Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 550(7674): 114-118, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28953874

RESUMEN

The ability to directly uncover the contributions of genes to a given phenotype is fundamental for biology research. However, ostensibly homogeneous cell populations exhibit large clonal variance that can confound analyses and undermine reproducibility. Here we used genome-saturated mutagenesis to create a biobank of over 100,000 individual haploid mouse embryonic stem (mES) cell lines targeting 16,970 genes with genetically barcoded, conditional and reversible mutations. This Haplobank is, to our knowledge, the largest resource of hemi/homozygous mutant mES cells to date and is available to all researchers. Reversible mutagenesis overcomes clonal variance by permitting functional annotation of the genome directly in sister cells. We use the Haplobank in reverse genetic screens to investigate the temporal resolution of essential genes in mES cells, and to identify novel genes that control sprouting angiogenesis and lineage specification of blood vessels. Furthermore, a genome-wide forward screen with Haplobank identified PLA2G16 as a host factor that is required for cytotoxicity by rhinoviruses, which cause the common cold. Therefore, clones from the Haplobank combined with the use of reversible technologies enable high-throughput, reproducible, functional annotation of the genome.


Asunto(s)
Bancos de Muestras Biológicas , Genómica/métodos , Haploidia , Células Madre Embrionarias de Ratones/metabolismo , Mutación , Animales , Vasos Sanguíneos/citología , Linaje de la Célula/genética , Resfriado Común/genética , Resfriado Común/virología , Genes Esenciales/genética , Pruebas Genéticas , Células HEK293 , Homocigoto , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Neovascularización Fisiológica/genética , Fosfolipasas A2 Calcio-Independiente/genética , Fosfolipasas A2 Calcio-Independiente/metabolismo , Rhinovirus/patogenicidad
2.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835041

RESUMEN

Deficiencies in epithelial barrier integrity are involved in the pathogenesis of chronic rhinosinusitis (CRS). This study aimed to investigate the role of ephrinA1/ephA2 signaling on sinonasal epithelial permeability and rhinovirus-induced epithelial permeability. This role in the process of epithelial permeability was evaluated by stimulating ephA2 with ephrinA1 and inactivating ephA2 with ephA2 siRNA or inhibitor in cells exposed to rhinovirus infection. EphrinA1 treatment increased epithelial permeability, which was associated with decreased expression of ZO-1, ZO-2, and occludin. These effects of ephrinA1 were attenuated by blocking the action of ephA2 with ephA2 siRNA or inhibitor. Furthermore, rhinovirus infection upregulated the expression levels of ephrinA1 and ephA2, increasing epithelial permeability, which was suppressed in ephA2-deficient cells. These results suggest a novel role of ephrinA1/ephA2 signaling in epithelial barrier integrity in the sinonasal epithelium, suggesting their participation in rhinovirus-induced epithelial dysfunction.


Asunto(s)
Permeabilidad de la Membrana Celular , Células Epiteliales , Receptor EphA1 , Receptor EphA2 , Humanos , Permeabilidad de la Membrana Celular/genética , Permeabilidad de la Membrana Celular/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Infecciones por Picornaviridae/metabolismo , Receptor EphA2/metabolismo , Rhinovirus/patogenicidad , ARN Bicatenario , ARN Interferente Pequeño/metabolismo , Transducción de Señal/fisiología
3.
Cell Mol Life Sci ; 78(21-22): 6735-6744, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34459952

RESUMEN

Kallikrein-related peptidases (KLKs) or kallikreins have been linked to diverse (patho) physiological processes, such as the epidermal desquamation and inflammation, seminal clot liquefaction, neurodegeneration, and cancer. Recent mounting evidence suggests that KLKs also represent important regulators of viral infections. It is well-established that certain enveloped viruses, including influenza and coronaviruses, require proteolytic processing of their hemagglutinin or spike proteins, respectively, to infect host cells. Similarly, the capsid protein of the non-enveloped papillomavirus L1 should be proteolytically cleaved for viral uncoating. Consequently, extracellular or membrane-bound proteases of the host cells are instrumental for viral infections and represent potential targets for drug development. Here, we summarize how extracellular proteolysis mediated by the kallikreins is implicated in the process of influenza (and potentially coronavirus and papillomavirus) entry into host cells. Besides direct proteolytic activation of viruses, KLK5 and 12 promote viral entry indirectly through proteolytic cascade events, like the activation of thrombolytic enzymes that also can process hemagglutinin, while additional functions of KLKs in infection cannot be excluded. In the light of recent evidence, KLKs represent potential host targets for the development of new antivirals. Humanized animal models to validate their key functions in viral infections will be valuable.


Asunto(s)
COVID-19/enzimología , COVID-19/virología , Interacciones Microbiota-Huesped/fisiología , Calicreínas/metabolismo , SARS-CoV-2 , Virosis/enzimología , Animales , Asma/etiología , Coronavirus/genética , Coronavirus/patogenicidad , Coronavirus/fisiología , Interacciones Microbiota-Huesped/genética , Humanos , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidad , Orthomyxoviridae/fisiología , Infecciones por Papillomavirus/enzimología , Infecciones por Papillomavirus/virología , Infecciones por Picornaviridae/complicaciones , Infecciones por Picornaviridae/enzimología , Infecciones por Picornaviridae/virología , Procesamiento Proteico-Postraduccional , Proteolisis , Rhinovirus/patogenicidad , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Infección por el Virus de la Varicela-Zóster/enzimología , Infección por el Virus de la Varicela-Zóster/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virosis/virología , Internalización del Virus
4.
Am J Respir Crit Care Med ; 203(7): 822-830, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33357024

RESUMEN

Rationale: Rhinovirus (RV) C can cause asymptomatic infection and respiratory illnesses ranging from the common cold to severe wheezing.Objectives: To identify how age and other individual-level factors are associated with susceptibility to RV-C illnesses.Methods: Longitudinal data from the COAST (Childhood Origins of Asthma) birth cohort study were analyzed to determine relationships between age and RV-C infections. Neutralizing antibodies specific for RV-A and RV-C (three types each) were determined using a novel PCR-based assay. Data were pooled from 14 study cohorts in the United States, Finland, and Australia, and mixed-effects logistic regression was used to identify factors related to the proportion of RV-C versus RV-A detection.Measurements and Main Results: In COAST, RV-A and RV-C infections were similarly common in infancy, whereas RV-C was detected much less often than RV-A during both respiratory illnesses and scheduled surveillance visits (P < 0.001, χ2) in older children. The prevalence of neutralizing antibodies to RV-A or RV-C types was low (5-27%) at the age of 2 years, but by the age of 16 years, RV-C seropositivity was more prevalent (78% vs. 18% for RV-A; P < 0.0001). In the pooled analysis, the RV-C to RV-A detection ratio during illnesses was significantly related to age (P < 0.0001), CDHR3 genotype (P < 0.05), and wheezing illnesses (P < 0.05). Furthermore, certain RV types (e.g., C2, C11, A78, and A12) were consistently more virulent and prevalent over time.Conclusions: Knowledge of prevalent RV types, antibody responses, and populations at risk based on age and genetics may guide the development of vaccines or other novel therapies against this important respiratory pathogen.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Asma/fisiopatología , Susceptibilidad a Enfermedades , Infecciones por Picornaviridae/fisiopatología , Ruidos Respiratorios/fisiopatología , Rhinovirus/genética , Rhinovirus/patogenicidad , Adolescente , Factores de Edad , Asma/epidemiología , Asma/virología , Australia/epidemiología , Niño , Preescolar , Estudios de Cohortes , Femenino , Finlandia/epidemiología , Variación Genética , Genotipo , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/inmunología , Estados Unidos/epidemiología
5.
Am J Respir Cell Mol Biol ; 65(5): 544-554, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34181859

RESUMEN

Human rhinovirus (RV) is a major risk factor for chronic obstructive pulmonary disease (COPD) and asthma exacerbations. The exploration of RV pathogenesis has been hampered by a lack of disease-relevant model systems. We performed a detailed characterization of host responses to RV infection in human lung tissue ex vivo and investigated whether these responses are disease relevant for patients with COPD and asthma. In addition, impact of the viral replication inhibitor rupintrivir was evaluated. Human precision-cut lung slices (PCLS) were infected with RV1B with or without rupintrivir. At Days 1 and 3 after infection, RV tissue localization, tissue viability, and viral load were determined. To characterize host responses to infection, mediator and whole genome analyses were performed. RV successfully replicated in PCLS airway epithelial cells and induced both antiviral and proinflammatory cytokines such as IFNα2a, CXCL10, CXCL11, IFN-γ, TNFα, and CCL5. Genomic analyses revealed that RV not only induced antiviral immune responses but also triggered changes in epithelial cell-associated pathways. Strikingly, the RV response in PCLS was reflective of gene expression changes described in patients with COPD and asthma. Although RV-induced host immune responses were abrogated by rupintrivir, RV-triggered epithelial processes were largely refractory to antiviral treatment. Detailed analysis of RV-infected human PCLS and comparison with gene signatures of patients with COPD and asthma revealed that the human RV PCLS model represents disease-relevant biological mechanisms that can be partially inhibited by a well-known antiviral compound and provide an outstanding opportunity to evaluate novel therapeutics.


Asunto(s)
Asma/genética , Interacciones Huésped-Patógeno/genética , Pulmón/virología , Infecciones por Picornaviridae/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Anciano , Antivirales/farmacología , Asma/patología , Bronquios/patología , Bronquios/fisiología , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Isoxazoles/farmacología , Pulmón/fisiología , Masculino , Persona de Mediana Edad , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Infecciones por Picornaviridae/tratamiento farmacológico , Infecciones por Picornaviridae/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Pirrolidinonas/farmacología , Rhinovirus/patogenicidad , Valina/análogos & derivados , Valina/farmacología
6.
Virus Genes ; 57(3): 276-279, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33988838

RESUMEN

Rhinoviruses (RVs) are the most common etiological agent implicated in respiratory infections among infants and children. There are currently no approved antivirals and vaccine for use against the virus; hence, the need for information on the genotypes of rhinovirus from developing countries of the world with high burden of the infection. This study determined the genotypes of rhinovirus circulating among children in selected cities in Nigeria. Nasopharyngeal and oropharyngeal samples were carefully collected from children showing signs of respiratory infection in two communities in South-west Nigeria. Polymerase Chain Reaction was used to amplify the hypervariable part of the 5'- non-coding region, the entire viral protein gene 4 and the 5' terminus of the VP2 gene of RV. Nucleotide BLAST and phylogenetic analyses were used to genotype the isolates. Of the samples analysed, 12.7% showed rhinovirus positivity. All the three genotypes of rhinovirus were detected with genotype C (71.4%), being the predominant. Multiple strains of rhinovirus were found circulating. We showed for the first time the genotypes and strains of rhinovirus circulating in Nigeria. Further studies are required to highlight transmission patterns and disease severity among rhinovirus species in Nigeria.


Asunto(s)
Infecciones del Sistema Respiratorio/genética , Rhinovirus/genética , Proteínas Virales/genética , Niño , Preescolar , Femenino , Genotipo , Humanos , Lactante , Masculino , Filogenia , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Rhinovirus/patogenicidad
7.
Epidemiol Infect ; 149: e96, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33849679

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. Prevention and control strategies require an improved understanding of SARS-CoV-2 dynamics. We did a rapid review of the literature on SARS-CoV-2 viral dynamics with a focus on infective dose. We sought comparisons of SARS-CoV-2 with other respiratory viruses including SARS-CoV-1 and Middle East respiratory syndrome coronavirus. We examined laboratory animal and human studies. The literature on infective dose, transmission and routes of exposure was limited specially in humans, and varying endpoints were used for measurement of infection. Despite variability in animal studies, there was some evidence that increased dose at exposure correlated with higher viral load clinically, and severe symptoms. Higher viral load measures did not reflect coronavirus disease 2019 severity. Aerosol transmission seemed to raise the risk of more severe respiratory complications in animals. An accurate quantitative estimate of the infective dose of SARS-CoV-2 in humans is not currently feasible and needs further research. Our review suggests that it is small, perhaps about 100 particles. Further work is also required on the relationship between routes of transmission, infective dose, co-infection and outcomes.


Asunto(s)
COVID-19/transmisión , SARS-CoV-2/patogenicidad , Carga Viral , Adenoviridae/patogenicidad , Animales , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Control de Enfermedades Transmisibles , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Cricetinae , Enterovirus/patogenicidad , Hurones , Humanos , Macaca mulatta , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Orthomyxoviridae/patogenicidad , Virus Sincitiales Respiratorios/patogenicidad , Rhinovirus/patogenicidad , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/transmisión , Síndrome Respiratorio Agudo Grave/virología , Virosis/epidemiología , Virosis/transmisión , Virosis/virología
8.
J Immunol ; 203(9): 2508-2519, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31548332

RESUMEN

IFN responses to viral infection are necessary to establish intrinsic antiviral state, but if unchecked can lead to heightened inflammation. Recently, we showed that TLR2 activation contributes to limitation of rhinovirus (RV)-induced IFN response in the airway epithelial cells. We also demonstrated that compared with normal airway epithelial cells, those from patients with chronic obstructive pulmonary disease (COPD) show higher IFN responses to RV, but the underlying mechanisms are not known. Initially, RV-induced IFN responses depend on dsRNA receptor activation and then are amplified via IFN-stimulated activation of JAK/STAT signaling. In this study, we show that in normal cells, TLR2 limits RV-induced IFN responses by attenuating STAT1 and STAT2 phosphorylation and this was associated with TLR2-dependent SIRT-1 expression. Further, inhibition of SIRT-1 enhanced RV-induced IFN responses, and this was accompanied by increased STAT1/STAT2 phosphorylation, indicating that TLR2 may limit RV-induced IFN responses via SIRT-1. COPD airway epithelial cells showed attenuated IL-8 responses to TLR2 agonist despite expressing TLR2 similar to normal, indicating dysregulation in TLR2 signaling pathway. Unlike normal, COPD cells failed to show RV-induced TLR2-dependent SIRT-1 expression. Pretreatment with quercetin, which increases SIRT-1 expression, normalized RV-induced IFN levels in COPD airway epithelial cells. Inhibition of SIRT-1 in quercetin-pretreated COPD cells abolished the normalizing effects of quercetin on RV-induced IFN expression in these cells, confirming that quercetin exerts its effect via SIRT-1. In summary, we show that TLR2 is required for limiting RV-induced IFNs, and this pathway is dysregulated in COPD airway epithelial cells, leading to exaggerated IFN production.


Asunto(s)
Bronquios/inmunología , Interferones/biosíntesis , Enfermedad Pulmonar Obstructiva Crónica/etiología , Rhinovirus/patogenicidad , Sirtuina 1/fisiología , Receptor Toll-Like 2/fisiología , Células Cultivadas , Células Epiteliales , Humanos , Helicasa Inducida por Interferón IFIH1/fisiología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , ARN Bicatenario/fisiología , Factores de Transcripción STAT/fisiología , Transducción de Señal/fisiología , Sirtuina 1/genética , Proteína 1 Supresora de la Señalización de Citocinas/fisiología
9.
Allergol Immunopathol (Madr) ; 49(1): 153-158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33528944

RESUMEN

Although there is increasing evidence showing that infants with viral bronchiolitis exhibit a high degree of heterogeneity, a core uncertainty shared by many clinicians is with regard to understanding which patients are most likely to benefit from bronchodilators such as albuterol. Based on our review, we concluded that older infants with rhinovirus (RV) bronchiolitis, especially those with a nasopharyngeal microbiome dominated by Haemophilus influenzae; those affected during nonpeak months or during non-respiratory syncytial virus (RSV) predominant months; those with wheezing at presentation; those with clinical characteristics such as atopic dermatitis or a family history of asthma in a first-degree relative; and those infants infected with RSV genotypes ON1 and BA, have the greatest likelihood of benefiting from albuterol. Presently, this patient profile could serve as the basis for rational albuterol administration in patients with viral bronchiolitis, at least on a therapeutic trial basis, and it could also be the starting point for future targeted randomized clinical trials (RCTs) on the use of albuterol among a subset of infants with bronchiolitis.


Asunto(s)
Albuterol/uso terapéutico , Bronquiolitis Viral/tratamiento farmacológico , Broncodilatadores/uso terapéutico , Bronquiolitis Viral/diagnóstico , Bronquiolitis Viral/virología , Humanos , Lactante , Nasofaringe/microbiología , Fenotipo , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/patogenicidad , Rhinovirus/patogenicidad , Estaciones del Año
10.
Hum Genet ; 139(6-7): 949-959, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32112143

RESUMEN

Human rhinoviruses (RV) are a frequent cause of respiratory tract infections with substantial morbidity and mortality in some patients. Nevertheless, the genetic basis of susceptibility to RV in humans has been relatively understudied. Experimental infections of mice and in vitro infections of human cells have indicated that various pathogen recognition receptors (TLRs, RIG-I, and MDA5) regulate innate immune responses to RV. However, deficiency of MDA5 is the only one among these so far uncovered that confers RV susceptibility in humans. Other work has shown increased RV susceptibility in patients with a polymorphism in CDHR3 that encodes the cellular receptor for RV-C entry. Here, we provide a comprehensive review of the genetic determinants of human RV susceptibility in the context of what is known about RV biology.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Infecciones por Picornaviridae/complicaciones , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/virología , Rhinovirus/patogenicidad , Humanos , Infecciones por Picornaviridae/inmunología , Infecciones por Picornaviridae/virología , Infecciones del Sistema Respiratorio/inmunología , Rhinovirus/inmunología
11.
J Virol ; 93(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30333178

RESUMEN

Rhinoviral infection is a common trigger of the excessive inflammation observed during exacerbations of asthma and chronic obstructive pulmonary disease. Rhinovirus (RV) recognition by pattern recognition receptors activates the mitogen-activated protein kinase (MAPK) pathways, which are common inducers of inflammatory gene production. A family of dual-specificity phosphatases (DUSPs) can regulate MAPK function, but their roles in rhinoviral infection are not known. We hypothesized that DUSPs would negatively regulate the inflammatory response to RV infection. Our results revealed that the p38 and c-Jun N-terminal kinase (JNK) MAPKs play key roles in the inflammatory response of epithelial cells to RV infection. Three DUSPs previously shown to have roles in innate immunity (DUSPs 1, 4, and 10) were expressed in primary bronchial epithelial cells, and one of them, DUSP10, was downregulated by RV infection. Small interfering RNA-mediated knockdown of DUSP10 identified a role for the protein in negatively regulating inflammatory cytokine production in response to interleukin-1ß (IL-1ß), alone and in combination with RV, without any effect on RV replication. This study identifies DUSP10 as an important regulator of airway inflammation in respiratory viral infection.IMPORTANCE Rhinoviruses are one of the causes of the common cold. In patients with asthma or chronic obstructive pulmonary disease, viral infections, including those with rhinovirus, are the commonest cause of exacerbations. Novel therapeutics to limit viral inflammation are clearly required. The work presented here identifies DUSP10 as an important protein involved in limiting the inflammatory response in the airway without affecting immune control of the virus.


Asunto(s)
Bronquios/virología , Fosfatasas de Especificidad Dual/metabolismo , Interleucina-1beta/farmacología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Rhinovirus/patogenicidad , Bronquios/citología , Bronquios/inmunología , Células Cultivadas , Regulación hacia Abajo , Fosfatasas de Especificidad Dual/genética , Células Epiteliales/citología , Células Epiteliales/inmunología , Células Epiteliales/virología , Técnicas de Silenciamiento del Gen , Humanos , Sistema de Señalización de MAP Quinasas , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Rhinovirus/inmunología
12.
J Med Virol ; 92(11): 2623-2630, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32557776

RESUMEN

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread around the world, causing serious illness and death and creating a heavy burden on the healthcare systems of many countries. Since the virus first emerged in late November 2019, its spread has coincided with peak circulation of several seasonal respiratory viruses, yet some studies have noted limited coinfections between SARS-CoV-2 and other viruses. We use a mathematical model of viral coinfection to study SARS-CoV-2 coinfections, finding that SARS-CoV-2 replication is easily suppressed by many common respiratory viruses. According to our model, this suppression is because SARS-CoV-2 has a lower growth rate (1.8/d) than the other viruses examined in this study. The suppression of SARS-CoV-2 by other pathogens could have implications for the timing and severity of a second wave.


Asunto(s)
COVID-19/virología , Coinfección/virología , Resfriado Común/epidemiología , Gripe Humana/epidemiología , Modelos Teóricos , COVID-19/epidemiología , Coinfección/epidemiología , Resfriado Común/virología , Humanos , Gripe Humana/virología , Virus Sincitiales Respiratorios/patogenicidad , Rhinovirus/patogenicidad , SARS-CoV-2/patogenicidad
13.
Neurol Sci ; 41(2): 457-458, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31654361

RESUMEN

We report the case of a 3.6-year-old male child who developed progressive hyposthenia of the left lower limb. Symptoms were preceded by rhinitis, malaise, and fever. Brain and spinal magnetic resonance imaging revealed diffuse signal abnormalities compatible with a subacute myeloencephalitis. A diagnostic lumbar puncture was performed and followed by an empirical therapy including Acyclovir, Ceftriaxone, and Clarithromycin. The cerebrospinal fluid analysis revealed clear fluid, glucose, proteins, albumin within the reference range, and 144 leukocytes/mm3. Oligoclonal bands were absent and a search for viruses was negative. Wide microbiological surveillance was performed on surface swabs, blood, urine, and stool. Both nasal and pharyngeal swabs were positive for PicoRNAvirus: sequencing identified Rhinovirus A44. This virus has been detected in association with acute flaccid paralysis in only a few patients worldwide, whereas in the great majority of patients with acute flaccid paralysis other Enterovirus species were identified. The most appropriate therapeutic approach towards acute flaccid paralysis is still a matter of debate in the scientific community, with no current definitivere commendations available. With a combined immunosuppressive and anti-inflammatory therapy including intravenous immunoglobulins, intravenous Methylprednisolone, oral Prednisone, and oral Ibuprofen, we experienced a positive outcome both from the clinical point of view and from three-month follow-up imaging studies. Given the rarity and the complexity of this condition, additional studies are needed to better define the potential role of Rhinovirus A44 in the pathogenesis of the disease and the efficacy of any therapeutic measure in the management of acute flaccid paralysis.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central/diagnóstico , Mielitis/diagnóstico , Enfermedades Neuromusculares/diagnóstico , Infecciones por Picornaviridae/diagnóstico , Rhinovirus/patogenicidad , Enfermedades Virales del Sistema Nervioso Central/etiología , Enfermedades Virales del Sistema Nervioso Central/virología , Preescolar , Humanos , Masculino , Mielitis/etiología , Mielitis/virología , Enfermedades Neuromusculares/etiología , Enfermedades Neuromusculares/virología , Infecciones por Picornaviridae/complicaciones , Infecciones por Picornaviridae/virología , Rhinovirus/aislamiento & purificación
14.
Am J Respir Crit Care Med ; 199(12): 1496-1507, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30562053

RESUMEN

Rationale: Human rhinovirus (HRV) is a common cause of chronic obstructive pulmonary disease (COPD) exacerbations. Secondary bacterial infection is associated with more severe symptoms and delayed recovery. Alveolar macrophages clear bacteria from the lung and maintain lung homeostasis through cytokine secretion. These processes are defective in COPD. The effect of HRV on macrophage function is unknown. Objectives: To investigate the effect of HRV on phagocytosis and cytokine response to bacteria by alveolar macrophages and monocyte-derived macrophages (MDM) in COPD and healthy control subjects. Methods: Alveolar macrophages were obtained by bronchoscopy and MDM by adherence. Macrophages were exposed to HRV16 (multiplicity of infection 5), polyinosinic:polycytidylic acid (poly I:C) 30 µg/ml, IFN-ß 10 µg/ml, IFN-γ 10 µg/ml, or medium control for 24 hours. Phagocytosis of fluorescently labeled Haemophilus influenzae or Streptococcus pneumoniae was assessed by fluorimetry. CXCL8 (IL-8), IL-6, TNF-α (tumor necrosis factor-α), and IL-10 release was measured by ELISA. Measurements and Main Results: HRV significantly impaired phagocytosis of H. influenzae by 23% in MDM (n = 37; P = 0.004) and 18% in alveolar macrophages (n = 20; P < 0.0001) in COPD. HRV also significantly reduced phagocytosis of S. pneumoniae by 33% in COPD MDM (n = 20; P = 0.0192). There was no effect in healthy control subjects. Phagocytosis of H. influenzae was also impaired by poly I:C but not IFN-ß or IFN-γ in COPD MDM. HRV significantly reduced cytokine responses to H. influenzae. The IL-10 response to H. influenzae was significantly impaired by poly I:C, IFN-ß, and IFN-γ in COPD cells. Conclusions: HRV impairs phagocytosis of bacteria in COPD, which may lead to an outgrowth of bacteria. HRV also impairs cytokine responses to bacteria via the TLR3/IFN pathway, which may prevent resolution of inflammation leading to prolonged exacerbations in COPD.


Asunto(s)
Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Fagocitosis/inmunología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Enfermedad Pulmonar Obstructiva Crónica/virología , Rhinovirus/patogenicidad , Femenino , Humanos , Inmunidad Innata , Londres , Masculino , Persona de Mediana Edad
15.
J Infect Dis ; 219(2): 197-205, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30189092

RESUMEN

Background: Acute respiratory infection (ARI) is of great concern in public health. It remains unclear whether viral infections can affect the host's susceptibility to subsequent ARIs. Methods: A prospective cohort study on ARIs of children below 5 years old was conducted in the Philippines from 2014 to 2016. The respiratory symptoms were recorded daily, and nasopharyngeal swabs were collected at both household and health facilities. The specimens were tested for respiratory viruses. We then determined whether viral etiology was associated with the severity of the present ARI and whether previous viral infections was associated with subsequent ARIs. Results: A total of 3851 children and 16337 ARI episodes were enrolled and recorded, respectively. Samples were collected from 24% of all ARI episodes; collection rate at the healthcare facilities was 95%. Enterovirus D68, rhinovirus species C, and respiratory syncytial virus were significantly associated with severe ARIs. The risk for subsequent ARIs was significantly enhanced after infections with adenovirus, influenza A virus, parainfluenza virus type 4, and rhinovirus species C. Conclusions: This study revealed that viral etiology plays a significant role in the severity of the present ARI and that viral infection affects the host's susceptibility to subsequent ARIs.


Asunto(s)
Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Virosis/epidemiología , Virosis/etiología , Virosis/virología , Preescolar , Enterovirus/patogenicidad , Composición Familiar , Femenino , Instituciones de Salud , Humanos , Lactante , Recién Nacido , Virus de la Influenza A , Masculino , Virus de la Parainfluenza 4 Humana , Filipinas/epidemiología , Estudios Prospectivos , Virus Sincitiales Respiratorios , Rhinovirus/patogenicidad , Factores de Riesgo
16.
Am J Physiol Lung Cell Mol Physiol ; 317(1): L57-L70, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30908938

RESUMEN

Asthma exacerbations are often caused by rhinovirus (RV). We and others have shown that Toll-like receptor 2 (TLR2), a membrane surface receptor that recognizes bacterial lipopeptides and lipoteichoic acid, is required and sufficient for RV-induced proinflammatory responses in vitro and in vivo. We hypothesized that viral protein-4 (VP4), an internal capsid protein that is myristoylated upon viral replication and externalized upon viral binding, is a ligand for TLR2. Recombinant VP4 and myristoylated VP4 (MyrVP4) were purified by Ni-affinity chromatography. MyrVP4 was also purified from RV-A1B-infected HeLa cells by urea solubilization and anti-VP4 affinity chromatography. Finally, synthetic MyrVP4 was produced by chemical peptide synthesis. MyrVP4-TLR2 interactions were assessed by confocal fluorescence microscopy, fluorescence resonance energy transfer (FRET), and monitoring VP4-induced cytokine mRNA expression in the presence of anti-TLR2 and anti-VP4. MyrVP4 and TLR2 colocalized in TLR2-expressing HEK-293 cells, mouse bone marrow-derived macrophages, human bronchoalveolar macrophages, and human airway epithelial cells. Colocalization was absent in TLR2-null HEK-293 cells and blocked by anti-TLR2 and anti-VP4. Cy3-labeled MyrVP4 and Cy5-labeled anti-TLR2 showed an average fractional FRET efficiency of 0.24 ± 0.05, and Cy5-labeled anti-TLR2 increased and unlabeled MyrVP4 decreased FRET efficiency. MyrVP4-induced chemokine mRNA expression was higher than that elicited by VP4 alone and was attenuated by anti-TLR2 and anti-VP4. Cytokine expression was similarly increased by MyrVP4 purified from RV-infected HeLa cells and synthetic MyrVP4. We conclude that, during RV infection, MyrVP4 and TLR2 interact to generate a proinflammatory response.


Asunto(s)
Asma/genética , Proteínas de la Cápside/genética , Eosinofilia/genética , Infecciones por Picornaviridae/genética , Procesamiento Proteico-Postraduccional , Receptor Toll-Like 2/genética , Proteínas Virales/genética , Adolescente , Secuencia de Aminoácidos , Animales , Asma/inmunología , Asma/patología , Asma/virología , Proteínas de la Cápside/inmunología , Niño , Eosinofilia/inmunología , Eosinofilia/patología , Eosinofilia/virología , Células Epiteliales/inmunología , Células Epiteliales/virología , Femenino , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ácidos Mirísticos/inmunología , Ácidos Mirísticos/metabolismo , Infecciones por Picornaviridae/inmunología , Infecciones por Picornaviridae/patología , Infecciones por Picornaviridae/virología , Unión Proteica , Rhinovirus/inmunología , Rhinovirus/patogenicidad , Transducción de Señal , Receptor Toll-Like 2/inmunología , Proteínas Virales/inmunología , Replicación Viral
17.
Biol Blood Marrow Transplant ; 25(5): 1011-1021, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30537551

RESUMEN

Human rhinovirus lower respiratory tract infection (LRTI) is associated with mortality after hematopoietic cell transplantation (HCT); however, risk factors for LRTI are not well characterized. We sought to develop a risk score for progression to LRTI from upper respiratory tract infection (URTI) in HCT recipients. Risk factors for LRTI within 90 days were analyzed using Cox regression among HCT recipients with rhinovirus URTI between January 2009 and March 2016. The final multivariable model included factors with a meaningful effect on the bootstrapped optimism corrected concordance statistic. Weighted score contributions based on hazard ratios were determined. Cumulative incidence curves estimated the probability of LRTI at various score cut-offs. Of 588 rhinovirus URTI events, 100 (17%) progressed to LRTI. In a final multivariable model allogeneic grafts, prior rhinovirus URTI, low lymphocyte count, low albumin, positive cytomegalovirus serostatus, recipient statin use, and steroid use ≥2 mg/kg/day were associated with progression to LRTI. A weighted risk score cut-off with the highest sensitivity and specificity was determined. Risk scores above this cut-off were associated with progression to LRTI (cumulative incidence 28% versus 11% below cut-off; P < .001). The weighted risk score for progression to rhinovirus LRTI can help identify and stratify patients for clinical management and for future clinical trials of therapeutics in HCT recipients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/efectos adversos , Infecciones por Picornaviridae/etiología , Infecciones del Sistema Respiratorio/patología , Rhinovirus/patogenicidad , Adolescente , Adulto , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infecciones por Picornaviridae/virología , Modelos de Riesgos Proporcionales , Medición de Riesgo , Factores de Riesgo
18.
Pediatr Allergy Immunol ; 30(7): 724-731, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31251831

RESUMEN

BACKGROUND: Respiratory viral and mycoplasma infections are associated with childhood asthma exacerbations. Here, we explored epidemiologic profile of causative pathogens and possible factors for exacerbation in a single center over a three-year period. METHODS: Hospitalized asthmatic children with attack aged 6 months-17 years were recruited between 2012 and 2015 (n = 216). Nasopharyngeal mucosa cell samples were collected from the participants and examined by reverse transcription-polymerase chain reaction to detect rhinovirus (RV), respiratory syncytial virus (RSV), enterovirus (EV), parainfluenza virus (PIV), Mycoplasma pneumoniae, and others. Clinical features, laboratory data, asthma exacerbation intensity, and asthma severity were compared among participants. Epidemiologic profile of causative pathogens and possible factors for exacerbation were explored. RESULTS: Viruses and/or Mycoplasma pneumoniae were detected in 75% of the participants. Rhinovirus (48%) was the most commonly detected virus in the participants with single infection, followed by RSV (6%). The median age at admission in the RV group was significantly higher than that in the RSV group. Insufficient asthma control and allergen sensitization were significantly related to RV-associated asthma exacerbation. There was no seasonality of pathogen types associated with asthma exacerbation although a sporadic prevalence of EV-D68 was observehinovirud. Rhinovirus were repeatedly detected in multiple admission cases. CONCLUSION: Our three-year analysis revealed that patients with RV infection were significantly prone to repeated RV infection in the subsequent exacerbation and good asthma control could prevent RV-associated asthma development and exacerbation. Multiple-year monitoring allowed us to comprehend the profile of virus- and/or mycoplasma-induced asthma exacerbation.


Asunto(s)
Asma/epidemiología , Adolescente , Asma/etiología , Asma/virología , Niño , Preescolar , Enterovirus Humano D/patogenicidad , Infecciones por Enterovirus/complicaciones , Infecciones por Enterovirus/epidemiología , Femenino , Hospitalización , Humanos , Lactante , Japón/epidemiología , Masculino , Mycoplasma pneumoniae/patogenicidad , Infecciones por Picornaviridae/complicaciones , Infecciones por Picornaviridae/epidemiología , Neumonía por Mycoplasma/complicaciones , Neumonía por Mycoplasma/epidemiología , Prevalencia , Infecciones por Virus Sincitial Respiratorio/complicaciones , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitiales Respiratorios/patogenicidad , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Rhinovirus/patogenicidad , Estaciones del Año
19.
Respirology ; 24(12): 1212-1219, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30989728

RESUMEN

BACKGROUND AND OBJECTIVE: Human rhinovirus (RV) is a common upper and lower respiratory pathogen in lung allograft recipients causing respiratory tract exacerbation and contributing towards allograft dysfunction and long-term lung decline. In this study, we tested the hypothesis that RV could infect both the small and large airways, resulting in significant inflammation. METHODS: Matched large and small airway epithelial cells (AEC) were obtained from five lung allograft recipients. Primary cultures were established, and monolayers were infected with RV1b over time with varying viral titre. Cell viability, receptor expression, viral copy number, apoptotic induction and inflammatory cytokine production were also assessed at each region. Finally, the effect of azithromycin on viral replication, induction of apoptosis and inflammation was investigated. RESULTS: RV infection caused significant cytotoxicity in both large AEC (LAEC) and small AEC (SAEC), and induced a similar apoptotic response in both regions. There was a significant increase in receptor expression in the LAEC only post viral infection. Viral replication was elevated in both LAEC and SAEC, but was not significantly different. Prophylactic treatment of azithromycin reduced viral replication and dampened the production of inflammatory cytokines post-infection. CONCLUSION: Our data illustrate that RV infection is capable of infecting upper and lower AEC, driving cell death and inflammation. Prophylactic treatment with azithromycin was found to mitigate some of the detrimental responses. Findings provide further support for the prophylactic prescription of azithromycin to minimize the impact of RV infection.


Asunto(s)
Células Epiteliales Alveolares , Azitromicina/farmacología , Infecciones por Picornaviridae , Infecciones del Sistema Respiratorio , Rhinovirus , Antibacterianos/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocinas/análisis , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Trasplante de Pulmón/efectos adversos , Infecciones por Picornaviridae/tratamiento farmacológico , Infecciones por Picornaviridae/inmunología , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , Rhinovirus/patogenicidad , Rhinovirus/fisiología , Replicación Viral/efectos de los fármacos
20.
Int J Mol Sci ; 20(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067687

RESUMEN

Rhinovirus (RV) is the predominant virus causing respiratory tract infections. Bronchobini® is a low dose multi component, multi target preparation used to treat inflammatory respiratory diseases such as the common cold, described to ease severity of symptoms such as cough and viscous mucus production. The aim of the study was to assess the efficacy of Bronchobini® in RV infection and to elucidate its mode of action. Therefore, Bronchobini®'s ingredients (BRO) were assessed in an ex vivo model of RV infection using mouse precision-cut lung slices, an organotypic tissue capable to reflect the host immune response to RV infection. Cytokine profiles were assessed using enzyme-linked immunosorbent assay (ELISA) and mesoscale discovery (MSD). Gene expression analysis was performed using Affymetrix microarrays and ingenuity pathway analysis. BRO treatment resulted in the significant suppression of RV-induced antiviral and pro-inflammatory cytokine release. Transcriptome analysis revealed a multifactorial mode of action of BRO, with a strong inhibition of the RV-induced pro-inflammatory and antiviral host response mediated by nuclear factor kappa B (NFkB) and interferon signaling pathways. Interestingly, this was due to priming of these pathways in the absence of virus. Overall, BRO exerted its beneficial anti-inflammatory effect by priming the antiviral host response resulting in a reduced inflammatory response to RV infection, thereby balancing an otherwise excessive inflammatory response.


Asunto(s)
Antivirales/farmacología , Inductores de Interferón/farmacología , Interferones/metabolismo , Pulmón/efectos de los fármacos , Infecciones por Picornaviridae/tratamiento farmacológico , Extractos Vegetales/farmacología , Transcriptoma , Animales , Antivirales/uso terapéutico , Femenino , Inductores de Interferón/uso terapéutico , Pulmón/metabolismo , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Infecciones por Picornaviridae/inmunología , Infecciones por Picornaviridae/virología , Extractos Vegetales/uso terapéutico , Rhinovirus/efectos de los fármacos , Rhinovirus/patogenicidad , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA