Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.044
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Pathog ; 20(2): e1012001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38330058

RESUMEN

Cells are unceasingly confronted by oxidative stresses that oxidize proteins on their cysteines. The thioredoxin (Trx) system, which is a ubiquitous system for thiol and protein repair, is composed of a thioredoxin (TrxA) and a thioredoxin reductase (TrxB). TrxAs reduce disulfide bonds of oxidized proteins and are then usually recycled by a single pleiotropic NAD(P)H-dependent TrxB (NTR). In this work, we first analyzed the composition of Trx systems across Bacteria. Most bacteria have only one NTR, but organisms in some Phyla have several TrxBs. In Firmicutes, multiple TrxBs are observed only in Clostridia, with another peculiarity being the existence of ferredoxin-dependent TrxBs. We used Clostridioides difficile, a pathogenic sporulating anaerobic Firmicutes, as a model to investigate the biological relevance of TrxB multiplicity. Three TrxAs and three TrxBs are present in the 630Δerm strain. We showed that two systems are involved in the response to infection-related stresses, allowing the survival of vegetative cells exposed to oxygen, inflammation-related molecules and bile salts. A fourth TrxB copy present in some strains also contributes to the stress-response arsenal. One of the conserved stress-response Trx system was found to be present both in vegetative cells and in the spores and is under a dual transcriptional control by vegetative cell and sporulation sigma factors. This Trx system contributes to spore survival to hypochlorite and ensure proper germination in the presence of oxygen. Finally, we found that the third Trx system contributes to sporulation through the recycling of the glycine-reductase, a Stickland pathway enzyme that allows the consumption of glycine and contributes to sporulation. Altogether, we showed that Trx systems are produced under the control of various regulatory signals and respond to different regulatory networks. The multiplicity of Trx systems and the diversity of TrxBs most likely meet specific needs of Clostridia in adaptation to strong stress exposure, sporulation and Stickland pathways.


Asunto(s)
Bacterias , Reductasa de Tiorredoxina-Disulfuro , Bacterias/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo , Firmicutes/metabolismo , Oxígeno , Glicina
2.
Proc Natl Acad Sci U S A ; 120(33): e2306338120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549282

RESUMEN

NADPH-dependent thioredoxin reductase C (NTRC) is a chloroplast redox regulator in algae and plants. Here, we used site-specific mutation analyses of the thioredoxin domain active site of NTRC in the green alga Chlamydomonas reinhardtii to show that NTRC mediates cold tolerance in a redox-dependent manner. By means of coimmunoprecipitation and mass spectrometry, a redox- and cold-dependent binding of the Calvin-Benson Cycle Protein 12 (CP12) to NTRC was identified. NTRC was subsequently demonstrated to directly reduce CP12 of C. reinhardtii as well as that of the vascular plant Arabidopsis thaliana in vitro. As a scaffold protein, CP12 joins the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to form an autoinhibitory supracomplex. Using size-exclusion chromatography, NTRC from both organisms was shown to control the integrity of this complex in vitro and thereby PRK and GAPDH activities in the cold. Thus, NTRC apparently reduces CP12, hence triggering the dissociation of the PRK/CP12/GAPDH complex in the cold. Like the ntrc::aphVIII mutant, CRISPR-based cp12::emx1 mutants also exhibited a redox-dependent cold phenotype. In addition, CP12 deletion resulted in robust decreases in both PRK and GAPDH protein levels implying a protein protection effect of CP12. Both CP12 functions are critical for preparing a repertoire of enzymes for rapid activation in response to environmental changes. This provides a crucial mechanism for cold acclimation.


Asunto(s)
Chlamydomonas reinhardtii , Fotosíntesis , Reductasa de Tiorredoxina-Disulfuro , Aclimatación , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Oxidación-Reducción , Fotosíntesis/fisiología , Reductasa de Tiorredoxina-Disulfuro/metabolismo
3.
EMBO J ; 40(16): e107660, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34254679

RESUMEN

The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH-dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC-mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2-Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC-mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.


Asunto(s)
Cloroplastos/metabolismo , Interacciones Huésped-Patógeno , Nicotiana/virología , Virus de Plantas/fisiología , Proteínas no Estructurales Virales/fisiología , Replicación Viral , Estrés Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Virus de Plantas/genética , Plantas Modificadas Genéticamente/virología , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Nicotiana/genética
4.
Plant Physiol ; 195(2): 1536-1560, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38214043

RESUMEN

Thiol-based redox regulation is a crucial posttranslational mechanism to acclimate plants to changing light availability. Here, we conducted a biotin switch-based redox proteomics study in Arabidopsis (Arabidopsis thaliana) to systematically investigate dynamics of thiol-redox networks in response to temporal changes in light availability and across genotypes lacking parts of the thioredoxin (Trx) or NADPH-Trx-reductase C (NTRC) systems in the chloroplast. Time-resolved dynamics revealed light led to marked decreases in the oxidation states of many chloroplast proteins with photosynthetic functions during the first 10 min, followed by their partial reoxidation after 2 to 6 h into the photoperiod. This involved f, m, and x-type Trx proteins showing similar light-induced reduction-oxidation dynamics, while NTRC, 2-Cys peroxiredoxins, and Trx y2 showed an opposing pattern, being more oxidized in light than dark. In Arabidopsis trxf1f2, trxm1m2, or ntrc mutants, most proteins showed increased oxidation states in the light compared to wild type, suggesting their light-dependent dynamics were related to NTRC/Trx networks. While NTRC deficiency had a strong influence in all light conditions, deficiencies in f- or m-type Trxs showed differential impacts on the thiol-redox proteome depending on the light environment, being higher in constant or fluctuating light, respectively. The results indicate plant redox proteomes are subject to dynamic changes in reductive and oxidative pathways to cooperatively fine-tune photosynthetic and metabolic processes in the light. The importance of the individual elements of the NTRC/Trx networks mediating these responses depend on the extent of light variability, with NTRC playing a crucial role to balance protein-redox states in rapidly fluctuating light.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Luz , Oxidación-Reducción , Proteoma , Compuestos de Sulfhidrilo , Tiorredoxinas , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteoma/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Disulfuros/metabolismo , Fotosíntesis/efectos de la radiación , Proteómica/métodos , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Cloroplastos/metabolismo
5.
Plant Physiol ; 194(2): 982-1005, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37804523

RESUMEN

During photosynthesis, plants must manage strong fluctuations in light availability on different time scales, leading to long-term acclimation and short-term responses. However, little is known about the regulation and coordination of these processes and the modulators involved. In this study, we used proteomics, metabolomics, and reverse genetics to investigate how different light environmental factors, such as intensity or variability, affect long-term and short-term acclimation responses of Arabidopsis (Arabidopsis thaliana) and the importance of the chloroplast redox network in their regulation. In the wild type, high light, but not fluctuating light, led to large quantitative changes in the proteome and metabolome, accompanied by increased photosynthetic dynamics and plant growth. This finding supports light intensity as a stronger driver for acclimation than variability. Deficiencies in NADPH-thioredoxin reductase C (NTRC) or thioredoxins m1/m2, but not thioredoxin f1, almost completely suppressed the re-engineering of the proteome and metabolome, with both the induction of proteins involved in stress and redox responses and the repression of those involved in cytosolic and plastid protein synthesis and translation being strongly attenuated. Moreover, the correlations of protein or metabolite levels with light intensity were severely disturbed, suggesting a general defect in the light-dependent acclimation response, resulting in impaired photosynthetic dynamics. These results indicate a previously unknown role of NTRC and thioredoxins m1/m2 in modulating light acclimation at proteome and metabolome levels to control dynamic light responses. NTRC, but not thioredoxins m1/m2 or f1, also improves short-term photosynthetic responses by balancing the Calvin-Benson cycle in fluctuating light.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteoma/metabolismo , Fotosíntesis/fisiología , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Oxidación-Reducción , Metaboloma , Aclimatación
6.
J Immunol ; 210(5): 681-695, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602827

RESUMEN

Hepatocellular carcinoma (HCC) has the third highest cancer-related mortality rate globally. The immunosuppressive microenvironment of HCC limits effective treatment options. HCC cells and associated microenvironmental factors suppress NK and T cell infiltration and cytotoxic activities. The abnormal number or function of NK and T cells leads to a lack of immune surveillance. Recently, immunotherapy targeting PD-1 and PD-L1 has been shown to activate functionally exhausted cytotoxic immune cells in some solid tumors. However, the response rate and therapeutic efficacy against solid tumors with little lymphocyte infiltration are limited, especially for HCC. Therefore, new targets and therapeutics that induce tumor cell apoptosis and overcome the problem of depletion of immune cells, thereby inhibiting the immune escape of HCC cells, are urgently required. Butaselen (2-bis[2-(1,2-benzisothiazol-2(2H)-ketone)]butane), an organic molecule containing selenium, is a new type of thioredoxin reductase inhibitor. In this study, we found that butaselen promoted NK and T cell activity and infiltration in the tumor microenvironment in HCC-bearing mice by enhancing the expression of CXCR3, NKG2D, and their respective ligands. When used alone, it can significantly inhibit tumor growth and exert a synergistic effect in combination with PD-1 blockade. We suggested the role of the thioredoxin reductase system in the regulation of the tumor immunosuppressive microenvironment and developed a new effective therapeutic molecule for HCC, revealing the mechanism of butaselen in inhibiting tumor cell immune escape.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Linfocitos T CD8-positivos , Inmunoterapia , Neoplasias Hepáticas/tratamiento farmacológico , Reductasa de Tiorredoxina-Disulfuro/farmacología , Microambiente Tumoral , Células Asesinas Naturales , Humanos
7.
Biochemistry ; 63(12): 1588-1598, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38817151

RESUMEN

Thioredoxin reductases (TrxR) activate thioredoxins (Trx) that regulate the activity of diverse target proteins essential to prokaryotic and eukaryotic life. However, very little is understood of TrxR/Trx systems and redox control in methanogenic microbes from the domain Archaea (methanogens), for which genomes are abundant with annotations for ferredoxin:thioredoxin reductases [Fdx/thioredoxin reductase (FTR)] from group 4 of the widespread FTR-like family. Only two from the FTR-like family are characterized: the plant-type FTR from group 1 and FDR from group 6. Herein, the group 4 archetype (AFTR) from Methanosarcina acetivorans was characterized to advance understanding of the family and TrxR/Trx systems in methanogens. The modeled structure of AFTR, together with EPR and Mössbauer spectroscopies, supports a catalytic mechanism similar to plant-type FTR and FDR, albeit with important exceptions. EPR spectroscopy of reduced AFTR identified a transient [4Fe-4S]1+ cluster exhibiting a mixture of S = 7/2 and typical S = 1/2 signals, although rare for proteins containing [4Fe-4S] clusters, it is most likely the on-pathway intermediate in the disulfide reduction. Furthermore, an active site histidine equivalent to residues essential for the activity of plant-type FTR and FDR was found dispensable for AFTR. Finally, a unique thioredoxin system was reconstituted from AFTR, ferredoxin, and Trx2 from M. acetivorans, for which specialized target proteins were identified that are essential for growth and other diverse metabolisms.


Asunto(s)
Proteínas Hierro-Azufre , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Methanosarcina/enzimología , Methanosarcina/genética , Ferredoxinas/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Oxidación-Reducción , Modelos Moleculares , Tiorredoxinas/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Espectroscopía de Resonancia por Spin del Electrón
8.
Proteins ; 92(3): 370-383, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37909486

RESUMEN

The thioredoxin system is a ubiquitous oxidoreductase system consisting of the enzyme thioredoxin reductase, the protein thioredoxin, and the cofactor nicotinamide adenine dinucleotide phosphate. The system has been comprehensively studied from many organisms, such as Escherichia coli; however, structural and functional analysis of this system from psychrophilic bacteria has not been as extensive. In this study, the thioredoxin system proteins of a psychrophilic bacterium, Colwellia psychrerythraea, were characterized using biophysical and biochemical techniques. Analysis of the complete genome sequence of the C. psychrerythraea thioredoxin system suggested the presence of a putative thioredoxin reductase and at least three thioredoxin. In this study, these identified putative thioredoxin system components were cloned, overexpressed, purified, and characterized. Our studies have indicated that the thioredoxin system proteins from E. coli were more stable than those from C. psychrerythraea. Consistent with these results, kinetic assays indicated that the thioredoxin reductase from E. coli had a higher optimal temperature than that from C. psychrerythraea.


Asunto(s)
Alteromonadaceae , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Proteínas Bacterianas/química , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
9.
Environ Microbiol ; 26(6): e16668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899743

RESUMEN

The thioredoxin (Trx) system, found universally, is responsible for the regeneration of reversibly oxidized protein thiols in living cells. This system is made up of a Trx and a Trx reductase, and it plays a central role in maintaining thiol-based redox homeostasis by reducing oxidized protein thiols, such as disulfide bonds in proteins. Some Trxs also possess a chaperone function that is independent of thiol-disulfide exchange, in addition to their thiol-disulfide reductase activity. These two activities of the Trx system are involved in numerous physiological processes in bacteria. This review describes the diverse physiological roles of the Trx system that have emerged throughout bacterial evolution. The Trx system is essential for responding to oxidative and nitrosative stress. Beyond this primary function, the Trx system also participates in redox regulation and signal transduction, and in controlling metabolism, motility, biofilm formation, and virulence. This range of functions has evolved alongside the diversity of bacterial lifestyles and their specific constraints. This evolution can be characterized by the multiplication of the systems and by the specialization of cofactors or targets to adapt to the constraints of atypical lifestyles, such as photosynthesis, insect endosymbiosis, or spore-forming bacteria.


Asunto(s)
Bacterias , Oxidación-Reducción , Tiorredoxinas , Tiorredoxinas/metabolismo , Bacterias/metabolismo , Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Estrés Oxidativo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Transducción de Señal , Fenómenos Fisiológicos Bacterianos
10.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643121

RESUMEN

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Asunto(s)
Insuficiencia Cardíaca , Selenoproteínas , Reductasa de Tiorredoxina-Disulfuro , Adulto , Anciano , Animales , Humanos , Ratas , Insuficiencia Cardíaca/metabolismo , Hipertrofia/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Selenoproteínas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
11.
Plant Physiol ; 193(3): 2122-2140, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37474113

RESUMEN

Calredoxin (CRX) is a calcium (Ca2+)-dependent thioredoxin (TRX) in the chloroplast of Chlamydomonas (Chlamydomonas reinhardtii) with a largely unclear physiological role. We elucidated the CRX functionality by performing in-depth quantitative proteomics of wild-type cells compared with a crx insertional mutant (IMcrx), two CRISPR/Cas9 KO mutants, and CRX rescues. These analyses revealed that the chloroplast NADPH-dependent TRX reductase (NTRC) is co-regulated with CRX. Electron transfer measurements revealed that CRX inhibits NADPH-dependent reduction of oxidized chloroplast 2-Cys peroxiredoxin (PRX1) via NTRC and that the function of the NADPH-NTRC complex is under strict control of CRX. Via non-reducing SDS-PAGE assays and mass spectrometry, our data also demonstrated that PRX1 is more oxidized under high light (HL) conditions in the absence of CRX. The redox tuning of PRX1 and control of the NADPH-NTRC complex via CRX interconnect redox control with active photosynthetic electron transport and metabolism, as well as Ca2+ signaling. In this way, an economic use of NADPH for PRX1 reduction is ensured. The finding that the absence of CRX under HL conditions severely inhibited light-driven CO2 fixation underpins the importance of CRX for redox tuning, as well as for efficient photosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Chlamydomonas reinhardtii , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , NADP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Calcio/metabolismo , Cloroplastos/metabolismo , Oxidación-Reducción , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
12.
Acc Chem Res ; 56(9): 1043-1056, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37079555

RESUMEN

Over the past few decades, research on the chemistry of gold has progressed rapidly, encompassing topics like catalysis, supramolecular chemistry, molecular recognition, etc. These chemical properties are of great value in developing therapeutics or orthogonal catalysts in biology. However, the presence of concentrated nucleophiles and reductants, particularly thiol-containing serum albumin in blood and glutathione (GSH) inside cells that can strongly bind and quench the active gold species, makes it difficult to translate the chemistry of gold from test tubes into living systems. In this regard, modulating the chemical reactivity of gold complexes to conquer nonspecific interactions with thiols and meanwhile to controllably activate their reactivity in a spatiotemporal manner is of pivotal importance to develop gold complexes for biomedical applications. In this account, we aim to highlight the concept of developing stimuli-activatable gold complexes with masked chemical properties, the bioactivity of which can be spatiotemporally activated at the target site by leveraging approaches from classic structure design to recently emerged photo- and bioorthogonal-activation.A straightforward approach to tuning the reactivity of gold complexes is based on structure modification. This is achieved by introducing strong carbon donor ligands, such as N-heterocyclic carbene, alkynyl, and diphosphine, to improve the stability of gold(I) complexes against off-target thiols. Likewise, GSH-responsive gold(III) prodrug and supramolecular Au(I)-Au(I) interaction have been harnessed to keep a reasonable stability against serum albumin and confer tumor-targeted cytotoxicity by inhibiting thiol- and selenol-containing thioredoxin reductase (TrxR) for potent cancer treatment in vivo. To achieve better spatiotemporal controllability, photoactivatable prodrugs are developed. These complexes are equipped with cyclometalated pincer-type ligands and carbanion or hydride as ancillary ligands, rendering high thiol-stability in the dark, but upon photoirradiation, the complexes can undergo unprecedented photoinduced ligand substitution, ß-hydride elimination, and/or reduction to release active gold species for TrxR inhibition at the diseased tissue. To further improve the therapeutic activity, an oxygen-dependent conditional photoreactivity of gold(III) complexes by evolving from photodynamic into photoactivated chemotherapy has been achieved, resulting in highly potent antitumor efficacy in tumor-bearing mice. Of equal importance is harnessing the bioorthogonal activation approach by chemical inducers, as exemplified by a palladium-triggered transmetalation reaction to selectively activate the chemical reactivities of gold including its TrxR inhibition and catalytic activity in living cells and zebrafish. Collectively, strategies to modulate gold chemistry in vitro and in vivo are emerging, and it is hoped that this Account will spur the creation of better approaches to advance gold complexes closer to clinical application.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Ratones , Animales , Oro/química , Línea Celular Tumoral , Antineoplásicos/química , Ligandos , Pez Cebra/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Compuestos de Sulfhidrilo , Complejos de Coordinación/química
13.
Protein Expr Purif ; 216: 106417, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38110108

RESUMEN

The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and nicotinamide adenine dinucleotide phosphate (NADPH). Spirulina platensis, which is one of the blue-green algae in the form of spiral rings, belongs to the cyanobacteria class. Spirulina platensis can produce Trx under stress conditions. If it can produce Trx, it also has TrxR activity. Therefore, in this study, the TrxR enzyme was purified for the first time from Spirulina platensis, an algae the most grown and also used as a nutritional supplement in the world. A two-step purification process was used: preparation of the homogenate and 2',5'-ADP sepharose 4B affinity chromatography. The enzyme was purified with a purification fold of 1059.51, a recovery yield of 9.7 %, and a specific activity of 5.77 U/mg protein. The purified TrxR was tested for purity by SDS-PAGE. The molecular weight of its subunit was found to be about 45 kDa. Optimum pH, temperature and ionic strength of the enzyme were pH 7.0, 40 °C and 750 mM in phosphate buffer respectively. The Michaelis constant (Km) and maximum velocity of enzyme (Vmax) values for NADPH and 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) are 5 µM and 2.2 mM, and 0.0033 U/mL and 0.0044 U/mL, respectively. Storage stability of the purified enzyme was determined at several temperatures. The inhibition effects of Ag+, Cu2+, Al3+ and Se4+ metal ions on the purified TrxR activity were investigated in vitro. While Se4+ ion increased the enzyme activity, other tested metal ions showed different type of inhibitory effects on the Lineweaver-Burk graphs.


Asunto(s)
Antioxidantes , Spirulina , Reductasa de Tiorredoxina-Disulfuro , NADP/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Cromatografía de Afinidad , Tiorredoxinas/química , Iones , Cinética
14.
Mol Ther ; 31(3): 729-743, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36560881

RESUMEN

Approximately 50%-55% of high-grade serous ovarian carcinoma (HGSOC) patients have MYC oncogenic pathway activation. Because MYC is not directly targetable, we have analyzed molecular pathways enriched in MYC-high HGSOC tumors to identify potential therapeutic targets. Here, we report that MYC-high HGSOC tumors show enrichment in genes controlled by NRF2, an antioxidant signaling pathway, along with increased thioredoxin redox activity. Treatment of MYC-high HGSOC tumors cells with US Food and Drug Administration (FDA)-approved thioredoxin reductase 1 (TrxR1) inhibitor auranofin resulted in significant growth suppression and apoptosis in MYC-high HGSOC cells in vitro and also significantly reduced tumor growth in an MYC-high HGSOC patient-derived tumor xenograft. We found that auranofin treatment inhibited glycolysis in MYC-high cells via oxidation-induced GAPDH inhibition. Interestingly, in response to auranofin-induced glycolysis inhibition, MYC-high HGSOC cells switched to glutamine metabolism for survival. Depletion of glutamine with either glutamine starvation or glutaminase (GLS1) inhibitor CB-839 exerted synergistic anti-tumor activity with auranofin in HGSOC cells and OVCAR-8 cell line xenograft. These findings suggest that applying a combined therapy of GLS1 inhibitor and TrxR1 inhibitor could effectively treat MYC-high HGSOC patients.


Asunto(s)
Auranofina , Genes myc , Glutamina , Neoplasias Ováricas , Reductasa de Tiorredoxina-Disulfuro , Femenino , Humanos , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Genes myc/genética , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/genética , Glutamina/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/antagonistas & inhibidores , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
15.
Biotechnol Appl Biochem ; 71(1): 176-192, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37864368

RESUMEN

Thioredoxin reductase (TrxR, enzyme code [E.C.] 1.6.4.5) is a widely distributed flavoenzyme that catalyzes nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of thioredoxin and many other physiologically important substrates. Spirulina platensis is a blue-green algae that is often used as a dietary supplement. S. platensis is rich in protein, lipid, polysaccharide, pigment, carotenoid, enzyme, vitamins and many other chemicals and exhibits a variety of pharmacological functions. In the present study, a simple and efficient method to purify TrxR from S. platensis tablets is reported. The extractions were carried out using two different methods: heat denaturation and 2',5'-adenosine diphosphate Sepharose 4B affinity chromatography. The enzyme was purified by 415.04-fold over the crude extract, with a 19% yield, and specific activity of 0.7640 U/mg protein. Optimum pH, temperature and ionic strength of the enzyme activity, as well as the Michaelis constant (Km ) and maximum velocity of enzyme (Vmax ) values for NADPH and 5,5'-dithiobis(2-nitrobenzoic acid) were determined. Tested metal ions, vitamins, and drugs showed inhibition effects, except Se4+ ion, cefazolin sodium, teicoplanin, and tobramycin that increased the enzyme activity in vitro. Ag+ , Cu2+ , Mg2+ , Ni2+ , Pb2+ , Zn2+ , Al3+ , Cr3+ , Fe3+ , and V4+ ions; vitamin B3 , vitamin B6 , vitamin C, and vitamin U and aciclovir, azithromycin, benzyladenine, ceftriaxone sodium, clarithromycin, diclofenac, gibberellic acid, glurenorm, indole-3-butyric acid, ketorolac, metformin, mupirocin, mupirocin calcium, paracetamol, and tenofovir had inhibitory effects on TrxR. Ag+ exhibited stronger inhibition than 1-chloro-2,4-dinitrobenzene (a positive control).


Asunto(s)
Spirulina , Reductasa de Tiorredoxina-Disulfuro , NADP/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Cromatografía de Afinidad , Vitaminas , Iones
16.
Biochem J ; 480(1): 87-104, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36594794

RESUMEN

Thioredoxins (Trxs) are ubiquitous proteins that play vital roles in several physiological processes. Alr2205, a thioredoxin-like protein from Anabaena PCC 7120, was found to be evolutionarily closer to the Trx-domain of the NADPH-Thioredoxin Reductase C than the other thioredoxins. The Alr2205 protein showed disulfide reductase activity despite the presence a non-canonical active site motif 'CPSC'. Alr2205 not only physically interacted with, but also acted as a physiological reductant of Alr4641 (the typical 2-Cys-Peroxiredoxin from Anabaena), supporting its peroxidase function. Structurally, Alr2205 was a monomeric protein that formed an intramolecular disulfide bond between the two active site cysteines (Cys-38 and Cys-41). However, the Alr2205C41S protein, wherein the resolving cysteine was mutated to serine, was capable of forming intermolecular disulfide bond and exist as a dimer when treated with H2O2. Overproduction of Alr2205 in E. coli protected cells from heavy metals, but not oxidative stress. To delve into its physiological role, Alr2205/Alr2205C41S was overexpressed in Anabaena, and the ability of the corresponding strains (An2205+ or An2205C41S+) to withstand environmental stresses was assessed. An2205+ showed higher resistance to H2O2 than An2205C41S+, indicating that the disulfide reductase function of this protein was critical to protect cells from this peroxide. Although, An2205+ did not show increased capability to withstand cadmium stress, An2205C41S+ was more susceptible to this heavy metal. This is the first study that provides a vital understanding into the function of atypical thioredoxins in countering the toxic effects of heavy metals/H2O2 in prokaryotes.


Asunto(s)
Anabaena , Cianobacterias , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxidación-Reducción , Proteínas Bacterianas/metabolismo , Anabaena/genética , Anabaena/metabolismo , Cianobacterias/metabolismo , Tiorredoxinas/química , Disulfuros/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo
17.
Arch Pharm (Weinheim) ; 357(2): e2300497, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37972283

RESUMEN

In this study, the mechanisms by which the enzymes glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione-S-transferase (GST), and thioredoxin reductase (TrxR) are inhibited by methotrexate (MTX) were investigated, as well as whether the antioxidant morin can mitigate or prevent these adverse effects in vivo and in silico. For 10 days, rats received oral doses of morin (50 and 100 mg/kg body weight). On the fifth day, a single intraperitoneal injection of MTX (20 mg/kg body weight) was administered to generate toxicity. Decreased activities of G6PD, 6PGD, GR, GST, and TrxR were associated with MTX-related toxicity while morin treatment increased the activity of the enzymes. The docking analysis indicated that H-bonds, pi-pi stacking, and pi-cation interactions were the dominant interactions in these enzyme-binding pockets. Furthermore, the docked poses of morin and MTX against GST were subjected to molecular dynamic simulations for 200 ns, to assess the stability of both complexes and also to predict key amino acid residues in the binding pockets throughout the simulation. The results of this study suggest that morin may be a viable means of alleviating the enzyme activities of important regulatory enzymes against MTX-induced toxicity.


Asunto(s)
Flavonas , Metotrexato , Reductasa de Tiorredoxina-Disulfuro , Ratas , Animales , Metotrexato/farmacología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Glutatión Transferasa/metabolismo , Vía de Pentosa Fosfato , Relación Estructura-Actividad , Glutatión Reductasa/metabolismo , Peso Corporal
18.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928353

RESUMEN

The lumen of the endoplasmic reticulum (ER) is usually considered an oxidative environment; however, oxidized thiol-disulfides and reduced pyridine nucleotides occur there parallelly, indicating that the ER lumen lacks components which connect the two systems. Here, we investigated the luminal presence of the thioredoxin (Trx)/thioredoxin reductase (TrxR) proteins, capable of linking the protein thiol and pyridine nucleotide pools in different compartments. It was shown that specific activity of TrxR in the ER is undetectable, whereas higher activities were measured in the cytoplasm and mitochondria. None of the Trx/TrxR isoforms were expressed in the ER by Western blot analysis. Co-localization studies of various isoforms of Trx and TrxR with ER marker Grp94 by immunofluorescent analysis further confirmed their absence from the lumen. The probability of luminal localization of each isoform was also predicted to be very low by several in silico analysis tools. ER-targeted transient transfection of HeLa cells with Trx1 and TrxR1 significantly decreased cell viability and induced apoptotic cell death. In conclusion, the absence of this electron transfer chain may explain the uncoupling of the redox systems in the ER lumen, allowing parallel presence of a reduced pyridine nucleotide and a probably oxidized protein pool necessary for cellular viability.


Asunto(s)
Retículo Endoplásmico , Oxidación-Reducción , Reductasa de Tiorredoxina-Disulfuro , Tiorredoxinas , Humanos , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Retículo Endoplásmico/metabolismo , Células HeLa , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Mitocondrias/metabolismo , Apoptosis , Supervivencia Celular
19.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473872

RESUMEN

The targeting of human thioredoxin reductase is widely recognized to be crucially involved in the anticancer properties of several metallodrugs, including Au(I) complexes. In this study, the mechanism of reaction between a set of five N-heterocyclic carbene Au(I) complexes and models of the active Sec residue in human thioredoxin reductase was investigated by means of density functional theory approaches. The study was specifically addressed to the kinetics and thermodynamics of the tiled process by aiming at elucidating and explaining the differential inhibitory potency in this set of analogous Au(I) bis-carbene complexes. While the calculated free energy profile showed a substantially similar reactivity, we found that the binding of these Au(I) bis-carbene at the active CysSec dyad in the TrxR enzyme could be subjected to steric and orientational restraints, underlining both the approach of the bis-carbene scaffold and the attack of the selenol group at the metal center. A new and detailed mechanistic insight to the anticancer activity of these Au(I) organometallic complexes was thus provided by consolidating the TrxR targeting paradigm.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Metano/análogos & derivados , Humanos , Selenocisteína , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Antineoplásicos/farmacología , Oro/química , Complejos de Coordinación/química
20.
Biochemistry ; 62(9): 1497-1508, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071546

RESUMEN

Thioredoxin/glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both oxidized thioredoxin and glutathione with electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH). SmTGR is a drug target for the treatment of Schistosomiasis, an infection caused by Schistosoma platyhelminths residing in the blood vessels of the host. Schistosoma spp. are reliant on TGR enzymes as they lack catalase and so use reduced thioredoxin and glutathione to regenerate peroxiredoxins consumed in the detoxification of reactive oxygen species. SmTGR is a flavin adenine dinucleotide (FAD)-dependent enzyme, and we have used the flavin as a spectrophotometric reporter to observe the movement of electrons within the enzyme. The data show that NADPH fractionally reduces the active site flavin with an observed rate constant estimated in this study to be ∼3000 s-1. The flavin then reoxidizes by passing electrons at a similar rate to the proximal Cys159-Cys154 disulfide pair. The dissociation of NADP+ occurs with a rate of ∼180 s-1, which induces the deprotonation of Cys159, and this coincides with the accumulation of an intense FAD-thiolate charge transfer band. It is proposed that the electrons then pass to the Cys596-Cys597 disulfide pair of the associated subunit in the dimer with a net rate constant of ∼2 s-1. (Note: Cys597 is Sec597 in wild-type (WT) SmTGR.) From this position, the electrons can be passed to oxidized thioredoxin or further into the protein to reduce the Cys28-Cys31 disulfide pair of the originating subunit of the dimer. From the Cys28-Cys31 center, electrons can then pass to oxidized glutathione that has a binding site directly adjacent.


Asunto(s)
Flavina-Adenina Dinucleótido , Schistosoma mansoni , Animales , Schistosoma mansoni/metabolismo , Glutatión Reductasa/metabolismo , NADP/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Glutatión/metabolismo , Disulfuros , Tiorredoxinas/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA