Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Dev Growth Differ ; 59(8): 657-673, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28945921

RESUMEN

The hippocampal formation (HF) is morphologically and functionally distinguishable into the subdivisions, such as the dentate gyrus (DG), subiculum, and Ammon's horn. The Ammon's horn is further divided into the CA (Cornu Ammonis)1, CA2, and CA3. The Reelin-Dab1 signal is essential for the morphogenesis of the mammalian brain. In the neocortex of Reelin-Dab1 signal mutants the laminar pattern of the neurons is disrupted along the radial axis. Morphological abnormalities in the HF of the Reelin-Dab1 mutants were known, but how these abnormalities appear during development had not been extensively studied. We examined the morphology of the well-developed Dab1 deficient HF by staining with a silver impregnation method in this report, and found that disruption of lamination in the CA1, CA3, and DG was different. Abnormalities observed in the development of Dab1 deficient CA1 were similar to those reported in the neocortical development, while Dab1 deficient CA3 neuronal progenitors radially spreaded beyond presumptive pyramidal layer. The intermediate progenitor cells ectopically located in the Dab1 deficient DG, but neurogenesis was normal in the CA1 and CA3. These observations suggest that the morphogenesis in these HF subdivisions employs different developmental mechanisms involving Dab1 function.


Asunto(s)
Región CA1 Hipocampal/embriología , Región CA3 Hipocampal/embriología , Embrión de Mamíferos/embriología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Embrión de Mamíferos/citología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Proteína Reelina
2.
Proc Natl Acad Sci U S A ; 111(1): 504-9, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344272

RESUMEN

The spiking output of interneurons is key for rhythm generation in the brain. However, what controls interneuronal firing remains incompletely understood. Here we combine dynamic clamp experiments with neural network simulations to understand how tonic GABAA conductance regulates the firing pattern of CA3 interneurons. In baseline conditions, tonic GABAA depolarizes these cells, thus exerting an excitatory action while also reducing the excitatory postsynaptic potential (EPSP) amplitude through shunting. As a result, the emergence of weak tonic GABAA conductance transforms the interneuron firing pattern driven by individual EPSPs into a more regular spiking mode determined by the cell intrinsic properties. The increased regularity of spiking parallels stronger synchronization of the local network. With further increases in tonic GABAA conductance the shunting inhibition starts to dominate over excitatory actions and thus moderates interneuronal firing. The remaining spikes tend to follow the timing of suprathreshold EPSPs and thus become less regular again. The latter parallels a weakening in network synchronization. Thus, our observations suggest that tonic GABAA conductance can bidirectionally control brain rhythms through changes in the excitability of interneurons and in the temporal structure of their firing patterns.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Interneuronas/fisiología , Receptores de GABA-A/metabolismo , Potenciales de Acción/fisiología , Animales , Encéfalo/metabolismo , Región CA3 Hipocampal/embriología , Potenciales Postsinápticos Excitadores , Gramicidina/química , Masculino , Modelos Biológicos , Modelos Neurológicos , Neuronas/metabolismo , Oscilometría , Técnicas de Placa-Clamp , Células Piramidales/citología , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Transmisión Sináptica/fisiología , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo
3.
J Neurochem ; 129(4): 649-62, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24350810

RESUMEN

Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here, we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein-regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone. Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the growth cone. In addition, an α7/Gprin1 interaction appears intimately linked to a Gαo, growth-associated protein 43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain.


Asunto(s)
Acetilcolina/fisiología , Región CA3 Hipocampal/citología , Conos de Crecimiento/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/fisiología , Animales , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Bungarotoxinas/farmacología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/embriología , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Colina/farmacología , Femenino , Proteína GAP-43/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Conos de Crecimiento/ultraestructura , Péptidos y Proteínas de Señalización Intercelular , Masculino , Proteínas del Tejido Nervioso/metabolismo , Péptidos/farmacología , Toxina del Pertussis/farmacología , Mapeo de Interacción de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/efectos de los fármacos , Venenos de Avispas/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/biosíntesis , Receptor Nicotínico de Acetilcolina alfa 7/genética , Proteína de Unión al GTP cdc42/fisiología
4.
Hippocampus ; 22(8): 1691-702, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22367974

RESUMEN

Iron is a necessary substrate for neuronal function throughout the lifespan, but particularly during development. Early life iron deficiency (ID) in humans (late gestation through 2-3 yr) results in persistent cognitive and behavioral abnormalities despite iron repletion. Animal models of early life ID generated using maternal dietary iron restriction also demonstrate persistent learning and memory deficits, suggesting a critical requirement for iron during hippocampal development. Precise definition of the temporal window for this requirement has been elusive due to anemia and total body and brain ID inherent to previous dietary restriction models. To circumvent these confounds, we developed transgenic mice that express tetracycline transactivator regulated, dominant negative transferrin receptor (DNTfR1) in hippocampal neurons, disrupting TfR1 mediated iron uptake specifically in CA1 pyramidal neurons. Normal iron status was restored by doxycycline administration. We manipulated the duration of ID using this inducible model to examine long-term effects of early ID on Morris water maze learning, CA1 apical dendrite structure, and defining factors of critical periods including parvalbmin (PV) expression, perineuronal nets (PNN), and brain-derived neurotrophic factor (BDNF) expression. Ongoing ID impaired spatial memory and resulted in disorganized apical dendrite structure accompanied by altered PV and PNN expression and reduced BDNF levels. Iron repletion at P21, near the end of hippocampal dendritogenesis, restored spatial memory, dendrite structure, and critical period markers in adult mice. However, mice that remained hippocampally iron deficient until P42 continued to have spatial memory deficits, impaired CA1 apical dendrite structure, and persistent alterations in PV and PNN expression and reduced BDNF despite iron repletion. Together, these findings demonstrate that hippocampal iron availability is necessary between P21 and P42 for development of normal spatial learning and memory, and that these effects may reflect disruption of critical period closure by early life ID.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Deficiencias de Hierro , Memoria/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores de Transferrina/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/embriología , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/embriología , Región CA3 Hipocampal/metabolismo , Células CHO , Cricetinae , Dendritas/metabolismo , Matriz Extracelular/metabolismo , Femenino , Hipocampo/citología , Hipocampo/embriología , Humanos , Interneuronas/metabolismo , Hierro/farmacología , Hierro de la Dieta/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/metabolismo , Parvalbúminas/metabolismo , Embarazo , Células Piramidales/embriología , Células Piramidales/metabolismo , Receptores de Transferrina/genética , Factores de Tiempo
5.
Sci Signal ; 12(603)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615899

RESUMEN

KCC2 is a vital neuronal K+/Cl- cotransporter that is implicated in the etiology of numerous neurological diseases. In normal cells, KCC2 undergoes developmental dephosphorylation at Thr906 and Thr1007 We engineered mice with heterozygous phosphomimetic mutations T906E and T1007E (KCC2E/+ ) to prevent the normal developmental dephosphorylation of these sites. Immature (postnatal day 15) but not juvenile (postnatal day 30) KCC2E/+ mice exhibited altered GABAergic inhibition, an increased glutamate/GABA synaptic ratio, and greater susceptibility to seizure. KCC2E/+ mice also had abnormal ultrasonic vocalizations at postnatal days 10 to 12 and impaired social behavior at postnatal day 60. Postnatal bumetanide treatment restored network activity by postnatal day 15 but failed to restore social behavior by postnatal day 60. Our data indicate that posttranslational KCC2 regulation controls the GABAergic developmental sequence in vivo, indicating that deregulation of KCC2 could be a risk factor for the emergence of neurological pathology.


Asunto(s)
Red Nerviosa/metabolismo , Células Piramidales/metabolismo , Simportadores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/embriología , Región CA3 Hipocampal/crecimiento & desarrollo , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Potenciales de la Membrana/efectos de los fármacos , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Técnicas de Placa-Clamp , Fosforilación , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Simportadores/genética , Ácido gamma-Aminobutírico/farmacología , Cotransportadores de K Cl
6.
Neuron ; 100(1): 201-215.e9, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30290982

RESUMEN

Pyramidal neuron dendrites integrate synaptic input from multiple partners. Different inputs converging on the same dendrite have distinct structural and functional features, but the molecular mechanisms organizing input-specific properties are poorly understood. We identify the orphan receptor GPR158 as a binding partner for the heparan sulfate proteoglycan (HSPG) glypican 4 (GPC4). GPC4 is enriched on hippocampal granule cell axons (mossy fibers), whereas postsynaptic GPR158 is restricted to the proximal segment of CA3 apical dendrites receiving mossy fiber input. GPR158-induced presynaptic differentiation in contacting axons requires cell-surface GPC4 and the co-receptor LAR. Loss of GPR158 increases mossy fiber synapse density but disrupts bouton morphology, impairs ultrastructural organization of active zone and postsynaptic density, and reduces synaptic strength of this connection, while adjacent inputs on the same dendrite are unaffected. Our work identifies an input-specific HSPG-GPR158 interaction that selectively organizes synaptic architecture and function of developing mossy fiber-CA3 synapses in the hippocampus.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis/metabolismo , Animales , Región CA3 Hipocampal/embriología , Células HEK293 , Humanos , Ratones , Fibras Musgosas del Hipocampo/embriología , Neurogénesis/fisiología , Células Piramidales/metabolismo , Ratas , Ratas Long-Evans , Transmisión Sináptica/fisiología
7.
Anat Rec (Hoboken) ; 296(1): 123-32, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23152308

RESUMEN

The CA3 area serves a key relay on the tri-synaptic loop of the hippocampal formation which supports multiple forms of mnemonic processing, especially spatial learning and memory. To date, morphometric data about human CA3 pyramidal neurons are relatively rare, with little information available for their pre- and postnatal development. Herein, we report a set of developmental trajectory data, including somal growth, dendritic elongation and branching, and spine formation, of human CA3 pyramidal neurons from midgestation stage to middle childhood. Golgi-impregnated CA3 pyramidal neurons in fetuses at 19, 20, 26, 35, and 38 weeks of gestation (GW) and a child at 8 years of age (Y) were analyzed by Neurolucida morphometry. Somal size of the impregnated CA3 cells increased age-dependently among the cases. The length of the apical and basal dendrites of these neurons increased between 26 GW to 38 GW, and appeared to remain stable afterward until 8 Y. Dendritic branching points increased from 26 GW to 38 GW, with that on the apical dendrites slightly reduced at 8 Y. Spine density on the apical and basal dendrites increased progressively from 26 GW to 8 Y. These data suggest that somal growth and dendritic arborization of human CA3 pyramidal neurons occur largely during the second to third trimester. Spine development and likely synaptogenesis on CA3 pyramidal cells progress during the third prenatal trimester and may continue throughout childhood.


Asunto(s)
Región CA3 Hipocampal/embriología , Región CA3 Hipocampal/crecimiento & desarrollo , Dendritas/patología , Feto/embriología , Aparato de Golgi/patología , Neuronas/patología , Región CA3 Hipocampal/patología , Niño , Técnicas Citológicas , Femenino , Desarrollo Fetal , Feto/patología , Humanos , Masculino , Embarazo , Segundo Trimestre del Embarazo , Tercer Trimestre del Embarazo
8.
Nat Commun ; 3: 1316, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23271650

RESUMEN

The developing CA3 hippocampus is comprised by highly connected hub neurons that are particularly effective in achieving network synchronization. Functional hub neurons were shown to be exclusively GABAergic, suggesting that the contribution of glutamatergic neurons to physiological synchronization processes at early postnatal stages is minimal. However, without fast GABAergic transmission, a different situation may prevail. In the adult CA3, blocking fast GABAergic transmission induces the generation of network bursts that can be triggered by the stimulation of single pyramidal neurons. Here we revisit the network function of CA3 glutamatergic neurons from a developmental viewpoint, without fast GABAergic transmission. We uncover a sub-population of early-generated glutamatergic neurons that impacts network dynamics when stimulated in the juvenile hippocampus. Additionally, this population displays characteristic morpho-physiological features in the juvenile and adult hippocampus. Therefore, the apparently homogeneous glutamatergic cell population likely displays a morpho-functional diversity rooted in temporal embryonic origins.


Asunto(s)
Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Ácido Glutámico/metabolismo , Neuronas/citología , Animales , Región CA3 Hipocampal/embriología , Región CA3 Hipocampal/crecimiento & desarrollo , Femenino , Masculino , Ratones/embriología , Ratones/genética , Ratones/crecimiento & desarrollo , Ratones/metabolismo , Ratones Transgénicos , Neurogénesis , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
9.
Sci Rep ; 2: 783, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23136640

RESUMEN

A histoanatomical context is imperative in an analysis of gene expression in a cell in a tissue to elucidate physiological function of the cell. In this study, we made technical advances in fluorescence laser microdissection (LMD) in combination with the absolute quantification of small amounts of mRNAs from a region of interest (ROI) in fluorescence-labeled tissue sections. We demonstrate that our fluorescence LMD-RTqPCR method has three orders of dynamic range, with the lower limit of ROI-size corresponding to a single cell. The absolute quantification of the expression levels of the immediate early genes in an ROI equivalent to a few hundred neurons in the hippocampus revealed that mice transferred from their home cage to a novel environment have distinct activation profiles in the hippocampal regions (CA1, CA3, and DG) and that the gene expression pattern in CA1, but not in the other regions, follows a power law distribution.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Hipocampo/metabolismo , Rayos Láser , Microdisección/métodos , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/embriología , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/embriología , Región CA3 Hipocampal/metabolismo , Giro Dentado/citología , Giro Dentado/embriología , Giro Dentado/metabolismo , Femenino , Fluorescencia , Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Hipocampo/citología , Hipocampo/embriología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Neuronas/citología , Neuronas/metabolismo , Embarazo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Activación Transcripcional , Proteína Fluorescente Roja
10.
J Neuropathol Exp Neurol ; 69(3): 234-45, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20142767

RESUMEN

To assess the synaptic vesicle protein synaptophysin as a potential marker for maturation in the human fetal brain, synaptophysin immunoreactivity (sIR) was prospectively studied in postmortem sections of 162 normal human fetal and neonatal brains of both sexes from 6 to 41 weeks' gestational age. There was a consistent temporal and spatial pattern of sIR in the hippocampus and cerebral neocortex. In the rostral hippocampus, sIR was first apparent in the molecular zone of the dentate gyrus at 12 weeks, followed by CA2 at 14 weeks, CA3 and CA4 at 15 to 16 weeks, and CA1 at 19 weeks; it was incomplete until 26 weeks. In frontal neocortex, sIR developed in a laminar pattern above and below the cortical plate as early as 12 weeks, around Cajal-Retzius neurons of the molecular zone at 14 weeks, surrounding pyramidal neurons of Layers 5 and 6 at 16 weeks, and at the surface of neuronal somata in Layers 2 and 4 at 22 weeks. At 33 weeks, Layers 2 and 4 still had less sIR than other layers. Uniform sIR among all cortical layers was evident at 38 weeks. Ascending probable thalamocortical axons were reactive as early as 12 weeks and were best demonstrated by 26 weeks, after which increasing sIR in the neuropil diminished the contrast. The sIR was preserved for more than 96 hours postmortem, even in severely autolytic brains. We conclude that synaptophysin is a reliable marker in human fetal brain and that sIR provides the means for objective assessment of cerebral maturation in normal brains and to enable interpretation of abnormal synaptic patterns in pathological conditions.


Asunto(s)
Hipocampo/embriología , Hipocampo/metabolismo , Neocórtex/embriología , Neocórtex/metabolismo , Sinaptofisina/metabolismo , Axones/metabolismo , Axones/ultraestructura , Biomarcadores/metabolismo , Región CA1 Hipocampal/embriología , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/metabolismo , Región CA2 Hipocampal/embriología , Región CA2 Hipocampal/crecimiento & desarrollo , Región CA2 Hipocampal/metabolismo , Región CA3 Hipocampal/embriología , Región CA3 Hipocampal/crecimiento & desarrollo , Región CA3 Hipocampal/metabolismo , Diferenciación Celular/fisiología , Giro Dentado/embriología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/metabolismo , Femenino , Hipocampo/crecimiento & desarrollo , Humanos , Inmunohistoquímica , Recién Nacido , Masculino , Neocórtex/crecimiento & desarrollo , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Embarazo , Tálamo/embriología , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA