Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.611
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Psychiatry ; 29(3): 671-685, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38177350

RESUMEN

Acquired brain injury (ABI), such as traumatic brain injury and stroke, is a leading cause of disability worldwide, resulting in debilitating acute and chronic symptoms, as well as an increased risk of developing neurological and neurodegenerative disorders. These symptoms can stem from various neurophysiological insults, including neuroinflammation, oxidative stress, imbalances in neurotransmission, and impaired neuroplasticity. Despite advancements in medical technology and treatment interventions, managing ABI remains a significant challenge. Emerging evidence suggests that psychedelics may rapidly improve neurobehavioral outcomes in patients with various disorders that share physiological similarities with ABI. However, research specifically focussed on psychedelics for ABI is limited. This narrative literature review explores the neurochemical properties of psychedelics as a therapeutic intervention for ABI, with a focus on serotonin receptors, sigma-1 receptors, and neurotrophic signalling associated with neuroprotection, neuroplasticity, and neuroinflammation. The promotion of neuronal growth, cell survival, and anti-inflammatory properties exhibited by psychedelics strongly supports their potential benefit in managing ABI. Further research and translational efforts are required to elucidate their therapeutic mechanisms of action and to evaluate their effectiveness in treating the acute and chronic phases of ABI.


Asunto(s)
Lesiones Encefálicas , Alucinógenos , Plasticidad Neuronal , Humanos , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Animales , Receptores de Serotonina/metabolismo , Receptores de Serotonina/efectos de los fármacos , Receptores sigma/metabolismo , Receptor Sigma-1 , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
J Neurochem ; 168(6): 1097-1112, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38323657

RESUMEN

Microdosing ketamine is a novel antidepressant for treatment-resistant depression. Traditional antidepressants, like selective serotonin reuptake inhibitors (SSRIs), inhibit serotonin reuptake, but it is not clear if ketamine shows a similar mechanism. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals and is a good model to track depressive behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 h and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding because of its anesthetic properties. Since microdosing ketamine causes behavioral effects, we further investigated behavioral changes with a SERT16 mutant and low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists. Feeding and locomotion changes were similar to ketamine in the mutant, and we found NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs, but effects behavior with other mechanisms that should be investigated further.


Asunto(s)
Drosophila melanogaster , Ketamina , Locomoción , Receptores de Serotonina , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Ketamina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Receptores de Serotonina/metabolismo , Receptores de Serotonina/efectos de los fármacos , Locomoción/efectos de los fármacos , Receptores de Glutamato/metabolismo , Receptores de Glutamato/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Serotonina/metabolismo , Conducta Alimentaria/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Larva , Fluoxetina/farmacología , Antidepresivos/farmacología
3.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G57-G69, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713616

RESUMEN

Inflammatory bowel disease (IBD) encompasses several debilitating chronic gastrointestinal (GI) inflammatory disorders, including Crohn's disease and ulcerative colitis. In both conditions, mucosal inflammation is a key clinical presentation associated with altered serotonin (5-hydroxytryptamine or 5-HT) signaling. This altered 5-HT signaling is also found across various animal models of colitis. Of the 14 known receptor subtypes, 5-HT receptor type 7 (5-HT7) is one of the most recently discovered. We previously reported that blocking 5-HT signaling with either a selective 5-HT7 receptor antagonist (SB-269970) or genetic ablation alleviated intestinal inflammation in murine experimental models of colitis. Here, we developed novel antagonists, namely, MC-170073 and MC-230078, which target 5-HT7 receptors with high selectivity. We also investigated the in vivo efficacy of these antagonists in experimental colitis by using dextran sulfate sodium (DSS) and the transfer of CD4+CD45RBhigh T cells to induce intestinal inflammation. Inhibition of 5-HT7 receptor signaling with the antagonists, MC-170073 and MC-230078, ameliorated intestinal inflammation in both acute and chronic colitis models, which was accompanied by lower histopathological damage and diminished levels of proinflammatory cytokines compared with vehicle-treated controls. Together, the data reveal that the pharmacological inhibition of 5-HT7 receptors by these selective antagonists ameliorates the severity of colitis across various experimental models and may, in the future, serve as a potential treatment option for patients with IBD. In addition, these findings support that 5-HT7 is a viable therapeutic target for IBD.NEW & NOTEWORTHY This study demonstrates that the novel highly selective 5-HT7 receptor antagonists, MC-170073 and MC-230078, significantly alleviated the severity of colitis across models of experimental colitis. These findings suggest that inhibition of 5-HT7 receptor signaling by these new antagonists may serve as an alternative mode of treatment to diminish symptomology in those with inflammatory bowel disease.


Asunto(s)
Colitis , Receptores de Serotonina , Antagonistas de la Serotonina , Animales , Receptores de Serotonina/metabolismo , Receptores de Serotonina/efectos de los fármacos , Colitis/tratamiento farmacológico , Colitis/inmunología , Colitis/patología , Ratones , Antagonistas de la Serotonina/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Sulfato de Dextran , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/inmunología , Transducción de Señal/efectos de los fármacos , Índice de Severidad de la Enfermedad , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Colon/inmunología , Masculino
4.
Brief Bioinform ; 22(2): 1023-1037, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33406218

RESUMEN

Dihydroorotate dehydrogenase (DHODH) is a key enzyme required for de novo pyrimidine synthesis and it is suggested as a target for COVID19 treatment due to high pyrimidine demand by the virus replication in the infected host cells as well as its proven effect of blocking of cytokine release by the immune cells to prevent inflammation leading to acute respiratory distress. There are a number of clinical trials underway for COVID19 treatment using DHODH inhibitors; however, there are only a small number of known DHODH antagonists available for testing. Here, we have applied a methodology to identify DHODH antagonist candidates, and compared them using in silico target prediction tools. A large set of 7900 FDA-approved and clinical stage drugs obtained from DrugBank were docked against 20 different structures DHODH available in PDB. Drugs were eliminated according to their predicted affinities by Autodock Vina. About 28 FDA-approved and 79 clinical trial ongoing drugs remained. The mode of interaction of these molecules was analyzed by repeating docking using Autodock 4 and DS Visualiser. Finally, the target region predictions of 28 FDA-approved drugs were determined through PASS and SwissTargetPrediction tools. Interestingly, the analysis of in silico target predictions revealed that serotonin-dopamine receptor antagonists could also be potential DHODH inhibitors. Our candidates shared a common attribute, a possible interaction with serotonin-dopamine receptors as well as other oxidoreductases, like DHODH. Moreover, the Bruton Tyrosine Kinase-inhibitor acalabrutunib and serotonin-dopamine receptor inhibitor drugs on our list have been found in the literature that have shown to be effective against Sars-CoV-2, while the path of activity is yet to be identified. Identifying an effective drug that can suppress both inflammation and virus proliferation will play a crucial role in the treatment of COVID. Therefore, we suggest experimental investigation of the 28 FDA-approved drugs on DHODH activity and Sars-CoV-2 virus proliferation. Those who are found experimentally effective can play an important role in COVID19 treatment. Moreover, we suggest investigating COVID19 case conditions in patients using schizophrenia and depression drugs.


Asunto(s)
Antivirales/farmacología , Reposicionamiento de Medicamentos , Inhibidores Enzimáticos/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Receptores Dopaminérgicos/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Simulación por Computador , Dihidroorotato Deshidrogenasa , Humanos , Simulación del Acoplamiento Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
5.
Neurobiol Learn Mem ; 183: 107462, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34015444

RESUMEN

Autism spectrum disorder (ASD) is a severe life-long neuropsychiatric disorder. Alterations and imbalance of several neurochemical systems may be involved in ASD pathophysiology, of them, serotonergic neurotransmission dysfunction and deficiency may underlie behavioral abnormalities associated with ASD. However, the functional importance of serotonergic receptors, particularly 5HT7 receptors in ASD pathology remains poorly defined. Serotonin receptor subtype 7 (5-HT7R) plays a direct regulatory role in the development and also for the mature function of the brain, therefore, further studies are necessary to elucidate the role of these receptors in the etiology of autism. To address this issue, we combined here behavioral, electrophysiological methods to further characterize the contribution of 5-HT7Rs in the prenatal valproic acid (VPA) exposure-induced impairment in synaptic plasticity and their impact on the associated behavioral changes. This may help to unravel the underlying cellular mechanisms involved in ASD and can lead to new treatment and/or prevention therapies based on the role of the serotonergic system for autism. Findings revealed that compared to control, autistic-like offspring showed increased anxiety-like behavior, reduced social interaction, decreased locomotor activity, and impaired identification of the novel object. However, administration of 5-HT7Rs agonist, LP-211, for 7 consecutive days before testing from postnatal day 21 to 27 reversed all behavioral deficits induced by prenatal exposure to VPA in offspring. Also, both short-term depression and long-term potentiation were impaired in the autistic-like pups, but activation of 5-HT7Rs rescued the LTP impairment in the autistic-like group so that there was no significant difference between the two groups. Blockade of 5-HT7Rs caused LTP impairment following HFS in the autistic-like group. Besides, there was a significant difference in LTD induction following SB-269970 application between the control and the autistic-like groups measured at first 10 min following TPS. Moreover, both the number and the size of retrograde fast blue-labelled neurons in the raphe nuclei were reduced. Overall, these results provide for the first time, as far as we know, functional evidence for the restorative role of 5-HT7Rs activation against prenatal VPA exposure induced behavioral deficits and hippocampal synaptic plasticity impairment. Therefore, these receptors could be a potential and promising pharmacotherapy target for the treatment of autism.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Región CA1 Hipocampal/metabolismo , Potenciación a Largo Plazo/fisiología , Receptores de Serotonina/metabolismo , Animales , Trastorno del Espectro Autista/fisiopatología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Región CA1 Hipocampal/fisiopatología , Modelos Animales de Enfermedad , Prueba de Laberinto Elevado , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , GABAérgicos/toxicidad , Locomoción/efectos de los fármacos , Locomoción/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Prueba de Campo Abierto , Fenoles/farmacología , Piperazinas/farmacología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Núcleos del Rafe/metabolismo , Núcleos del Rafe/patología , Ratas , Receptores de Serotonina/efectos de los fármacos , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Conducta Social , Sulfonamidas/farmacología , Ácido Valproico/toxicidad
6.
J Cardiovasc Pharmacol ; 78(2): 319-327, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34029269

RESUMEN

ABSTRACT: Although discovered as a vasoconstrictor, 5-hydroxytryptamine (5-HT, serotonin) infused into man and rodent reduces blood pressure. This occurs primarily through activation of 5-HT7 receptors and, at least in part, venodilation. Vascular mechanisms by which this could occur include direct receptor activation leading to vasodilation and/or suppression of contractile 5-HT receptor activation. This study tests the hypothesis that the 5-HT7 receptor restrains activation of the 5-HT2A receptor. A subhypothesis is whether agonist-induced activation-independent of constitutive activity-of the 5-HT7 receptor is necessary for this restraint. The isolated abdominal aorta and vena cava from the normal male Sprague-Dawley rat was our model. Studies used real-time PCR and a pharmacological approach in the isolated tissue bath for measurement of isometric tone. Although 5-HT2A receptor mRNA expression in both aorta and vena cava was significantly larger than that of the 5-HT7 receptor mRNA, the 5-HT7/5-HT2A receptor mRNA ratio was greater in the vena cava (0.30) than in the aorta (0.067). 5-HT7 receptor antagonism by SB266970 and DR 4458 increased maximum contraction to 5-HT in the isolated vein by over 50% versus control. The 5-HT2A receptor agonists TCB-2 and NBOH were more potent in the aorta compared with 5-HT but less efficacious, serving as partial agonists. By contrast, these same three agonists caused no contraction in the vena cava isolated from the same rats up to 10 µM agonist. Antagonism of the 5-HT7 receptor by SB269970 did not increase either the potency or efficacy of TCB-2 or NBOH. These data support that the 5-HT7 receptor itself needs to be stimulated to reduce contraction and suggest there is little constitutive activity of the 5-HT7 receptor in the isolate abdominal vena cava.


Asunto(s)
Aorta Abdominal/efectos de los fármacos , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Agonistas de Receptores de Serotonina/farmacología , Serotonina/farmacología , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vena Cava Inferior/efectos de los fármacos , Animales , Aorta Abdominal/metabolismo , Técnicas In Vitro , Masculino , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Vena Cava Inferior/metabolismo
7.
J Reprod Dev ; 67(4): 241-250, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-33980767

RESUMEN

In the present study, we investigated the regulatory mechanisms underlying sperm hyperactivation enhanced by 5-hydroxytryptamine (5-HT) in hamsters. First, we examined the types of 5-HT receptors that regulate hyperactivation. Hyperactivation was significantly enhanced by 5-HT2A and 5-HT4 receptor agonists. Moreover, the results of the motility assay revealed that 5-HT2A, 5-HT3, and 5-HT4 receptor agonists significantly decreased the velocity and/or amplitude of sperm. Under 5-HT2 receptor stimulation, hyperactivation was associated with phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3) receptor, soluble adenylate cyclase (sAC), and protein kinase A (PKA). In contrast, under 5-HT4 receptor stimulation, hyperactivation was associated with transmembrane adenylate cyclase (tmAC), sAC, PKA, and CatSper channels. Accordingly, under the condition that sperm are hyperactivated, 5-HT likely stimulates PLC/IP3 receptor signals via the 5-HT2A receptor and tmAC/PKA/CatSper channel signals via the 5-HT4 receptor. After sAC and PKA are activated by these stimulations, sperm hyperactivation is enhanced.


Asunto(s)
Receptores de Serotonina/fisiología , Serotonina/farmacología , Espermatozoides/fisiología , Animales , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Mesocricetus , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Receptor de Serotonina 5-HT2A/fisiología , Receptores de Serotonina/efectos de los fármacos , Receptores de Serotonina 5-HT4/efectos de los fármacos , Receptores de Serotonina 5-HT4/fisiología , Transducción de Señal/fisiología , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Fosfolipasas de Tipo C/metabolismo
8.
J Appl Toxicol ; 41(3): 483-492, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33085127

RESUMEN

Medicinal plants of the genus Aconitum are one of the most commonly used herbs in traditional medicine in East Asia to treat conditions related to the heart, pain, or inflammation. However, these herbs are also dangerous as accidental poisoning due to misuse is a recurring issue. These plants contain a number of diester-diterpenoid alkaloid compounds and aconitine is the most abundant and active one. This study investigated neurotoxicity of aconitine to zebrafish embryos in early development in relation to serotonin regulation. Experimental results showed that aconitine exposure (1, 10, and 100 µM) increased frequency of coiling behavior in zebrafish embryos in a dose-dependent manner and this effect can be triggered by either exposure to 5-hydroxytryptamine 1A (5-HT1A) receptor agonist (±)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT) or overexpression of serotonin receptor 5-htr1ab. At the same time, coiling behavior caused by aconitine exposure could be rescued by co-exposure to 5-HT1A receptor antagonist WAY-100635 Maleate (WAY100635) and knockdown of 5-htr1ab using morpholino. Exposure to aconitine also significantly increased serotonin receptor 5-htr1ab and 5-htr1bd gene expression at 24 h post fertilization (hpf), but decreased their expression and protein expression of the serotonin receptor at 96 hpf with the high dose. These results suggest that neurotoxicity caused by aconitine is mediated through the 5-HT receptor.


Asunto(s)
Aconitina/toxicidad , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Plantas Medicinales/toxicidad , Receptores de Serotonina/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Pez Cebra/crecimiento & desarrollo , Aconitum/química , Animales
9.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445721

RESUMEN

Serotonin modulates several physiological and cognitive pathways throughout the human body that affect emotions, memory, sleep, and thermal regulation. The complex nature of the serotonergic system and interactions with other neurochemical systems indicate that the development of depression may be mediated by various pathomechanisms, the common denominator of which is undoubtedly the disturbed transmission in central 5-HT synapses. Therefore, the deliberate pharmacological modulation of serotonergic transmission in the brain seems to be one of the most appropriate strategies for the search for new antidepressants. As discussed in this review, the serotonergic system offers great potential for the development of new antidepressant therapies based on the combination of SERT inhibition with different pharmacological activity towards the 5-HT system. The aim of this article is to summarize the search for new antidepressants in recent years, focusing primarily on the possibility of benefiting from interactions with various 5-HT receptors in the pharmacotherapy of depression.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Receptores de Serotonina/metabolismo , Encéfalo/metabolismo , Desarrollo de Medicamentos/tendencias , Humanos , Receptores de Serotonina/efectos de los fármacos , Neuronas Serotoninérgicas/efectos de los fármacos , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
10.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199392

RESUMEN

Coordination of four-limb movements during quadrupedal locomotion is controlled by supraspinal monoaminergic descending pathways, among which serotoninergic ones play a crucial role. Here we investigated the locomotor pattern during recovery from blockade of 5-HT7 or 5-HT2A receptors after intrathecal application of SB269970 or cyproheptadine in adult rats with chronic intrathecal cannula implanted in the lumbar spinal cord. The interlimb coordination was investigated based on electromyographic activity recorded from selected fore- and hindlimb muscles during rat locomotion on a treadmill. In the time of recovery after hindlimb transient paralysis, we noticed a presence of an unusual pattern of quadrupedal locomotion characterized by a doubling of forelimb stepping in relation to unaffected hindlimb stepping (2FL-1HL) after blockade of 5-HT7 receptors but not after blockade of 5-HT2A receptors. The 2FL-1HL pattern, although transient, was observed as a stable form of fore-hindlimb coupling during quadrupedal locomotion. We suggest that modulation of the 5-HT7 receptors on interneurons located in lamina VII with ascending projections to the forelimb spinal network can be responsible for the 2FL-1HL locomotor pattern. In support, our immunohistochemical analysis of the lumbar spinal cord demonstrated the presence of the 5-HT7 immunoreactive cells in the lamina VII, which were rarely 5-HT2A immunoreactive.


Asunto(s)
Locomoción/genética , Receptor de Serotonina 5-HT2A/genética , Receptores de Serotonina/genética , Traumatismos de la Médula Espinal/genética , Animales , Ciproheptadina/farmacología , Estimulación Eléctrica , Electromiografía , Miembro Anterior/efectos de los fármacos , Miembro Anterior/fisiopatología , Miembro Posterior/efectos de los fármacos , Miembro Posterior/fisiopatología , Humanos , Locomoción/efectos de los fármacos , Región Lumbosacra/fisiopatología , Ratas , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Serotonina/genética , Serotonina/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Columna Vertebral/efectos de los fármacos , Columna Vertebral/fisiopatología
11.
Pharmacol Res ; 159: 104949, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32464329

RESUMEN

5-HT plays a crucial role in the progress and adjustment of pain both centrally and peripherally. The therapeutic action of the 5-HT receptors` agonist and antagonist in neuropathic pain have been widely reported in many studies. However, the specific roles of 5-HT subtype receptors have not been reviewed comprehensively. Therefore, we summarized the recent findings on multiple subtypes of 5-HT receptors in both central and peripheral nervous system in neuropathic pain, particularly, 5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors. In addition, 5-HT4, 5-HT5 and 5-HT6 receptors were also reviewed. Most of studies focused on the function of 5-HT subtype receptors in spinal level compared to brain areas. Based on these evidences, the pain process can be facilitated or inhibited that depending on the specific subtypes and the distribution of 5-HT receptors. Therefore, this review may provide potential therapeutic implications in treatment of neuropathic pain.


Asunto(s)
Encéfalo/metabolismo , Neuralgia/metabolismo , Umbral del Dolor , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Médula Espinal/metabolismo , Analgésicos/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Humanos , Neuralgia/tratamiento farmacológico , Neuralgia/fisiopatología , Umbral del Dolor/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Serotoninérgicos/uso terapéutico , Transducción de Señal , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología
12.
Headache ; 60(8): 1601-1615, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32634275

RESUMEN

OBJECTIVE: To identify factors predicting response (2-hour headache pain freedom or most bothersome symptom freedom) to lasmiditan based on individual patient characteristics, migraine disease characteristics, and migraine attack characteristics. Further, efficacy specifically in difficult-to-treat patient/migraine disease characteristics or attack characteristics (ie, historically considered less responsive to certain acute therapies) subgroups was analyzed. BACKGROUND: Knowledge of factors associated with a positive or negative response to acute treatment would be useful to practitioners prescribing acute treatments for migraine. Additionally, practitioners and patients would benefit from understanding the efficacy of lasmiditan specifically in subgroups of patients with migraine disease characteristics and migraine attack characteristics historically associated with decreased pain threshold, reduced efficacy of acute treatment, or increased burden of migraine. METHODS: Pooled analyses were completed from 2 Phase 3 double-blind clinical trials, SPARTAN and SAMURAI. Data from baseline to 2 hours after taking lasmiditan (50, 100, or 200 mg) or placebo were analyzed to assess efficacy based on patient characteristics, migraine disease characteristics, and migraine attack characteristics. A total of 3981 patients comprising the intent-to-treat population were treated with placebo (N = 1130), lasmiditan 50 mg (N = 598), lasmiditan 100 mg (N = 1133), or lasmiditan 200 mg (N = 1120). Data were analyzed for the following efficacy measures at 2 hours: headache pain freedom and most bothersome symptom freedom. RESULTS: None of the analyzed subgroups based on individual patient characteristics, migraine disease characteristics, or migraine attack characteristics predicted headache pain freedom or most bothersome symptom freedom response at 2 hours following lasmiditan treatment (interaction P ≥ .1). For the difficult-to-treat patient/migraine disease characteristics subgroups (defined as those with ≥24 headache days in the past 3 months, duration of migraine history ≥20 years, severe disability [Migraine Disability Assessment score ≥21], obesity [≥30 kg/m2 ], and history of psychiatric disorder), single doses of lasmiditan (100 or 200 mg) were significantly more effective than placebo (P ≤ .002) in achieving both endpoints. Headache pain freedom response rates for higher doses of lasmiditan were numerically greater than for lower doses of lasmiditan. For the difficult-to-treat migraine attack subgroups, patients with severe headache, co-existent nausea at the time of treatment, or who delayed treatment for ≥2 hours from the time of headache onset, both endpoint response rates after lasmiditan 100 or 200 mg were significantly greater than after placebo. Among those who delayed treatment for ≥4 hours from the time of headache onset, headache pain freedom response rates for the 200 mg dose of lasmiditan met statistical significance vs placebo (32.4% vs 15.9%; odds ratio = 2.7 [1.17, 6.07]; P = .018). While the predictors of response interaction test showed similar efficacy of lasmiditan vs placebo across subgroups defined by baseline functional disability (mild, moderate, or needs complete bed rest) at the time of treatment, analyses of lasmiditan efficacy within the subgroup "needs complete bed rest" appeared to show less efficacy (eg, in the 200 mg vs placebo group, 25.9% vs 18.5%; odds ratio = 1.56 [0.96, 2.53]; P = .070). CONCLUSIONS: Efficacy of lasmiditan 200 and 100 mg for headache pain freedom and most bothersome symptom freedom at 2 hours post-treatment was generally not influenced by the individual patient characteristics, migraine disease history, or migraine attack characteristics that were analyzed. In the analyses of difficult-to-treat subgroups, patients receiving lasmiditan achieved greater responses (2-hour headache pain freedom and most bothersome symptom freedom) vs placebo recipients.


Asunto(s)
Benzamidas/farmacología , Trastornos Migrañosos/tratamiento farmacológico , Evaluación de Resultado en la Atención de Salud , Piperidinas/farmacología , Piridinas/farmacología , Agonistas de Receptores de Serotonina/farmacología , Adolescente , Adulto , Anciano , Benzamidas/administración & dosificación , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Piperidinas/administración & dosificación , Piridinas/administración & dosificación , Receptores de Serotonina/efectos de los fármacos , Agonistas de Receptores de Serotonina/administración & dosificación , Factores de Tiempo , Adulto Joven , Receptor de Serotonina 5-HT1F
13.
Hum Psychopharmacol ; 35(5): e2732, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32449213

RESUMEN

OBJECTIVE: To evaluate the impact of lasmiditan, an oral, centrally-penetrant, selective serotonin 1F (5-HT1F ) receptor agonist developed for the acute treatment of migraine, on simulated driving. METHODS: Healthy adult volunteers enrolled in two randomized, placebo and active comparator-controlled, crossover studies. Study 1 (N = 90) tested lasmiditan (50-, 100-, 200-mg), alprazolam (1-mg), and placebo at 1.5 hr post-dose. Study 2 (N = 68) tested lasmiditan (100-, 200-mg), diphenhydramine (50-mg, administered 2 hr pre-assessments), and placebo at 8, 12 and 24 hr post-dose. Driving performance was assessed using a validated driving simulator employing a 100 km driving scenario. Standard deviation of lateral position (SDLP), a measure of lane position control, was the primary endpoint. RESULTS: Assay sensitivity was confirmed by increased SDLP for active comparators at 1.5- and 8-hr time points. Lasmiditan doses showed significant driving impairment versus placebo at 1.5 hr post-dose. Lasmiditan doses were non-inferior to placebo at 8 hr. Driving impairment was concentration-dependent at 1.5 hr but not at 8 hr. Common adverse events were central nervous system-related and mild-to-moderate in severity. CONCLUSIONS: Lasmiditan was associated with impaired simulated driving performance at 1.5 hr post-dose, but showed no clinically meaningful impairment at 8 hr post-dose.


Asunto(s)
Conducción de Automóvil , Benzamidas/efectos adversos , Piperidinas/efectos adversos , Piridinas/efectos adversos , Agonistas de Receptores de Serotonina/efectos adversos , Adulto , Benzamidas/administración & dosificación , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Piperidinas/administración & dosificación , Piridinas/administración & dosificación , Receptores de Serotonina/efectos de los fármacos , Agonistas de Receptores de Serotonina/administración & dosificación , Factores de Tiempo , Adulto Joven , Receptor de Serotonina 5-HT1F
14.
Acta Med Okayama ; 74(4): 301-306, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32843761

RESUMEN

Ketamine has been clinically proven to ameliorate depression, including treatment-resistant depression. The detailed mechanism of action of ketamine in treatment-resistant depression remains unclear. We examined the effects of ketamine on the immobility times of adrenocorticotropic hormone (ACTH)-treated rats during the forced swim test, and we explored the mechanism by which ketamine acts in this model. We investigated the neuroanatomical site of action by microinjecting ketamine into the medial prefrontal cortex of rats. A significant reduction of the rats' immobility during the forced swim test was observed after the intraperitoneal injection of ketamine in both saline- and ACTH-treated rats. The microinjection of ketamine into the medial prefrontal cortex also decreased immobility during the forced swim test in both saline- and ACTH-treated rats. The immobility-decreasing effect of intraperitoneally injected ketamine was blocked by administering WAY100635, a 5-HT1A receptor antagonist, into the medial prefrontal cortex. These findings contribute to the evidence that ketamine can be useful against treatment-resistant depressive conditions. The immobility-reducing effects of ketamine might be mediated by 5-HT1A receptor activity in the medial prefrontal cortex.


Asunto(s)
Conducta Animal/efectos de los fármacos , Ketamina/farmacología , Corteza Prefrontal/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Animales , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Ketamina/administración & dosificación , Ratas , Ratas Wistar , Natación
15.
Pak J Pharm Sci ; 33(3): 1169-1172, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33191244

RESUMEN

Chemotherapy, radiotherapy, surgery and depression are the conditions that run in parallel fashions. All these conditions cause the release of an increased amount of serotonin in the body. Serotonin acts on these 5HT3 receptors and causes nausea and vomiting. Ondansetron acts by blocking serotonin from acting on the receptors and thus is useful in decreasing episodes of nausea and vomiting but when used concomitantly with SSRIs (selective serotonin reuptake inhibitors) as cancer patient also suffered from depression. This combination tends to decrease the efficacy of ondansetron. The present study was carried out to observe the modulatory role of ondansetron on ileal smooth muscle motility in vitro. Experiments were performed in four groups (n=6) and ileal smooth muscle activity was recorded on the power lab (USA). The effects of increasing concentrations of serotonin, ondansetron and paroxetine alone were observed. In the fourth group effects of paroxetine in the presence of fixed concentration (1ml) of ondansetron (10-6M) was observed. The maximum response obtained by serotonin served as a control for our study (100%). Paroxetine response on intestinal motility was completely blocked in the presence of ondansetron. Our findings hence, reinforce the hypothesis that paroxetine decreases the antiemetic activity of serotonin antagonist ondansetron, by super sensitization of serotonergic receptors resulting in an increased incidence of nausea and vomiting in cancer patient despite adequate antiemetic prophylaxis.


Asunto(s)
Antieméticos/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Íleon/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Ondansetrón/farmacología , Paroxetina/farmacología , Receptores de Serotonina/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Antagonistas de la Serotonina/farmacología , Animales , Interacciones Farmacológicas , Femenino , Íleon/metabolismo , Masculino , Músculo Liso/metabolismo , Náusea/inducido químicamente , Náusea/metabolismo , Náusea/fisiopatología , Paroxetina/toxicidad , Conejos , Receptores de Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/toxicidad , Vómitos/inducido químicamente , Vómitos/metabolismo , Vómitos/fisiopatología
16.
BJU Int ; 123(4): 718-725, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29781566

RESUMEN

OBJECTIVES: To examine the effect of intrathecal (i.t.) serotonin (5-hydroxytryptamine) 5-HT7 agonist administration on voiding function in the urethane-anesthetised rat, and the change in 5-HT7 receptor (5-HT7 R) expression in the lumbosacral cord Onuf's nucleus after spinal cord injury (SCI). MATERIALS AND METHODS: In all, 32 female Sprague-Dawley (SD) rats were equally divided into a spinally intact (SI) group and SCI group (n = 16 each). At 8 weeks after transection, half of the rats underwent continuous cystometry under urethane anaesthesia, and the 5-HT7 R-selective agonist LP44 was given (i.t.). The remaining rats were used for pseudorabies (PRV) retrograde tracing, immunofluorescence, and Western Blot. RESULTS: LP44 administered i.t. had no effect in the SI rats. In SCI rats, LP44 (1-30 µg/kg) induced significant dose-dependent increases in micturition volume, voiding efficiency, number of high-frequency oscillations per micturition; and decreases in residual volume, bladder capacity, peak bladder pressure, threshold pressure and non-voiding contractions. The 5-HT7 R antagonist, SB-269970 (10 µg/kg), partially reversed LP44-induced changes. Using PRV retrograde tracing and immunofluorescence, 5-HT7 Rs were found in the L6-S1 spinal cord Onuf's nucleus in both SI and SCI rats, but the expression was significantly greater in the SCI rats. Western blot showed significantly more 5-HT7 Rs in the ventral L6-S1 spinal cord in SCI rats. CONCLUSION: A 5-HT7 R agonist, given i.t., improved voiding efficiency in urethane-anesthetised SCI rats, and the 5-HT7 R was significantly up-regulated in the lumbosacral cord Onuf's nucleus. If valid for humans, these findings suggest that the 5-HT7 R could be a target for therapeutic interventions.


Asunto(s)
Receptores de Serotonina/efectos de los fármacos , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Traumatismos de la Médula Espinal/fisiopatología , Micción/efectos de los fármacos , Animales , Western Blotting , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Inyecciones Espinales , Ratas , Ratas Sprague-Dawley , Receptores de Serotonina/fisiología , Traumatismos de la Médula Espinal/patología , Micción/fisiología
17.
Exp Brain Res ; 237(10): 2573-2584, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31352493

RESUMEN

Patients with eating disorders exhibit problems with appetitive impulse control. Interactions between dopamine and serotonin (5-HT) neuron in this setting are poorly characterized. Here we examined 5-HT receptor-mediated changes in extracellular dopamine during impulsive appetitive behavior in rats. Rats were trained to perform a cued lever-press (LP) task for a food reward such that they stopped experiencing associated dopamine increases. Trained rats were administered the mixed 5-HT1B/2C-receptor antagonist metergoline, the 5-HT2A/2C-receptor antagonist ketanserin, and p-chlorophenylalanine (PCPA). We measured dopamine changes in the ventral striatum using voltammetry and examined the number of premature LPs, reaction time (RT), and reward acquisition rate (RAR). Compared with controls, metergoline increased premature LPs and shortened RT significantly; ketanserin decreased premature LPs and lengthened RT significantly; and PCPA decreased premature LPs, lengthened RT, and decreased RAR significantly. Following metergoline administration, rats exhibited a fast phasic dopamine increase for 0.25-0.75 s after a correct LP, but only during LP for an incorrect LP. No dopamine increases were detected with ketanserin or PCPA, or in controls. After LP task completion, metergoline also caused dopamine to increase slowly and remain elevated; in contrast, ketanserin caused dopamine to increase slowly and decrease rapidly. No slow dopamine increase occurred with PCPA. Inhibition of 5-HT1B- and 5-HT2C-receptors apparently induced dual modes of extracellular dopamine increase: fast phasic, and slow long-lasting. These increases may be associated with the suppression of acquired prediction learning and retention of high motivation for reward, leading to impulsive excessive premature LPs.


Asunto(s)
Conducta Animal/efectos de los fármacos , Dopamina/farmacología , Receptor de Serotonina 5-HT2C/efectos de los fármacos , Serotonina/farmacología , Animales , Señales (Psicología) , Dopamina/metabolismo , Conducta Impulsiva/efectos de los fármacos , Ketanserina/farmacología , Aprendizaje/efectos de los fármacos , Ratas , Tiempo de Reacción , Receptores de Serotonina/efectos de los fármacos , Receptores de Serotonina/fisiología , Serotonina/metabolismo
18.
Headache ; 59(9): 1597-1608, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31559638

RESUMEN

OBJECTIVE: To describe the new classes of medication for headache management and their roles in clinical practice. BACKGROUND: Calcitonin gene-related peptide (CGRP) is a key component in the underlying pathophysiology of migraine. Research focused on targeting CGRP for headache treatment has led to the development of entirely new classes of medications - the gepants and the CGRP monoclonal antibodies (mAbs) - for both acute and preventive treatment. A third class, the ditans, is being developed to target the 5-HT1F receptor to provide acute treatment without vasoconstrictive effects. METHODS: This article reviews the pathophysiology of migraine that has led to these new pharmacologic developments. Available information from randomized controlled trials, abstracts, press releases, and relevant preclinical studies is summarized for each class of medications. RESULTS: At the time of this writing, one ditan has been submitted to the U.S. Food and Drug Administration (FDA) for approval. One gepant is anticipated to be submitted within the first quarter of 2019, and others are in clinical trials. Three CGRP mAbs have been FDA approved and are now available in clinical practice, and a fourth was submitted in the first quarter of 2019. CONCLUSIONS: The development of new migraine-specific classes of medications provides more treatment options for both acute and preventive treatment of migraine.


Asunto(s)
Analgésicos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Receptores de Serotonina/efectos de los fármacos , Agonistas de Receptores de Serotonina/uso terapéutico , Analgésicos/farmacología , Benzamidas/uso terapéutico , Péptido Relacionado con Gen de Calcitonina/fisiología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Ensayos Clínicos como Asunto , Contraindicaciones de los Medicamentos , Aprobación de Drogas , Humanos , Trastornos Migrañosos/fisiopatología , Piperidinas/uso terapéutico , Piridinas/uso terapéutico , Receptores de Péptido Relacionado con el Gen de Calcitonina/efectos de los fármacos , Receptores de Péptido Relacionado con el Gen de Calcitonina/fisiología , Receptores de Serotonina/fisiología , Agonistas de Receptores de Serotonina/farmacología , Estados Unidos , United States Food and Drug Administration , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/efectos adversos , Vasoconstrictores/uso terapéutico , Receptor de Serotonina 5-HT1F
19.
Neuroimage ; 169: 323-333, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29221752

RESUMEN

Deficits in the computational processes of reinforcement learning have been suggested to underlie addiction. Additionally, environmental uncertainty, which is encoded in the anterior cingulate cortex (ACC), modulates reward prediction errors (RPEs) during reinforcement learning and exacerbates addiction. The present study tested whether and how the ACC would have an essential role in drug addiction by failing to use uncertainty to modulate the RPEs during reinforcement learning. In Experiment I, we found that the ACC/medial prefrontal cortex (MPFC) did not modulate RPE learning according to uncertainty in smokers. The effect of uncertainty × RPE in the ACC/MPFC was correlated with the learning rate of RPEs and the duration of nicotine use. Experiment II demonstrated that serotonin, but not dopamine, receptor mRNA expression significantly decreased in the ACC of the nicotine exposed compared to the control rats. Furthermore, there was a positive correlation between learning rate and serotonin receptor mRNA expression in the ACC. Therefore, all present results suggest that impairments in uncertainty modulation in the ACC disrupt reinforcement learning processes in chronic nicotine users and contribute to maladaptive decision-making. These findings support interventions for pathological decision-making in drug addiction that strongly focus on the serotonin system in ACC.


Asunto(s)
Conectoma/métodos , Toma de Decisiones/fisiología , Función Ejecutiva/fisiología , Giro del Cíngulo/fisiología , Nicotina/efectos adversos , Corteza Prefrontal/fisiología , Receptores de Serotonina/efectos de los fármacos , Refuerzo en Psicología , Incertidumbre , Animales , Conducta Animal/efectos de los fármacos , Toma de Decisiones/efectos de los fármacos , Función Ejecutiva/efectos de los fármacos , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Nicotina/administración & dosificación , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Recompensa , Fumadores
20.
Am J Physiol Renal Physiol ; 314(2): F260-F268, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046298

RESUMEN

Our laboratory recently made the novel observation that 5-hydroxytryptamine 1F (5-HT1F) receptor activation induces mitochondrial biogenesis (MB), the production of new, functional mitochondria, in vitro and in vivo. We sought to determine the mechanism linking the 5-HT1F receptor to MB in renal proximal tubule cells. Using LY344864 , a selective 5-HT1F receptor agonist, we determined that the 5-HT1F receptor is coupled to Gαi/o and induces MB through Gßγ-dependent activation of Akt, endothelial nitric oxide synthase (eNOS), cyclic guanosine-monophosphate (cGMP), protein kinase G (PKG), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). We also report that the 5-HT1F receptor signals through a second, Gßγ-dependent pathway that is linked by Akt phosphorylation of Raf. In contrast to the activated Akt pathway, Raf phosphorylation reduced extracellular signal regulated kinases (ERK1/2) and foxhead box O3a (FOXO3a) phosphorylation, suppressing an inhibitory MB pathway. These results demonstrate that the 5-HT1F receptor regulates MB through Gßγ-dependent dual mechanisms that activate a stimulatory MB pathway, Akt/eNOS/cGMP/PKG/PGC-1α, while simultaneously repressing an inhibitory MB pathway, Raf/MEK/ERK/FOXO3a. Novel mechanisms of MB provide the foundation for new chemicals that induce MB to treat acute and chronic organ injuries.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Receptores de Serotonina/metabolismo , Animales , Carbazoles/farmacología , Células Cultivadas , Femenino , Fluorobencenos/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fosforilación , Conejos , Receptores de Serotonina/efectos de los fármacos , Sistemas de Mensajero Secundario , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Receptor de Serotonina 5-HT1F
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA