Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.238
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 633(8030): 654-661, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39261724

RESUMEN

Heart failure is a leading cause of morbidity and mortality1,2. Elevated intracardiac pressures and myocyte stretch in heart failure trigger the release of counter-regulatory natriuretic peptides, which act through their receptor (NPR1) to affect vasodilation, diuresis and natriuresis, lowering venous pressures and relieving venous congestion3-8. Recombinant natriuretic peptide infusions were developed to treat heart failure but have been limited by a short duration of effect9,10. Here we report that in a human genetic analysis of over 700,000 individuals, lifelong exposure to coding variants of the NPR1 gene is associated with changes in blood pressure and risk of heart failure. We describe the development of REGN5381, an investigational monoclonal agonist antibody that targets the membrane-bound guanylate cyclase receptor NPR1. REGN5381, an allosteric agonist of NPR1, induces an active-like receptor conformation that results in haemodynamic effects preferentially on venous vasculature, including reductions in systolic blood pressure and venous pressure in animal models. In healthy human volunteers, REGN5381 produced the expected haemodynamic effects, reflecting reductions in venous pressures, without obvious changes in diuresis and natriuresis. These data support the development of REGN5381 for long-lasting and selective lowering of venous pressures that drive symptomatology in patients with heart failure.


Asunto(s)
Anticuerpos Monoclonales , Presión Sanguínea , Receptores del Factor Natriurético Atrial , Vasoconstricción , Venas , Adulto , Animales , Perros , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven , Regulación Alostérica/efectos de los fármacos , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/farmacología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Diuresis/efectos de los fármacos , Voluntarios Sanos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Hemodinámica/efectos de los fármacos , Macaca fascicularis , Músculo Liso Vascular/efectos de los fármacos , Natriuresis/efectos de los fármacos , Receptores del Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/agonistas , Receptores del Factor Natriurético Atrial/genética , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Venas/efectos de los fármacos , Venas/fisiología
2.
Proc Natl Acad Sci U S A ; 120(28): e2307882120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399424

RESUMEN

The cardiac natriuretic peptides (NPs) control pivotal physiological actions such as fluid and electrolyte balance, cardiovascular homeostasis, and adipose tissue metabolism by activating their receptor enzymes [natriuretic peptide receptor-A (NPRA) and natriuretic peptide receptor-B (NPRB)]. These receptors are homodimers that generate intracellular cyclic guanosine monophosphate (cGMP). The natriuretic peptide receptor-C (NPRC), nicknamed the clearance receptor, lacks a guanylyl cyclase domain; instead, it can bind the NPs to internalize and degrade them. The conventional paradigm is that by competing for and internalizing NPs, NPRC blunts the ability of NPs to signal through NPRA and NPRB. Here we show another previously unknown mechanism by which NPRC can interfere with the cGMP signaling function of the NP receptors. By forming a heterodimer with monomeric NPRA or NPRB, NPRC can prevent the formation of a functional guanylyl cyclase domain and thereby suppress cGMP production in a cell-autonomous manner.


Asunto(s)
Guanilato Ciclasa , Receptores del Factor Natriurético Atrial , Guanilato Ciclasa/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Receptores de Péptidos/metabolismo , Péptidos Natriuréticos , Transducción de Señal , Factor Natriurético Atrial/metabolismo , GMP Cíclico/metabolismo
3.
Annu Rev Genet ; 51: 103-121, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29178819

RESUMEN

Chronic, persistent itch is a devastating symptom that causes much suffering. In recent years, there has been great progress made in understanding the molecules, cells, and circuits underlying itch sensation. Once thought to be carried by pain-sensing neurons, itch is now believed to be capable of being transmitted by dedicated sensory labeled lines. Members of the Mas-related G protein-coupled receptor (Mrgpr) family demarcate an itch-specific labeled line in the peripheral nervous system. In the spinal cord, the expression of other proteins identifies additional populations of itch-dedicated sensory neurons. However, as evidence for labeled-line coding has mounted, studies promoting alternative itch-coding strategies have emerged, complicating our understanding of the neural basis of itch. In this review, we cover the molecules, cells, and circuits related to understanding the neural basis of itch, with a focus on the role of Mrgprs in mediating itch sensation.


Asunto(s)
Sistema Nervioso Periférico/metabolismo , Prurito/genética , Receptores Acoplados a Proteínas G/genética , Células Receptoras Sensoriales/metabolismo , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPV/genética , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Nocicepción/fisiología , Sistema Nervioso Periférico/fisiopatología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prurito/metabolismo , Prurito/fisiopatología , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/patología , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo
4.
FASEB J ; 38(15): e23858, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39109516

RESUMEN

We determined the epigenetic mechanisms regulating mean arterial pressure (MAP) and renal dysfunction in guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) gene-targeted mice. The Npr1 (encoding NPRA) gene-targeted mice were treated with class 1 specific histone deacetylase inhibitor (HDACi) mocetinostat (MGCD) to determine the epigenetic changes in a sex-specific manner. Adult male and female Npr1 haplotype (1-copy; Npr1+/-), wild-type (2-copy; Npr1+/+), and gene-duplicated heterozygous (3-copy; Npr1++/+) mice were intraperitoneally injected with MGCD (2 mg/kg) for 14 days. BP, renal function, histopathology, and epigenetic changes were measured. One-copy male mice showed significantly increased MAP, renal dysfunction, and fibrosis than 2-copy and 3-copy mice. Furthermore, HDAC1/2, collagen1alpha-2 (Col1α-2), and alpha smooth muscle actin (α-SMA) were significantly increased in 1-copy mice compared with 2-copy controls. The expression of antifibrotic microRNA-133a was attenuated in 1-copy mice but to a greater extent in males than females. NF-κB was localized at significantly lower levels in cytoplasm than in the nucleus with stronger DNA binding activity in 1-copy mice. MGCD significantly lowered BP, improved creatinine clearance, and repaired renal histopathology. The inhibition of class I HDACs led to a sex-dependent distinctive stimulation of acetylated positive histone marks and inhibition of methylated repressive histone marks in Npr1 1-copy mice; however, it epigenetically lowered MAP, repaired renal fibrosis, and proteinuria and suppressed NF-kB differentially in males versus females. Our results suggest a role for epigenetic targets affecting hypertension and renal dysfunction in a sex-specific manner.


Asunto(s)
Presión Sanguínea , Epigénesis Genética , Receptores del Factor Natriurético Atrial , Animales , Femenino , Masculino , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Ratones , Presión Sanguínea/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Inhibidores de Histona Desacetilasas/farmacología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología
5.
Proc Natl Acad Sci U S A ; 119(13): e2116470119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35333648

RESUMEN

Thermogenesis and adipogenesis are tightly regulated mechanisms that maintain lipid homeostasis and energy balance; dysfunction of these critical processes underpins obesity and contributes to cardiometabolic disease. C-type natriuretic peptide (CNP) fulfills a multimodal protective role in the cardiovascular system governing local blood flow, angiogenesis, cardiac function, and immune cell reactivity. Herein, we investigated a parallel, preservative function for CNP in coordinating metabolic homeostasis. Global inducible CNP knockout mice exhibited reduced body weight, higher temperature, lower adiposity, and greater energy expenditure in vivo. This thermogenic phenotype was associated with increased expression of uncoupling protein-1 and preferential lipid utilization by mitochondria, a switch corroborated by a corresponding diminution of insulin secretion and glucose clearance. Complementary studies in isolated murine and human adipocytes revealed that CNP exerts these metabolic regulatory actions by inhibiting sympathetic thermogenic programming via Gi-coupled natriuretic peptide receptor (NPR)-C and reducing peroxisome proliferator-activated receptor-γ coactivator-1α expression, while concomitantly driving adipogenesis via NPR-B/protein kinase-G. Finally, we identified an association between CNP/NPR-C expression and obesity in patient samples. These findings establish a pivotal physiological role for CNP as a metabolic switch to balance energy homeostasis. Pharmacological targeting of these receptors may offer therapeutic utility in the metabolic syndrome and related cardiovascular disorders.


Asunto(s)
Homeostasis , Péptido Natriurético Tipo-C , Termogénesis , Animales , Factor Natriurético Atrial , Enfermedades Cardiovasculares/metabolismo , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Noqueados , Péptido Natriurético Tipo-C/genética , Péptido Natriurético Tipo-C/fisiología , Receptores del Factor Natriurético Atrial/metabolismo
6.
J Lipid Res ; 65(9): 100623, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39154732

RESUMEN

Natriuretic peptide receptor-C (NPR-C) is highly expressed in adipose tissues and regulates obesity-related diseases; however, the detailed mechanism remains unknown. In this research, we aimed to explore the potential role of NPR-C in cold exposure and high-fat/high-sugar (HF/HS) diet-induced metabolic changes, especially in regulating white adipose tissue (WAT) mitochondrial function. Our findings showed that NPR-C expression, especially in epididymal WAT (eWAT), was reduced after cold exposure. Global Npr3 (gene encoding NPR-C protein) deficiency led to reduced body weight, increased WAT browning, thermogenesis, and enhanced expression of genes related to mitochondrial biogenesis. RNA-sequencing of eWAT showed that Npr3 deficiency enhanced the expression of mitochondrial respiratory chain complex genes and promoted mitochondrial oxidative phosphorylation in response to cold exposure. In addition, Npr3 KO mice were able to resist obesity induced by HF/HS diet. Npr3 knockdown in stromal vascular fraction (SVF)-induced white adipocytes promoted the expression of proliferator-activated receptor gamma coactivator 1α (PGC1α), uncoupling protein one (UCP1), and mitochondrial respiratory chain complexes. Mechanistically, NPR-C inhibited cGMP and calcium signaling in an NPR-B-dependent manner but suppressed cAMP signaling in an NPR-B-independent manner. Moreover, Npr3 knockdown induced browning via AKT and p38 pathway activation, which were attenuated by Npr2 knockdown. Importantly, treatment with the NPR-C-specific antagonist, AP-811, decreased WAT mass and increased PGC-1α, UCP1, and mitochondrial complex expression. Our findings reveal that NPR-C deficiency enhances mitochondrial function and energy expenditure in white adipose tissue, contributing to improved metabolic health and resistance to obesity.


Asunto(s)
Tejido Adiposo Blanco , Mitocondrias , Receptores del Factor Natriurético Atrial , Animales , Tejido Adiposo Blanco/metabolismo , Ratones , Receptores del Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/genética , Mitocondrias/metabolismo , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL , Respiración de la Célula , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Obesidad/genética
7.
Physiol Genomics ; 56(10): 672-690, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39101921

RESUMEN

Atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase A/natriuretic peptide receptor A (GC-A/NPRA), stimulating natriuresis and diuresis and reducing blood pressure (BP), but the role of ANP/NPRA signaling in podocytes (highly specialized epithelial cells covering the outer surfaces of renal glomerular capillaries) remains unclear. This study aimed to determine the effect of conditional deletion of podocyte-specific Npr1 (encoding NPRA) gene knockout (KO) in male and female mice. Tamoxifen-treated wild-type control (PD Npr1 f/f; WT), heterozygous (PD-Cre-Npr1 f/+; HT), and KO (PD-Cre-Npr1 f/-) mice were fed a normal-, low-, or high-salt diet for 4 wk. Podocytes isolated from HT and KO male and female mice showed complete absence of Npr1 mRNA and NPRA protein compared with WT mice. BP, plasma creatinine, plasma sodium, urinary protein, and albumin/creatinine ratio were significantly increased, whereas plasma total protein, albumin, creatinine clearance, and urinary sodium levels were significantly reduced in the HT and KO male and female mice compared with WT mice. These changes were significantly greater in males than in females. On a normal-salt diet, glomerular filtration rate was significantly decreased in PD Npr1 HT and KO male and female mice compared with WT mice. Immunofluorescence of podocin and synaptopodin was also significantly reduced in HT and KO mice compared with WT mice. These observations suggest that in podocytes, ANP/NPRA signaling may be crucial in the maintenance and regulation of glomerular filtration and BP and serve as a biomarker of renal function in a sex-dependent manner.NEW & NOTEWORTHY Our results demonstrate that the podocyte-specific deletion of Npr1 showed increased blood pressure (BP) and altered biomarkers of renal functions, with greater magnitudes in animals fed a high-salt diet in a sex-dependent manner. The results suggest a direct and sex-dependent effect of Npr1 ablation in podocytes on the regulation of BP and renal function and reveal that podocytes may be considered an important target for the ANP-BNP/NPRA/cGMP signaling cascade.


Asunto(s)
Presión Sanguínea , Homeostasis , Riñón , Ratones Noqueados , Podocitos , Receptores del Factor Natriurético Atrial , Animales , Femenino , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Masculino , Podocitos/metabolismo , Ratones , Riñón/metabolismo , Caracteres Sexuales , Factores Sexuales , Transducción de Señal
8.
Int J Cancer ; 154(7): 1272-1284, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38151776

RESUMEN

Despite recent advances in the development of therapeutic antibodies, the prognosis of unresectable or metastatic gastric cancer (GC) remains poor. Here, we searched for genes involved in the malignant phenotype of GC and investigated the potential of one candidate gene to serve as a novel therapeutic target. Analysis of transcriptome datasets of GC identified natriuretic peptide receptor 1 (NPR1), a plasma membrane protein, as a potential target. We employed a panel of human GC cell lines and gene-specific small interfering RNA-mediated NPR1 silencing to investigate the roles of NPR1 in malignancy-associated functions and intracellular signaling pathways. We generated an anti-NPR1 polyclonal antibody and examined its efficacy in a mouse xenograft model of GC peritoneal dissemination. Associations between NPR1 expression in GC tissue and clinicopathological factors were also evaluated. NPR1 mRNA was significantly upregulated in several GC cell lines compared with normal epithelial cells. NPR1 silencing attenuated GC cell proliferation, invasion, and migration, and additionally induced the intrinsic apoptosis pathway associated with mitochondrial dysfunction and caspase activation via downregulation of BCL-2. Administration of anti-NPR1 antibody significantly reduced the number and volume of GC peritoneal tumors in xenografted mice. High expression of NPR1 mRNA in clinical GC specimens was associated with a significantly higher rate of postoperative recurrence and poorer prognosis. NPR1 regulates the intrinsic apoptosis pathway and plays an important role in promoting the GC malignant phenotype. Inhibition of NPR1 with antibodies may have potential as a novel therapeutic modality for unresectable or metastatic GC.


Asunto(s)
Receptores del Factor Natriurético Atrial , Neoplasias Gástricas , Humanos , Ratones , Animales , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Apoptosis , Proliferación Celular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
9.
Am J Physiol Heart Circ Physiol ; 327(1): H56-H66, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38758128

RESUMEN

Mouse models of congenital aortic valve malformations are useful for studying disease pathobiology, but most models have incomplete penetrance [e.g., ∼2 to 77% prevalence of bicuspid aortic valves (BAVs) across multiple models]. For longitudinal studies of pathologies associated with BAVs and other congenital valve malformations, which manifest over months in mice, it is operationally inefficient, economically burdensome, and ethically challenging to enroll large numbers of mice in studies without first identifying those with valvular abnormalities. To address this need, we established and validated a novel in vivo high-frequency (30 MHz) ultrasound imaging protocol capable of detecting aortic valvular malformations in juvenile mice. Fifty natriuretic peptide receptor 2 heterozygous mice on a low-density lipoprotein receptor-deficient background (Npr2+/-;Ldlr-/-; 32 males and 18 females) were imaged at 4 and 8 wk of age. Fourteen percent of the Npr2+/-;Ldlr-/- mice exhibited features associated with aortic valve malformations, including 1) abnormal transaortic flow patterns on color Doppler (recirculation and regurgitation), 2) peak systolic flow velocities distal to the aortic valves reaching or surpassing ∼1,250 mm/s by pulsed-wave Doppler, and 3) putative fusion of cusps along commissures and abnormal movement elucidated by two-dimensional (2-D) imaging with ultrahigh temporal resolution. Valves with these features were confirmed by ex vivo gross anatomy and histological visualization to have thickened cusps, partial fusions, or Sievers type-0 bicuspid valves. This ultrasound imaging protocol will enable efficient, cost effective, and humane implementation of studies of congenital aortic valvular abnormalities and associated pathologies in a wide range of mouse models.NEW & NOTEWORTHY We developed a high-frequency ultrasound imaging protocol for diagnosing congenital aortic valve structural abnormalities in 4-wk-old mice. Our protocol defines specific criteria to distinguish mice with abnormal aortic valves from those with normal tricuspid valves using color Doppler, pulsed-wave Doppler, and two-dimensional (2-D) imaging with ultrahigh temporal resolution. This approach enables early identification of valvular abnormalities for efficient and ethical experimental design of longitudinal studies of congenital valve diseases and associated pathologies in mice.


Asunto(s)
Válvula Aórtica , Modelos Animales de Enfermedad , Receptores del Factor Natriurético Atrial , Animales , Válvula Aórtica/anomalías , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/patología , Femenino , Masculino , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/deficiencia , Receptores del Factor Natriurético Atrial/metabolismo , Ratones , Ratones Noqueados , Receptores de LDL/genética , Receptores de LDL/deficiencia , Ratones Endogámicos C57BL , Enfermedad de la Válvula Aórtica Bicúspide/diagnóstico por imagen
10.
Cell Tissue Res ; 396(2): 197-212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369645

RESUMEN

The natriuretic peptide (NP) family consists of cardiac NPs (ANP, BNP, and VNP) and brain NPs (CNPs) in teleosts. In addition to CNP1-4, a paralogue of CNP4 (named CNP4b) was recently discovered in basal teleosts including Japanese eel. Mammals have lost most Cnps during the evolution, but teleost cnps were conserved and diversified, suggesting that CNPs are important hormones for maintaining brain functions in teleost. The present study evaluated the potency of each Japanese eel CNP to their NP receptors (NPR-A, NPR-B, NPR-C, and NPR-D) overexpressed in CHO cells. A comprehensive brain map of cnps- and nprs-expressing neurons in Japanese eel was constructed by integrating the localization results obtained by in situ hybridization. The result showed that CHO cells expressing NPR-A and NPR-B induced strong cGMP productions after stimulation by cardiac and brain NPs, respectively. Regarding brain distribution of cnps, cnp1 is engaged in the ventral telencephalic area and periventricular area including the parvocellular preoptic nucleus (Pp), anterior/posterior tuberal nuclei, and periventricular gray zone of the optic tectum. cnp3 is found in the habenular nucleus and prolactin cells in the pituitary. cnp4 is expressed in the ventral telencephalic area, while cnp4b is expressed in the motoneurons in the medullary area. Such CNP isoform-specific localizations suggest that function of each CNP has diverged in the eel brain. Furthermore, the Pp lacking the blood-brain barrier expressed both npra and nprb, suggesting that endocrine and paracrine NPs interplay for regulating the Pp functions in Japanese eels.


Asunto(s)
Encéfalo , Cricetulus , Péptidos Natriuréticos , Animales , Encéfalo/metabolismo , Péptidos Natriuréticos/metabolismo , Células CHO , Receptores del Factor Natriurético Atrial/metabolismo , Comunicación Paracrina , Ligandos , Anguilla/metabolismo , Sistema Endocrino/metabolismo
11.
Exp Cell Res ; 431(1): 113738, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572787

RESUMEN

Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Enfermedades Renales , Ratones , Humanos , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Aldosterona/efectos adversos , Aldosterona/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Acetato de Desoxicorticosterona/efectos adversos , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Riñón/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Acetatos/efectos adversos , Acetatos/metabolismo , Fibrosis
12.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930837

RESUMEN

The particulate guanylyl cyclase A receptor (GC-A), via activation by its endogenous ligands atrial natriuretic peptide (ANP) and b-type natriuretic peptide (BNP), possesses beneficial biological properties such as blood pressure regulation, natriuresis, suppression of adverse remodeling, inhibition of the renin-angiotensin-aldosterone system, and favorable metabolic actions through the generation of its second messenger cyclic guanosine monophosphate (cGMP). Thus, the GC-A represents an important molecular therapeutic target for cardiovascular disease and its associated risk factors. However, a small molecule that is orally bioavailable and directly targets the GC-A to potentiate cGMP has yet to be discovered. Here, we performed a cell-based high-throughput screening campaign of the NIH Molecular Libraries Small Molecule Repository, and we successfully identified small molecule GC-A positive allosteric modulator (PAM) scaffolds. Further medicinal chemistry structure-activity relationship efforts of the lead scaffold resulted in the development of a GC-A PAM, MCUF-651, which enhanced ANP-mediated cGMP generation in human cardiac, renal, and fat cells and inhibited cardiomyocyte hypertrophy in vitro. Further, binding analysis confirmed MCUF-651 binds to GC-A and selectively enhances the binding of ANP to GC-A. Moreover, MCUF-651 is orally bioavailable in mice and enhances the ability of endogenous ANP and BNP, found in the plasma of normal subjects and patients with hypertension or heart failure, to generate GC-A-mediated cGMP ex vivo. In this work, we report the discovery and development of an oral, small molecule GC-A PAM that holds great potential as a therapeutic for cardiovascular, renal, and metabolic diseases.


Asunto(s)
Fármacos Cardiovasculares , Enfermedades Cardiovasculares/metabolismo , GMP Cíclico/metabolismo , Péptidos Natriuréticos/metabolismo , Receptores del Factor Natriurético Atrial , Anciano , Regulación Alostérica , Animales , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/farmacología , Células Cultivadas , Femenino , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Receptores del Factor Natriurético Atrial/química , Receptores del Factor Natriurético Atrial/efectos de los fármacos , Receptores del Factor Natriurético Atrial/metabolismo
13.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063044

RESUMEN

Endothelial dysfunction is cause and consequence of cardiovascular diseases. The endothelial hormone C-type natriuretic peptide (CNP) regulates vascular tone and the vascular barrier. Its cGMP-synthesizing guanylyl cyclase-B (GC-B) receptor is expressed in endothelial cells themselves. To characterize the role of endothelial CNP/cGMP signaling, we studied mice with endothelial-selective GC-B deletion. Endothelial EC GC-B KO mice had thicker, stiffer aortae and isolated systolic hypertension. This was associated with increased proinflammatory E-selectin and VCAM-1 expression and impaired nitric oxide bioavailability. Atherosclerosis susceptibility was evaluated in such KO and control littermates on Ldlr (low-density lipoprotein receptor)-deficient background fed a Western diet for 10 weeks. Notably, the plaque areas and heights within the aortic roots were markedly increased in the double EC GC-B/Ldlr KO mice. This was accompanied by enhanced macrophage infiltration and greater necrotic cores, indicating unstable plaques. Finally, we found that EC GC-B KO mice had diminished vascular regeneration after critical hind-limb ischemia. Remarkably, all these genotype-dependent changes were only observed in female and not in male mice. Auto/paracrine endothelial CNP/GC-B/cGMP signaling protects from arterial stiffness, systolic hypertension, and atherosclerosis and improves reparative angiogenesis. Interestingly, our data indicate a sex disparity in the connection of diminished CNP/GC-B activity to endothelial dysfunction.


Asunto(s)
GMP Cíclico , Ratones Noqueados , Péptido Natriurético Tipo-C , Transducción de Señal , Animales , Péptido Natriurético Tipo-C/metabolismo , Péptido Natriurético Tipo-C/genética , GMP Cíclico/metabolismo , Ratones , Masculino , Femenino , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Receptores del Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/genética , Células Endoteliales/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Comunicación Paracrina , Hipertensión/metabolismo , Hipertensión/genética , Ratones Endogámicos C57BL , Aorta/metabolismo , Aorta/patología
14.
BMC Med ; 21(1): 158, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101178

RESUMEN

BACKGROUND: C-type natriuretic peptide (CNP) is a known target for promoting growth and has been implicated as a therapeutic opportunity for the prevention and treatment of cardiovascular disease (CVD). This study aimed to explore the effect of CNP on CVD risk using the Mendelian randomization (MR) framework. METHODS: Instrumental variables mimicking the effects of pharmacological intervention on CNP were identified as uncorrelated genetic variants located in the genes coding for its primary receptors, natriuretic peptide receptors-2 and 3 (NPR2 and NPR3), that associated with height. We performed MR and colocalization analyses to investigate the effects of NPR2 signalling and NPR3 function on CVD outcomes and risk factors. MR estimates were compared to those obtained when considering height variants from throughout the genome. RESULTS: Genetically-proxied reduced NPR3 function was associated with a lower risk of CVD, with odds ratio (OR) 0.74 per standard deviation (SD) higher NPR3-predicted height, and 95% confidence interval (95% CI) 0.64-0.86. This effect was greater in magnitude than observed when considering height variants from throughout the genome. For CVD subtypes, similar MR associations for NPR3-predicted height were observed when considering the outcomes of coronary artery disease (0.75, 95% CI 0.60-0.92), stroke (0.69, 95% CI 0.50-0.95) and heart failure (0.77, 95% CI 0.58-1.02). Consideration of CVD risk factors identified systolic blood pressure (SBP) as a potential mediator of the NPR3-related CVD risk lowering. For stroke, we found that the MR estimate for NPR3 was greater in magnitude than could be explained by a genetically predicted SBP effect alone. Colocalization results largely supported the MR findings, with no evidence of results being driven by effects due to variants in linkage disequilibrium. There was no MR evidence supporting effects of NPR2 on CVD risk, although this null finding could be attributable to fewer genetic variants being identified to instrument this target. CONCLUSIONS: This genetic analysis supports the cardioprotective effects of pharmacologically inhibiting NPR3 receptor function, which is only partly mediated by an effect on blood pressure. There was unlikely sufficient statistical power to investigate the cardioprotective effects of NPR2 signalling.


Asunto(s)
Enfermedades Cardiovasculares , Accidente Cerebrovascular , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Receptores del Factor Natriurético Atrial/genética , Análisis de la Aleatorización Mendeliana , Péptidos Natriuréticos , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo
15.
FASEB J ; 36(1): e22069, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34859913

RESUMEN

Atrial natriuretic peptide (NP) and BNP increase cGMP, which reduces blood pressure and cardiac hypertrophy by activating guanylyl cyclase (GC)-A, also known as NPR-A or Npr1. Although GC-A is highly phosphorylated, and dephosphorylation inactivates the enzyme, the significance of GC-A phosphorylation to heart structure and function remains unknown. To identify in vivo processes that are regulated by GC-A phosphorylation, we substituted glutamates for known phosphorylation sites to make GC-A8E/8E mice that express an enzyme that cannot be inactivated by dephosphorylation. GC-A activity, but not protein, was increased in heart and kidney membranes from GC-A8E/8E mice. Activities were threefold higher in female compared to male cardiac ventricles. Plasma cGMP and testosterone were elevated in male and female GC-A8E/8E mice, but aldosterone was only increased in mutant male mice. Plasma and urinary creatinine concentrations were decreased and increased, respectively, but blood pressure and heart rate were unchanged in male GC-A8E/8E mice. Heart weight to body weight ratios for GC-A8E/8E male, but not female, mice were 12% lower with a 14% reduction in cardiomyocyte cross-sectional area. Subcutaneous injection of fsANP, a long-lived ANP analog, increased plasma cGMP and decreased aldosterone in male GC-AWT/WT and GC-A8E/8E mice at 15 min, but only GC-A8E/8E mice had elevated levels of plasma cGMP and aldosterone at 60 min. fsANP reduced ventricular ERK1/2 phosphorylation to a greater extent and for a longer time in the male mutant compared to WT mice. Finally, ejection fractions were increased in male but not female hearts from GC-A8E/8E mice. We conclude that increased phosphorylation-dependent GC-A activity decreases cardiac ERK activity, which results in smaller male hearts with improved systolic function.


Asunto(s)
Cardiomegalia , Sistema de Señalización de MAP Quinasas , Fosforilación , Receptores del Factor Natriurético Atrial , Caracteres Sexuales , Animales , Cardiomegalia/enzimología , Cardiomegalia/genética , Femenino , Masculino , Ratones , Ratones Transgénicos , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo
16.
Mol Cell Proteomics ; 20: 100072, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33812089

RESUMEN

Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are important biological markers and cardiac function regulators. Natriuretic peptide receptor A (NPRA) binds to an ANP or BNP ligand and induces transmembrane signal transduction by elevating the intracellular cyclic guanosine monophosphate (cGMP) levels. However, the metabolic phenotype and related mechanisms induced by NPRA deletion remain ambiguous. Here, we constructed myocardial-specific NPRA deletion mice and detected the heart functional and morphological characteristics by histological analysis and explored the altered metabolic pattern and the expression patterns of proteins by liquid chromatography-mass spectrometry (LC-MS)-based omics technology. NPRA deficiency unexpectedly did not result in significant cardiac remodeling or dysfunction. However, compared with the matched littermates, NPRA-deficient mice had significant metabolic differences. Metabolomic analysis showed that the metabolite levels varied in cardiac tissues and plasma. In total, 33 metabolites were identified in cardiac tissues and 54 were identified in plasma. Compared with control mice, NPRA-deficient mice had 20 upregulated and six downregulated metabolites in cardiac tissues and 25 upregulated and 23 downregulated metabolites in plasma. Together, NPRA deficiency resulted in increased nucleotide biosynthesis and histidine metabolism only in heart tissues and decreased creatine metabolism only in plasma. Further proteomic analysis identified 136 differentially abundant proteins in cardiac tissues, including 54 proteins with higher abundance and 82 proteins with lower abundance. Among them, cytochrome c oxidase subunit 7c and 7b (Cox7c, Cox7b), ATP synthase, H+ transporting, mitochondrial Fo complex subunit F2 (ATP5J2), ubiquinol-cytochrome c reductase, complex III subunit X (Uqcr10), and myosin heavy chain 7 (Myh7) were mainly involved in related metabolic pathways. These results revealed the essential role of NPRA in metabolic profiles and may elucidate new underlying pathophysiological mechanisms of NPRA in cardiovascular diseases.


Asunto(s)
Miocardio/metabolismo , Receptores del Factor Natriurético Atrial/deficiencia , Animales , Metabolómica , Ratones Noqueados , Fenotipo , Mapas de Interacción de Proteínas , Proteómica , ARN Mensajero/metabolismo , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo
17.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239899

RESUMEN

The natriuretic peptide system (NPS) and renin-angiotensin-aldosterone system (RAAS) function oppositely at multiple levels. While it has long been suspected that angiotensin II (ANGII) may directly suppress NPS activity, no clear evidence to date supports this notion. This study was designed to systematically investigate ANGII-NPS interaction in humans, in vivo, and in vitro. Circulating atrial, b-type, and c-type natriuretic peptides (ANP, BNP, CNP), cyclic guanosine monophosphate (cGMP), and ANGII were simultaneously investigated in 128 human subjects. Prompted hypothesis was validated in vivo to determine the influence of ANGII on ANP actions. The underlying mechanisms were further explored via in vitro approaches. In humans, ANGII demonstrated an inverse relationship with ANP, BNP, and cGMP. In regression models predicting cGMP, adding ANGII levels and the interaction term between ANGII and natriuretic peptides increased the predictive accuracy of the base models constructed with either ANP or BNP, but not CNP. Importantly, stratified correlation analysis further revealed a positive association between cGMP and ANP or BNP only in subjects with low, but not high, ANGII levels. In rats, co-infusion of ANGII even at a physiological dose attenuated cGMP generation mediated by ANP infusion. In vitro, we found the suppressive effect of ANGII on ANP-stimulated cGMP requires the presence of ANGII type-1 (AT1) receptor and mechanistically involves protein kinase C (PKC), as this suppression can be substantially rescued by either valsartan (AT1 blocker) or Go6983 (PKC inhibitor). Using surface plasmon resonance (SPR), we showed ANGII has low binding affinity to the guanylyl cyclase A (GC-A) receptor compared to ANP or BNP. Our study reveals ANGII is a natural suppressor for the cGMP-generating action of GC-A via AT1/PKC dependent manner and highlights the importance of dual-targeting RAAS and NPS in maximizing beneficial properties of natriuretic peptides in cardiovascular protection.


Asunto(s)
Angiotensina II , Guanilato Ciclasa , Humanos , Ratas , Animales , Guanilato Ciclasa/metabolismo , Angiotensina II/farmacología , Factor Natriurético Atrial/farmacología , Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Péptido Natriurético Encefálico , GMP Cíclico/metabolismo , Péptidos Natriuréticos
18.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982395

RESUMEN

Metabolic syndrome (MetS) is a cluster of factors that increase the risk of developing diabetes, stroke, and heart failure. The pathophysiology of injury by ischemia/reperfusion (I/R) is highly complex and the inflammatory condition plays an important role by increasing matrix remodeling and cardiac apoptosis. Natriuretic peptides (NPs) are cardiac hormones with numerous beneficial effects mainly mediated by a cell surface receptor named atrial natriuretic peptide receptor (ANPr). Although NPs are powerful clinical markers of cardiac failure, their role in I/R is still controversial. Peroxisome proliferator-activated receptor α agonists exert cardiovascular therapeutic actions; however, their effect on the NPs' signaling pathway has not been extensively studied. Our study provides important insight into the regulation of both ANP and ANPr in the hearts of MetS rats and their association with the inflammatory conditions caused by damage from I/R. Moreover, we show that pre-treatment with clofibrate was able to decrease the inflammatory response that, in turn, decreases myocardial fibrosis, the expression of metalloprotease 2 and apoptosis. Treatment with clofibrate is also associated with a decrease in ANP and ANPr expression.


Asunto(s)
Síndrome Metabólico , Daño por Reperfusión , Ratas , Animales , Factor Natriurético Atrial/metabolismo , PPAR alfa/agonistas , Clofibrato/farmacología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Péptidos Natriuréticos , Isquemia , Arritmias Cardíacas , Inflamación/tratamiento farmacológico
19.
Molecules ; 28(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049825

RESUMEN

Cardiovascular ailments are a major cause of mortality where over 1.3 billion people suffer from hypertension leading to heart-disease related deaths. Snake venoms possess a broad repertoire of natriuretic peptides with therapeutic potential for treating hypertension, congestive heart failure, and related cardiovascular disease. We now describe several taipan (Oxyuranus microlepidotus) natriuretic peptides TNPa-e which stimulated cGMP production through the natriuretic peptide receptor A (NPR-A) with higher potencies for the rat NPR-A (rNPR-A) over human NPR-A (hNPR-A). TNPc and TNPd were the most potent, demonstrating 100- and 560-fold selectivity for rNPR-A over hNPR-A. In vivo studies found that TNPc decreased diastolic and systolic blood pressure (BP) and increased heart rate (HR) in conscious normotensive rabbits, to a level that was similar to that of human atrial natriuretic peptide (hANP). TNPc also enhanced the bradycardia due to cardiac afferent stimulation (Bezold-Jarisch reflex). This indicated that TNPc possesses the ability to lower blood pressure and facilitate cardiac vagal afferent reflexes but unlike hANP does not produce tachycardia. The 3-dimensional structure of TNPc was well defined within the pharmacophoric disulfide ring, displaying two turn-like regions (RMSD = 1.15 Å). Further, its much greater biological stability together with its selectivity and potency will enhance its usefulness as a biological tool.


Asunto(s)
Hipertensión , Péptidos Natriuréticos , Ratas , Animales , Humanos , Conejos , Péptidos Natriuréticos/farmacología , Receptores del Factor Natriurético Atrial , Corazón , Elapidae , Hipertensión/tratamiento farmacológico
20.
J Neurosci ; 41(18): 4036-4059, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33731450

RESUMEN

We have previously established that PV+ neurons and Npas1+ neurons are distinct neuron classes in the external globus pallidus (GPe): they have different topographical, electrophysiological, circuit, and functional properties. Aside from Foxp2+ neurons, which are a unique subclass within the Npas1+ class, we lack driver lines that effectively capture other GPe neuron subclasses. In this study, we examined the utility of Kcng4-Cre, Npr3-Cre, and Npy2r-Cre mouse lines (both males and females) for the delineation of GPe neuron subtypes. By using these novel driver lines, we have provided the most exhaustive investigation of electrophysiological studies of GPe neuron subtypes to date. Corroborating our prior studies, GPe neurons can be divided into two statistically distinct clusters that map onto PV+ and Npas1+ classes. By combining optogenetics and machine learning-based tracking, we showed that optogenetic perturbation of GPe neuron subtypes generated unique behavioral structures. Our findings further highlighted the dissociable roles of GPe neurons in regulating movement and anxiety-like behavior. We concluded that Npr3+ neurons and Kcng4+ neurons are distinct subclasses of Npas1+ neurons and PV+ neurons, respectively. Finally, by examining local collateral connectivity, we inferred the circuit mechanisms involved in the motor patterns observed with optogenetic perturbations. In summary, by identifying mouse lines that allow for manipulations of GPe neuron subtypes, we created new opportunities for interrogations of cellular and circuit substrates that can be important for motor function and dysfunction.SIGNIFICANCE STATEMENT Within the basal ganglia, the external globus pallidus (GPe) has long been recognized for its involvement in motor control. However, we lacked an understanding of precisely how movement is controlled at the GPe level as a result of its cellular complexity. In this study, by using transgenic and cell-specific approaches, we showed that genetically-defined GPe neuron subtypes have distinct roles in regulating motor patterns. In addition, the in vivo contributions of these neuron subtypes are in part shaped by the local, inhibitory connections within the GPe. In sum, we have established the foundation for future investigations of motor function and disease pathophysiology.


Asunto(s)
Globo Pálido/citología , Globo Pálido/fisiología , Actividad Motora/fisiología , Neuronas/fisiología , Animales , Ansiedad/psicología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Conducta Animal , Fenómenos Biomecánicos , Fenómenos Electrofisiológicos , Femenino , Aprendizaje Automático , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/citología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Optogenética , Canales de Potasio con Entrada de Voltaje/genética , Receptores del Factor Natriurético Atrial/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA