphosphate (ATP), leading to the purinergic P2X receptor (P2XR)-mediated constriction of afferent arterioles. Thus, the afferent arteriolar tone is maintained by two powerful systems eliciting the co-existing activation of P2XR and AT1R. This raises the conundrum of how the AT1R and P2XR can both be responsible for most of the increased renal afferent vascular resistance existing in angiotensin-dependent hypertension. Its resolution implies that AT1R and P2XR share common receptor or post receptor signaling mechanisms which converge to maintain renal vasoconstriction in Ang II-dependent hypertension. In this review, we briefly discuss (1) the regulation of renal afferent arterioles in Ang II-dependent hypertension, (2) the interaction of AT1R and P2XR activation in regulating renal afferent arterioles in a setting of hypertension, (3) mechanisms regulating ATP release and effect of angiotensin II on ATP release, and (4) the possible intracellular pathways involved in AT1R and P2XR interactions. Emerging evidence supports the hypothesis that P2X1R, P2X7R, and AT1R actions converge at receptor or post-receptor signaling pathways but that P2XR exerts a dominant influence abrogating the actions of AT1R on renal afferent arterioles in Ang II-dependent hypertension. This finding raises clinical implications for the design of therapeutic interventions that will prevent the impairment of kidney function and subsequent tissue injury.


Asunto(s)
Angiotensina II , Hipertensión , Riñón , Receptor de Angiotensina Tipo 1 , Receptores Purinérgicos P2X , Humanos , Adenosina Trifosfato/metabolismo , Angiotensina II/metabolismo , Arteriolas/metabolismo , Hipertensión/metabolismo , Riñón/irrigación sanguínea , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Angiotensina/metabolismo , Receptores Purinérgicos P2X/metabolismo
12.
Pflugers Arch ; 474(1): 63-81, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34967935

RESUMEN

Experimental and clinical evidence suggests that diabetic subjects are predisposed to a distinct cardiovascular dysfunction, known as diabetic cardiomyopathy (DCM), which could be an autonomous disease independent of concomitant micro and macrovascular disorders. DCM is one of the prominent causes of global morbidity and mortality and is on a rising trend with the increase in the prevalence of diabetes mellitus (DM). DCM is characterized by an early left ventricle diastolic dysfunction associated with the slow progression of cardiomyocyte hypertrophy leading to heart failure, which still has no effective therapy. Although the well-known "Renin Angiotensin Aldosterone System (RAAS)" inhibition is considered a gold-standard treatment in heart failure, its role in DCM is still unclear. At the cellular level of DCM, RAAS induces various secondary mechanisms, adding complications to poor prognosis and treatment of DCM. This review highlights the importance of RAAS signaling and its major secondary mechanisms involving inflammation, oxidative stress, mitochondrial dysfunction, and autophagy, their role in establishing DCM. In addition, studies lacking in the specific area of DCM are also highlighted. Therefore, understanding the complex role of RAAS in DCM may lead to the identification of better prognosis and therapeutic strategies in treating DCM.


Asunto(s)
Cardiomiopatías Diabéticas/etiología , Sistema Renina-Angiotensina , Angiotensina II/metabolismo , Animales , Autofagia , Cardiomiopatías Diabéticas/metabolismo , Humanos , Inflamación/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Estrés Oxidativo , Peptidil-Dipeptidasa A/metabolismo , Receptores de Angiotensina/metabolismo
13.
Biochem Biophys Res Commun ; 610: 56-60, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35436631

RESUMEN

The store-operated Ca2+ entry (SOCE) represents an important route for generating cellular Ca2+ signals that are implicated in physiological and various pathological scenarios that include diabetic cardiomyopathy (DM-CMP) which is well known to have Ca2+ dysregulation among other salient features. In this study, we investigated the role of SOCE in Ca2+ handling of cardiomyocytes obtained from adult male Wistar rats that were made diabetic by intraperitoneal administration of streptozotocin (STZ 50 mg/kg). We also included another group of rats with diabetes induced by STZ administration but received an angiotensin II receptor blocker - losartan. In whole cell recordings with isolated cardiomyocytes, the SOCE-representative whole-cell current ICRAC was found to be significantly reduced for the diabetic group compared to the control group and chronic losartan treatment could restore ICRAC to a level comparable to the control group. However, in contrast to the observed reduction in ICRAC, Orai1 and Orai3 proteins were found to be significantly upregulated in diabetic condition whereas no significant change in the expression levels of Stim1, Stim2 and Orai2 was observed. Also, losartan treatment did not affect the expression pattern of these key proteins for SOCE in diabetic group. The observed imbalance between the functional read out of SOCE (peak ICRAC size) and expression levels of the underlying proteins was puzzling but could be, among other possibilities, due to impairment of interaction between Stim and Orai proteins. We argue that the observed changes in SOCE with diabetes could be a contributing factor for the Ca2+ dyshomeostasis associated with diabetic cardiomyopathies and blockade of angiotensin II receptor may potentially restore normal SOCE in diabetic cardiomyocytes.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Canales de Calcio , Diabetes Mellitus , Miocitos Cardíacos , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Diabetes Mellitus/metabolismo , Losartán/farmacología , Masculino , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Receptores de Angiotensina/metabolismo , Molécula de Interacción Estromal 1/metabolismo
14.
PLoS Pathog ; 16(12): e1009128, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33284859

RESUMEN

Cytokine storm is suggested as one of the major pathological characteristics of SARS-CoV-2 infection, although the mechanism for initiation of a hyper-inflammatory response, and multi-organ damage from viral infection is poorly understood. In this virus-cell interaction study, we observed that SARS-CoV-2 infection or viral spike protein expression alone inhibited angiotensin converting enzyme-2 (ACE2) receptor protein expression. The spike protein promoted an angiotensin II type 1 receptor (AT1) mediated signaling cascade, induced the transcriptional regulatory molecules NF-κB and AP-1/c-Fos via MAPK activation, and increased IL-6 release. SARS-CoV-2 infected patient sera contained elevated levels of IL-6 and soluble IL-6R. Up-regulated AT1 receptor signaling also influenced the release of extracellular soluble IL-6R by the induction of the ADAM-17 protease. Use of the AT1 receptor antagonist, Candesartan cilexetil, resulted in down-regulation of IL-6/soluble IL-6R release in spike expressing cells. Phosphorylation of STAT3 at the Tyr705 residue plays an important role as a transcriptional inducer for SOCS3 and MCP-1 expression. Further study indicated that inhibition of STAT3 Tyr705 phosphorylation in SARS-CoV-2 infected and viral spike protein expressing epithelial cells did not induce SOCS3 and MCP-1 expression. Introduction of culture supernatant from SARS-CoV-2 spike expressing cells on a model human liver endothelial Cell line (TMNK-1), where transmembrane IL-6R is poorly expressed, resulted in the induction of STAT3 Tyr705 phosphorylation as well as MCP-1 expression. In conclusion, our results indicated that the presence of SARS-CoV-2 spike protein in epithelial cells promotes IL-6 trans-signaling by activation of the AT1 axis to initiate coordination of a hyper-inflammatory response.


Asunto(s)
COVID-19/inmunología , Interleucina-6/inmunología , Receptores de Angiotensina/metabolismo , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , COVID-19/metabolismo , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/metabolismo , Síndrome de Liberación de Citoquinas/virología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , Interleucina-6/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , SARS-CoV-2/metabolismo , Transducción de Señal/fisiología , Activación Transcripcional
15.
Clin Sci (Lond) ; 136(10): 799-802, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35621123

RESUMEN

This commentary on the article "Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors" by Sanja Bosnyak et al. (Clini. Sci. (Lond.) (2011) 121(7): 297-303. https://doi.org/10.1042/CS20110036) summarises the main findings of the study, followed by a discussion of the findings and their relevance for various aspects of the biology of receptors of the renin-angiotensin system in the context of the current state of knowledge.


Asunto(s)
Angiotensina II , Receptores de Angiotensina , Angiotensina II/metabolismo , Péptidos , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina
16.
Acta Pharmacol Sin ; 43(10): 2573-2584, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35260820

RESUMEN

Inflammatory activation and oxidative stress promote the proliferation of vascular smooth muscle cells (VSMCs), which accounts for pathological vascular remodeling in hypertension. ELABELA (ELA) is the second endogenous ligand for angiotensin receptor-like 1 (APJ) receptor that has been discovered thus far. In this study, we investigated whether ELA regulated VSMC proliferation and vascular remodeling in spontaneously hypertensive rats (SHRs). We showed that compared to that in Wistar-Kyoto rats (WKYs), ELA expression was markedly decreased in the VSMCs of SHRs. Exogenous ELA-21 significantly inhibited inflammatory cytokines and NADPH oxidase 1 expression, reactive oxygen species production and VSMC proliferation and increased the nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2) in VSMCs. Osmotic minipump infusion of exogenous ELA-21 in SHRs for 4 weeks significantly decreased diastolic blood pressure, alleviated vascular remodeling and ameliorated vascular inflammation and oxidative stress in SHRs. In VSMCs of WKY, angiotensin II (Ang II)-induced inflammatory activation, oxidative stress and VSMC proliferation were attenuated by pretreatment with exogenous ELA-21 but were exacerbated by ELA knockdown. Moreover, ELA-21 inhibited the expression of matrix metalloproteinase 2 and 9 in both SHR-VSMCs and Ang II-treated WKY-VSMCs. We further revealed that exogenous ELA-21-induced inhibition of proliferation and PI3K/Akt signaling were amplified by the PI3K/Akt inhibitor LY294002, while the APJ receptor antagonist F13A abolished ELA-21-induced PI3K/Akt inhibition and Nrf2 activation in VSMCs. In conclusion, we demonstrate that ELA-21 alleviates vascular remodeling through anti-inflammatory, anti-oxidative and anti-proliferative effects in SHRs, indicating that ELA-21 may be a therapeutic agent for treating hypertension.


Asunto(s)
Hipertensión , Hormonas Peptídicas , Remodelación Vascular , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Células Cultivadas , Citocinas/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Ligandos , Metaloproteinasa 2 de la Matriz/metabolismo , Músculo Liso Vascular , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 1/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Especies Reactivas de Oxígeno/metabolismo , Receptores de Angiotensina/metabolismo , Remodelación Vascular/fisiología
17.
Artículo en Inglés | MEDLINE | ID: mdl-36031061

RESUMEN

Although sodium and water reabsorption by the kidney plays a major role in maintaining body fluid homeostasis, the seasonal response of renal morphology and the factors involved in water and salt regulation are not well known, especially in reptiles. Eremias multiocellata is a typical desert-dwelling lizard. Here, we compared water and salt regulation of E. multiocellata in winter (hibernation), spring (emerging from hibernation), and summer (active) according to histomorphometry and the expression of genes such as those encoding aquaporins (AQP1, AQP2, AQP3), the Na+-Cl- cotransporter (NCC), the Na+-K+-2Cl- cotransporter (NKCC2), renin (Ren), angiotensin II receptor type 2 (AT2R), and endothelial nitric oxide synthase (eNOS) in the kidneys. The results showed that the area of Bowman's capsule and the glomerular density were lower in winter compared to summer and spring, and the lumen size of the DCT, PCT, and IS was greater in spring than in summer. Compared to summer and spring, the expression of AQP1, AQP3, NCC, NKCC2, Ren, and eNOS was significantly decreased in winter, whereas the expression of AQP2 and AT2R remained high. These results indicate that E. multiocellata balances its water budget via morpho-functional changes in different seasons. Although renal function was temporarily attenuated during winter, the regulation of aquaporins genes was not synchronous, indicating the complexity and particularity of water and salt regulation in desert lizards when facing the constraints of harsh environmental conditions, seasonal variations, and hibernation. These results will enrich the understanding of water and salt regulation mechanisms in desert reptiles.


Asunto(s)
Acuaporina 2 , Lagartos , Animales , Acuaporina 2/metabolismo , Riñón/metabolismo , Lagartos/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Receptores de Angiotensina/metabolismo , Renina/metabolismo , Estaciones del Año , Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Agua/metabolismo
18.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683028

RESUMEN

This review is dedicated to the cross-talk between the (endo)cannabinoid and renin angiotensin systems (RAS). Activation of AT1 receptors (AT1Rs) by angiotensin II (Ang II) can release endocannabinoids that, by acting at cannabinoid CB1 receptors (CB1Rs), modify the response to AT1R stimulation. CB1R blockade may enhance AT1R-mediated responses (mainly vasoconstrictor effects) or reduce them (mainly central nervous system-mediated effects). The final effects depend on whether stimulation of CB1Rs and AT1Rs induces opposite or the same effects. Second, CB1R blockade may diminish AT1R levels. Third, phytocannabinoids modulate angiotensin-converting enzyme-2. Additional studies are required to clarify (1) the existence of a cross-talk between the protective axis of the RAS (Ang II-AT2 receptor system or angiotensin 1-7-Mas receptor system) with components of the endocannabinoid system, (2) the influence of Ang II on constituents of the endocannabinoid system and (3) the (patho)physiological significance of AT1R-CB1R heteromerization. As a therapeutic consequence, CB1R antagonists may influence effects elicited by the activation or blockade of the RAS; phytocannabinoids may be useful as adjuvant therapy against COVID-19; single drugs acting on the (endo)cannabinoid system (cannabidiol) and the RAS (telmisartan) may show pharmacokinetic interactions since they are substrates of the same metabolizing enzyme of the transport mechanism.


Asunto(s)
COVID-19 , Cannabinoides , Angiotensina II/metabolismo , Cannabinoides/farmacología , Endocannabinoides/farmacología , Humanos , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Cannabinoides , Renina/farmacología , Sistema Renina-Angiotensina
19.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35955421

RESUMEN

Hypertension is an important public health challenge, affecting up to 30-50% of adults worldwide. Several epidemiological studies indicate that high blood pressure originates in fetal life-the so-called programming effect or developmental origin of hypertension. Iron-deficiency anemia has become one of the most prevalent nutritional problems globally. Previous animal experiments have shown that prenatal iron-deficiency anemia adversely affects offspring hypertension. However, the underlying mechanism remains unclear. We used a maternal low-iron diet Sprague Dawley rat model to study changes in blood pressure, the renal renin-angiotensin system, oxidative stress, inflammation, and sodium transporters in adult male offspring. Our study revealed that 16-week-old male offspring born to mothers with low dietary iron throughout pregnancy and the lactation period had (1) higher blood pressure, (2) increased renal cortex angiotensin II receptor type 1 and angiotensin-converting enzyme abundance, (3) decreased renal cortex angiotensin II receptor type 2 and MAS abundance, and (4) increased renal 8-hydroxy-2'-deoxyguanosine and interleukin-6 abundance. Improving the iron status of pregnant mothers could influence the development of hypertension in their offspring.


Asunto(s)
Anemia Ferropénica , Hipertensión , Deficiencias de Hierro , Efectos Tardíos de la Exposición Prenatal , Anemia Ferropénica/metabolismo , Animales , Presión Sanguínea , Femenino , Hipertensión/metabolismo , Hierro/metabolismo , Hierro de la Dieta/metabolismo , Riñón/metabolismo , Lactancia , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Estrés Oxidativo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina
20.
Molecules ; 27(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35744810

RESUMEN

Multiple strategies including the use of bioactive peptides and other nutraceuticals are being adopted to maintain bone health. This study provides an improved and deeper understanding of the pharmacological effects that a bioactive peptide IRW (Ile-Arg-Trp) extends on bone health. Our results showed that IRW treatment protects osteoblasts against Ang II induced decline in cell proliferation and restores protein levels of collagen type I alpha 2 chain (COL1A2) and alkaline phosphatase (ALP) levels in MC3T3-E1 cells (p < 0.05). Apart from augmentation of these mineralization factors, the angiotensin II (Ang II) induced apoptotic stress in osteoblasts was mitigated by IRW as well. At the molecular level, IRW abolished the cytochrome-c release via modulation of pro-and anti-apoptotic genes in MC3T3-E1 cells (p < 0.05). Interestingly, IRW also increased cellular levels of cytoprotective local RAAS factors such as MasR, Ang (1−7), ACE2, and AT2R, and lowered the levels of Ang II effector receptor (AT1R). Further, our results indicated a lower content of inflammation and osteoclastogenesis biomarkers such as cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-κB), and receptor activator of nuclear factor kappa-B ligand (RANKL) following IRW treatment in MC3T3-E1 cells (p < 0.05). The use of an antagonist-guided cell study indicated that IRW contributed to the process of cytoprotection and proliferation of osteoblasts via Runt-related transcription factor 2 (RUNX2) in face of Ang II stress in an AT2R dependent manner. The key findings of our study showed that IRW could potentially have a therapeutic role in the treatment and/or prevention of bone disorders.


Asunto(s)
Angiotensina II , Oligopéptidos , Angiotensina II/metabolismo , Angiotensina II/farmacología , FN-kappa B/metabolismo , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Osteoblastos/metabolismo , Péptidos/farmacología , Receptores de Angiotensina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA