Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.934
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(6): 1295-1309.e15, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30773314

RESUMEN

Cancers from sun-exposed skin accumulate "driver" mutations, causally implicated in oncogenesis. Because errors incorporated during translesion synthesis (TLS) opposite UV lesions would generate these mutations, TLS mechanisms are presumed to underlie cancer development. To address the role of TLS in skin cancer formation, we determined which DNA polymerase is responsible for generating UV mutations, analyzed the relative contributions of error-free TLS by Polη and error-prone TLS by Polθ to the replication of UV-damaged DNA and to genome stability, and examined the incidence of UV-induced skin cancers in Polθ-/-, Polη-/-, and Polθ-/- Polη-/- mice. Our findings that the incidence of skin cancers rises in Polθ-/- mice and is further exacerbated in Polθ-/- Polη-/- mice compared with Polη-/- mice support the conclusion that error-prone TLS by Polθ provides a safeguard against tumorigenesis and suggest that cancer formation can ensue in the absence of somatic point mutations.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/fisiología , Neoplasias Cutáneas/metabolismo , Animales , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/fisiología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Inestabilidad Genómica/genética , Humanos , Ratones , Ratones Noqueados , Mutación/genética , Piel/citología , Piel/metabolismo , Neoplasias Cutáneas/genética , Rayos Ultravioleta/efectos adversos , ADN Polimerasa theta
2.
Cell ; 176(1-2): 154-166.e13, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30595448

RESUMEN

Primases have a fundamental role in DNA replication. They synthesize a primer that is then extended by DNA polymerases. Archaeoeukaryotic primases require for synthesis a catalytic and an accessory domain, the exact contribution of the latter being unresolved. For the pRN1 archaeal primase, this domain is a 115-amino acid helix bundle domain (HBD). Our structural investigations of this small HBD by liquid- and solid-state nuclear magnetic resonance (NMR) revealed that only the HBD binds the DNA template. DNA binding becomes sequence-specific after a major allosteric change in the HBD, triggered by the binding of two nucleotide triphosphates. The spatial proximity of the two nucleotides and the DNA template in the quaternary structure of the HBD strongly suggests that this small domain brings together the substrates to prepare the first catalytic step of primer synthesis. This efficient mechanism is likely general for all archaeoeukaryotic primases.


Asunto(s)
ADN Primasa/metabolismo , ADN Primasa/fisiología , Cartilla de ADN/química , Animales , Sitios de Unión , ADN , ADN Primasa/ultraestructura , Cartilla de ADN/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Nucleótidos , Conformación Proteica , Elementos Estructurales de las Proteínas/fisiología
3.
Cell ; 176(4): 816-830.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595451

RESUMEN

The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.


Asunto(s)
Momento de Replicación del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina , ADN/genética , Momento de Replicación del ADN/genética , Células Madre Embrionarias , Elementos de Facilitación Genéticos/genética , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal
4.
Cell ; 176(1-2): 127-143.e24, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30633903

RESUMEN

DNA damage provokes mutations and cancer and results from external carcinogens or endogenous cellular processes. However, the intrinsic instigators of endogenous DNA damage are poorly understood. Here, we identify proteins that promote endogenous DNA damage when overproduced: the DNA "damage-up" proteins (DDPs). We discover a large network of DDPs in Escherichia coli and deconvolute them into six function clusters, demonstrating DDP mechanisms in three: reactive oxygen increase by transmembrane transporters, chromosome loss by replisome binding, and replication stalling by transcription factors. Their 284 human homologs are over-represented among known cancer drivers, and their RNAs in tumors predict heavy mutagenesis and a poor prognosis. Half of the tested human homologs promote DNA damage and mutation when overproduced in human cells, with DNA damage-elevating mechanisms like those in E. coli. Our work identifies networks of DDPs that provoke endogenous DNA damage and may reveal DNA damage-associated functions of many human known and newly implicated cancer-promoting proteins.


Asunto(s)
Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/fisiología , Proteínas Bacterianas/metabolismo , Inestabilidad Cromosómica/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Inestabilidad Genómica , Humanos , Proteínas de Transporte de Membrana/fisiología , Mutagénesis , Mutación , Factores de Transcripción/metabolismo
5.
Cell ; 176(1-2): 144-153.e13, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30554877

RESUMEN

Abasic sites are one of the most common DNA lesions. All known abasic site repair mechanisms operate only when the damage is in double-stranded DNA. Here, we report the discovery of 5-hydroxymethylcytosine (5hmC) binding, ESC-specific (HMCES) as a sensor of abasic sites in single-stranded DNA. HMCES acts at replication forks, binds PCNA and single-stranded DNA, and generates a DNA-protein crosslink to shield abasic sites from error-prone processing. This unusual HMCES DNA-protein crosslink intermediate is resolved by proteasome-mediated degradation. Acting as a suicide enzyme, HMCES prevents translesion DNA synthesis and the action of endonucleases that would otherwise generate mutations and double-strand breaks. HMCES is evolutionarily conserved in all domains of life, and its biochemical properties are shared with its E. coli ortholog. Thus, HMCES is an ancient DNA lesion recognition protein that preserves genome integrity by promoting error-free repair of abasic sites in single-stranded DNA.


Asunto(s)
5-Metilcitosina/análogos & derivados , Reparación del ADN/fisiología , ADN de Cadena Simple/fisiología , 5-Metilcitosina/metabolismo , Ácido Apurínico/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Replicación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas , Escherichia coli/metabolismo , Polinucleótidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo
6.
Cell ; 175(2): 583-597.e23, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220456

RESUMEN

When DNA is unwound during replication, it becomes overtwisted and forms positive supercoils in front of the translocating DNA polymerase. Unless removed or dissipated, this superhelical tension can impede replication elongation. Topoisomerases, including gyrase and topoisomerase IV in bacteria, are required to relax positive supercoils ahead of DNA polymerase but may not be sufficient for replication. Here, we find that GapR, a chromosome structuring protein in Caulobacter crescentus, is required to complete DNA replication. GapR associates in vivo with positively supercoiled chromosomal DNA, and our biochemical and structural studies demonstrate that GapR forms a dimer-of-dimers that fully encircles overtwisted DNA. Further, we show that GapR stimulates gyrase and topo IV to relax positive supercoils, thereby enabling DNA replication. Analogous chromosome structuring proteins that locate to the overtwisted DNA in front of replication forks may be present in other organisms, similarly helping to recruit and stimulate topoisomerases during DNA replication.


Asunto(s)
Cromosomas Bacterianos/fisiología , ADN Bacteriano/química , ADN Superhelicoidal/metabolismo , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiología , Estructuras Cromosómicas/fisiología , Cromosomas Bacterianos/metabolismo , ADN/fisiología , Replicación del ADN/fisiología , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/fisiología , ADN Bacteriano/fisiología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Cinética
7.
Nat Rev Mol Cell Biol ; 21(3): 167-178, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32005969

RESUMEN

R-loops are three-stranded structures that harbour an RNA-DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such 'unscheduled' R-loops, evidence is mounting that cells harness the presence of RNA-DNA hybrids in scheduled, 'regulatory' R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.


Asunto(s)
ADN/química , Inestabilidad Genómica/genética , Estructuras R-Loop/genética , Animales , ADN/genética , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , Regulación de la Expresión Génica/genética , Código de Histonas/genética , Humanos , Conformación de Ácido Nucleico , Estructuras R-Loop/fisiología , ARN/química , ARN/genética , Telómero/genética , Transcripción Genética/genética
8.
Nat Rev Mol Cell Biol ; 18(8): 507-516, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28537574

RESUMEN

Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.


Asunto(s)
Replicación del ADN/fisiología , ADN/genética , Replicación del ADN/genética , Escherichia coli/genética , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología , Saccharomyces cerevisiae/genética
9.
Mol Cell ; 77(3): 514-527.e4, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31708417

RESUMEN

R loops arising during transcription induce genomic instability, but how cells respond to the R loop-associated genomic stress is still poorly understood. Here, we show that cells harboring high levels of R loops rely on the ATR kinase for survival. In response to aberrant R loop accumulation, the ataxia telangiectasia and Rad3-related (ATR)-Chk1 pathway is activated by R loop-induced reversed replication forks. In contrast to the activation of ATR by replication inhibitors, R loop-induced ATR activation requires the MUS81 endonuclease. ATR protects the genome from R loops by suppressing transcription-replication collisions, promoting replication fork recovery, and enforcing a G2/M cell-cycle arrest. Furthermore, ATR prevents excessive cleavage of reversed forks by MUS81, revealing a MUS81-triggered and ATR-mediated feedback loop that fine-tunes MUS81 activity at replication forks. These results suggest that ATR is a key sensor and suppressor of R loop-induced genomic instability, uncovering a signaling circuitry that safeguards the genome against R loops.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Estructuras R-Loop/genética , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Daño del ADN , Reparación del ADN , Replicación del ADN/genética , Replicación del ADN/fisiología , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Inestabilidad Genómica/fisiología , Células HeLa , Humanos , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal
10.
Mol Cell ; 78(5): 926-940.e13, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32369734

RESUMEN

The eukaryotic replisome, organized around the Cdc45-MCM-GINS (CMG) helicase, orchestrates chromosome replication. Multiple factors associate directly with CMG, including Ctf4 and the heterotrimeric fork protection complex (Csm3/Tof1 and Mrc1), which has important roles including aiding normal replication rates and stabilizing stalled forks. How these proteins interface with CMG to execute these functions is poorly understood. Here we present 3 to 3.5 Å resolution electron cryomicroscopy (cryo-EM) structures comprising CMG, Ctf4, and the fork protection complex at a replication fork. The structures provide high-resolution views of CMG-DNA interactions, revealing a mechanism for strand separation, and show Csm3/Tof1 "grip" duplex DNA ahead of CMG via a network of interactions important for efficient replication fork pausing. Although Mrc1 was not resolved in our structures, we determine its topology in the replisome by cross-linking mass spectrometry. Collectively, our work reveals how four highly conserved replisome components collaborate with CMG to facilitate replisome progression and maintain genome stability.


Asunto(s)
Proteínas de Unión al ADN/ultraestructura , Proteínas de Mantenimiento de Minicromosoma/ultraestructura , Proteínas Nucleares/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón/métodos , ADN Helicasas/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN de Hongos/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Cell ; 77(3): 528-541.e8, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31759821

RESUMEN

Formation of co-transcriptional R-loops underlies replication fork stalling upon head-on transcription-replication encounters. Here, we demonstrate that RAD51-dependent replication fork reversal induced by R-loops is followed by the restart of semiconservative DNA replication mediated by RECQ1 and RECQ5 helicases, MUS81/EME1 endonuclease, RAD52 strand-annealing factor, the DNA ligase IV (LIG4)/XRCC4 complex, and the non-catalytic subunit of DNA polymerase δ, POLD3. RECQ5 disrupts RAD51 filaments assembled on stalled forks after RECQ1-mediated reverse branch migration, preventing a new round of fork reversal and facilitating fork cleavage by MUS81/EME1. MUS81-dependent DNA breaks accumulate in cells lacking RAD52 or LIG4 upon induction of R-loop formation, suggesting that RAD52 acts in concert with LIG4/XRCC4 to catalyze fork religation, thereby mediating replication restart. The resumption of DNA synthesis after R-loop-associated fork stalling also requires active transcription, the restoration of which depends on MUS81, RAD52, LIG4, and the transcription elongation factor ELL. These findings provide mechanistic insights into transcription-replication conflict resolution.


Asunto(s)
Replicación del ADN/fisiología , Estructuras R-Loop/genética , Recombinasa Rad51/metabolismo , Línea Celular Tumoral , ADN Ligasas/metabolismo , ADN Polimerasa III/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Células HeLa , Humanos , Estructuras R-Loop/fisiología , Recombinasa Rad51/genética , Recombinasa Rad51/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , RecQ Helicasas/metabolismo , RecQ Helicasas/fisiología , Transcripción Genética/genética
12.
Mol Cell ; 78(6): 1237-1251.e7, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32442397

RESUMEN

DNA replication stress can stall replication forks, leading to genome instability. DNA damage tolerance pathways assist fork progression, promoting replication fork reversal, translesion DNA synthesis (TLS), and repriming. In the absence of the fork remodeler HLTF, forks fail to slow following replication stress, but underlying mechanisms and cellular consequences remain elusive. Here, we demonstrate that HLTF-deficient cells fail to undergo fork reversal in vivo and rely on the primase-polymerase PRIMPOL for repriming, unrestrained replication, and S phase progression upon limiting nucleotide levels. By contrast, in an HLTF-HIRAN mutant, unrestrained replication relies on the TLS protein REV1. Importantly, HLTF-deficient cells also exhibit reduced double-strand break (DSB) formation and increased survival upon replication stress. Our findings suggest that HLTF promotes fork remodeling, preventing other mechanisms of replication stress tolerance in cancer cells. This remarkable plasticity of the replication fork may determine the outcome of replication stress in terms of genome integrity, tumorigenesis, and response to chemotherapy.


Asunto(s)
Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , ADN/biosíntesis , Factores de Transcripción/metabolismo , Línea Celular Tumoral , ADN/genética , Daño del ADN/genética , ADN Primasa/metabolismo , ADN Primasa/fisiología , Reparación del ADN/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/fisiología , Células HEK293 , Humanos , Células K562 , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/fisiología , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/fisiología , Factores de Transcripción/genética
13.
Mol Cell ; 78(3): 396-410.e4, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32169162

RESUMEN

The Mec1 and Rad53 kinases play a central role during acute replication stress in budding yeast. They are also essential for viability in normal growth conditions, but the signal that activates the Mec1-Rad53 pathway in the absence of exogenous insults is currently unknown. Here, we show that this pathway is active at the onset of normal S phase because deoxyribonucleotide triphosphate (dNTP) levels present in G1 phase may not be sufficient to support processive DNA synthesis and impede DNA replication. This activation can be suppressed experimentally by increasing dNTP levels in G1 phase. Moreover, we show that unchallenged cells entering S phase in the absence of Rad53 undergo irreversible fork collapse and mitotic catastrophe. Together, these data indicate that cells use suboptimal dNTP pools to detect the onset of DNA replication and activate the Mec1-Rad53 pathway, which in turn maintains functional forks and triggers dNTP synthesis, allowing the completion of DNA replication.


Asunto(s)
Replicación del ADN/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Desoxirribonucleótidos/genética , Desoxirribonucleótidos/metabolismo , Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Mitosis , Proteínas Serina-Treonina Quinasas/genética , Origen de Réplica , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética
14.
Mol Cell ; 77(3): 461-474.e9, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31676232

RESUMEN

Acute treatment with replication-stalling chemotherapeutics causes reversal of replication forks. BRCA proteins protect reversed forks from nucleolytic degradation, and their loss leads to chemosensitivity. Here, we show that fork degradation is no longer detectable in BRCA1-deficient cancer cells exposed to multiple cisplatin doses, mimicking a clinical treatment regimen. This effect depends on increased expression and chromatin loading of PRIMPOL and is regulated by ATR activity. Electron microscopy and single-molecule DNA fiber analyses reveal that PRIMPOL rescues fork degradation by reinitiating DNA synthesis past DNA lesions. PRIMPOL repriming leads to accumulation of ssDNA gaps while suppressing fork reversal. We propose that cells adapt to repeated cisplatin doses by activating PRIMPOL repriming under conditions that would otherwise promote pathological reversed fork degradation. This effect is generalizable to other conditions of impaired fork reversal (e.g., SMARCAL1 loss or PARP inhibition) and suggests a new strategy to modulate cisplatin chemosensitivity by targeting the PRIMPOL pathway.


Asunto(s)
ADN Primasa/metabolismo , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , Enzimas Multifuncionales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , ADN/genética , Daño del ADN/genética , Daño del ADN/fisiología , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Primasa/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/fisiología , Células HEK293 , Humanos , Enzimas Multifuncionales/fisiología , Ubiquitina-Proteína Ligasas/genética
15.
Nat Rev Mol Cell Biol ; 16(4): 207-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25714681

RESUMEN

The remodelling of replication forks into four-way junctions following replication perturbation, known as fork reversal, was hypothesized to promote DNA damage tolerance and repair during replication. Albeit conceptually attractive, for a long time fork reversal in vivo was found only in prokaryotes and specific yeast mutants, calling its evolutionary conservation and physiological relevance into question. Based on the recent visualization of replication forks in metazoans, fork reversal has emerged as a global, reversible and regulated process, with intriguing implications for replication completion, chromosome integrity and the DNA damage response. The study of the putative in vivo roles of recently identified eukaryotic factors in fork remodelling promises to shed new light on mechanisms of genome maintenance and to provide novel attractive targets for cancer therapy.


Asunto(s)
Replicación del ADN , Animales , Cromatina/fisiología , Daño del ADN/fisiología , Replicación del ADN/fisiología , Humanos
16.
Nat Rev Mol Cell Biol ; 16(6): 360-74, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25999062

RESUMEN

DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.


Asunto(s)
Replicación del ADN/fisiología , ADN/biosíntesis , Fase G1/fisiología , Origen de Réplica/fisiología , Fase S/fisiología , Animales , Diferenciación Celular/fisiología , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , ADN/genética , Humanos
17.
Genes Dev ; 33(15-16): 1008-1026, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31123061

RESUMEN

Genome replication involves dealing with obstacles that can result from DNA damage but also from chromatin alterations, topological stress, tightly bound proteins or non-B DNA structures such as R loops. Experimental evidence reveals that an engaged transcription machinery at the DNA can either enhance such obstacles or be an obstacle itself. Thus, transcription can become a potentially hazardous process promoting localized replication fork hindrance and stress, which would ultimately cause genome instability, a hallmark of cancer cells. Understanding the causes behind transcription-replication conflicts as well as how the cell resolves them to sustain genome integrity is the aim of this review.


Asunto(s)
Replicación del ADN/fisiología , Inestabilidad Genómica/genética , Transcripción Genética/fisiología , Genoma/genética , Humanos , Neoplasias/fisiopatología , Elongación de la Transcripción Genética/fisiología
18.
Nat Rev Mol Cell Biol ; 15(9): 601-14, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25145851

RESUMEN

Structural maintenance of chromosomes (SMC) complexes, which in eukaryotic cells include cohesin, condensin and the Smc5/6 complex, are central regulators of chromosome dynamics and control sister chromatid cohesion, chromosome condensation, DNA replication, DNA repair and transcription. Even though the molecular mechanisms that lead to this large range of functions are still unclear, it has been established that the complexes execute their functions through their association with chromosomal DNA. A large set of data also indicates that SMC complexes work as intermolecular and intramolecular linkers of DNA. When combining these insights with results from ongoing analyses of their chromosomal binding, and how this interaction influences the structure and dynamics of chromosomes, a picture of how SMC complexes carry out their many functions starts to emerge.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromosomas Humanos/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona , Cromosomas Humanos/genética , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Humanos , Complejos Multiproteicos/genética , Transcripción Genética/fisiología
19.
Nature ; 579(7800): 603-608, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132710

RESUMEN

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption1. Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers1,2. Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer3,4. The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells5-7. However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


Asunto(s)
Acetaldehído/química , Reactivos de Enlaces Cruzados/química , Daño del ADN , Reparación del ADN , Replicación del ADN/fisiología , ADN/química , Etanol/química , Anemia de Fanconi/metabolismo , Animales , Cisplatino/química , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , Etanol/farmacología , Mutagénesis/efectos de los fármacos , Nucleotidiltransferasas/metabolismo , Mutación Puntual/efectos de los fármacos , Mutación Puntual/genética , Xenopus , Proteínas de Xenopus/metabolismo
20.
Mol Cell ; 71(6): 897-910.e8, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30122534

RESUMEN

Chromatin ubiquitination by the ubiquitin ligase RNF168 is critical to regulate the DNA damage response (DDR). DDR deficiencies lead to cancer-prone syndromes, but whether this reflects DNA repair defects is still elusive. We identified key factors of the RNF168 pathway as essential mediators of efficient DNA replication in unperturbed S phase. We found that loss of RNF168 leads to reduced replication fork progression and to reversed fork accumulation, particularly evident at repetitive sequences stalling replication. Slow fork progression depends on MRE11-dependent degradation of reversed forks, implicating RNF168 in reversed fork protection and restart. Consistent with regular nucleosomal organization of reversed forks, the replication function of RNF168 requires H2A ubiquitination. As this novel function is shared with the key DDR players ATM, γH2A.X, RNF8, and 53BP1, we propose that double-stranded ends at reversed forks engage classical DDR factors, suggesting an alternative function of this pathway in preventing genome instability and human disease.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Histonas/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Humanos , Fase S/fisiología , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA