Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(8): 1301-1312, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36426838

RESUMEN

Fukuyama congenital muscular dystrophy (FCMD) is an autosomal recessive disorder caused by fukutin (FKTN) gene mutations. FCMD is the second most common form of childhood muscular dystrophy in Japan, and the most patients possess a homozygous retrotransposal SINE-VNTR-Alu insertion in the 3'-untranslated region of FKTN. A deep-intronic variant (DIV) was previously identified as the second most prevalent loss-of-function mutation in Japanese patients with FCMD. The DIV creates a new splicing donor site in intron 5 that causes aberrant splicing and the formation of a 64-base pair pseudoexon in the mature mRNA, resulting in a truncated nonfunctional protein. Patients with FCMD carrying the DIV present a more severe symptoms, and currently, there is no radical therapy available for this disorder. In the present study, we describe in vitro evaluation of antisense oligonucleotide mediated skipping of pseudoexon inclusion and restoration of functional FKTN protein. A total of 16 19-26-mer antisense oligonucleotide sequences were designed with a 2'-O-methyl backbone and were screened in patient-derived fibroblasts, lymphoblast cells and minigene splice assays. One antisense oligonucleotide targeting the exonic splice enhancer region significantly induced pseudoexon skipping and increased the expression of normal mRNA. It also rescued FKTN protein production in lymphoblast cells and restored functional O-mannosyl glycosylation of alpha-dystroglycan in patient-derived myotubes. Based on our results, antisense oligonucleotide-based splicing correction should be investigated further as a potential treatment for patients with FCMD carrying the DIV.One Sentence Summary Antisense oligonucleotide treatment restored normal FKTN protein production and functional O-mannosyl glycosylation of alpha-dystroglycan via pseudoexon skipping in patient-derived cells carrying the compound heterozygous deep-intronic variant of Fukuyama muscular dystrophy.


Asunto(s)
Síndrome de Walker-Warburg , Humanos , Síndrome de Walker-Warburg/genética , Oligonucleótidos Antisentido/genética , Distroglicanos/metabolismo , Mutación , ARN Mensajero
2.
PLoS Genet ; 16(5): e1008826, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453729

RESUMEN

Hearing loss (HL) is one of the most common sensory impairments and etiologically and genetically heterogeneous disorders in humans. Muscular dystrophies (MDs) are neuromuscular disorders characterized by progressive degeneration of skeletal muscle accompanied by non-muscular symptoms. Aberrant glycosylation of α-dystroglycan causes at least eighteen subtypes of MD, now categorized as MD-dystroglycanopathy (MD-DG), with a wide spectrum of non-muscular symptoms. Despite a growing number of MD-DG subtypes and increasing evidence regarding their molecular pathogeneses, no comprehensive study has investigated sensorineural HL (SNHL) in MD-DG. Here, we found that two mouse models of MD-DG, Largemyd/myd and POMGnT1-KO mice, exhibited congenital, non-progressive, and mild-to-moderate SNHL in auditory brainstem response (ABR) accompanied by extended latency of wave I. Profoundly abnormal myelination was found at the peripheral segment of the cochlear nerve, which is rich in the glycosylated α-dystroglycan-laminin complex and demarcated by "the glial dome." In addition, patients with Fukuyama congenital MD, a type of MD-DG, also had latent SNHL with extended latency of wave I in ABR. Collectively, these findings indicate that hearing impairment associated with impaired Schwann cell-mediated myelination at the peripheral segment of the cochlear nerve is a notable symptom of MD-DG.


Asunto(s)
Nervio Coclear/metabolismo , Distroglicanos/genética , Pérdida Auditiva Sensorineural/metabolismo , Proteína Básica de Mielina/metabolismo , N-Acetilglucosaminiltransferasas/genética , Síndrome de Walker-Warburg/fisiopatología , Adolescente , Animales , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Glicosilación , Pérdida Auditiva Sensorineural/etiología , Pérdida Auditiva Sensorineural/genética , Humanos , Lactante , Masculino , Ratones , Síndrome de Walker-Warburg/complicaciones , Síndrome de Walker-Warburg/genética , Adulto Joven
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(5): 572-576, 2023 May 10.
Artículo en Zh | MEDLINE | ID: mdl-37102292

RESUMEN

OBJECTIVE: To explore the genetic etiology for a fetus with Walker-Warburg syndrome(WWS). METHODS: A fetus with WWS diagnosed at Gansu Provincial Maternity and Child Health Care Hospital in June 9, 2021 was selected as the study subject. Genomic DNA was extracted from amniotic fluid sample of the fetus and peripheral blood samples from its parents. Trio-Whole exome sequencing (trio-WES) was carried out. Candidate variants were verified by Sanger sequencing. RESULTS: The fetus was found to harbor compound heterozygous variants of the POMT2 gene, namely c.471delC (p.F158Lfs*42) and c.1975C>T (p.R659W), which were respectively inherited from its father and mother. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), they were respectively rated as pathogenic (PVS1+PM2_Supporting+PP4) and likely pathogenic (PM2_Supporting+PM3+PP3_Moderate+PP4). CONCLUSION: Trio-WES may be used for the prenatal diagnosis of WWS. The compound heterozygous variants of the POMT2 gene probably underlay the disorder in this fetus. Above finding has expanded the mutational spectrum of the POMT2 gene and enabled definite diagnosis and genetic counseling for the family.


Asunto(s)
Síndrome de Walker-Warburg , Embarazo , Niño , Femenino , Humanos , Diagnóstico Prenatal , Feto , Asesoramiento Genético , Genómica , Mutación
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(7): 802-806, 2023 Jul 10.
Artículo en Zh | MEDLINE | ID: mdl-37368380

RESUMEN

OBJECTIVE: To explore the genetic basis for a Chinese pedigree affected with recurrent fetal hydrocephalus. METHODS: A couple who had presented at the Affiliated Hospital of Putian College on March 3, 2021 was selected as the study subject. Following elective abortion, fetal tissue and peripheral blood samples were respectively obtained from the abortus and the couple, and were subjected to whole exome sequencing. Candidate variants were verified by Sanger sequencing. RESULTS: The fetus was found to harbor compound heterozygous variants of the B3GALNT2 gene, namely c.261-2A>G and c.536T>C (p.Leu179Pro), which were inherited from its father and mother, respectively.According to the guidelines of American College of Medical Genetics and Genomics, both variants were classified as pathogenic (PVS1+PM2_Supporting; PM3+PM2_Supporting+PP3+PP4). CONCLUSION: The compound heterozygous variants of the B3GALNT2 gene probably underlay the α-dystroglycanopathy in this fetus. Above results have provided a basis for genetic counseling of this pedigree.


Asunto(s)
Pueblos del Este de Asia , Síndrome de Walker-Warburg , Femenino , Humanos , Embarazo , Feto Abortado , Pueblo Asiatico/genética , Feto , Asesoramiento Genético , Mutación , N-Acetilgalactosaminiltransferasas , Linaje , Síndrome de Walker-Warburg/genética
5.
Fetal Pediatr Pathol ; 42(2): 334-341, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36048137

RESUMEN

Background: Walker-Warburg syndrome (WWS) (OMIM #236670) is an autosomal recessive disorder characterized by congenital muscular dystrophy, hydrocephalus, cobblestone lissencephaly, and retinal dysplasia. The main genes involved are: POMT1, POMT2, POMGNT1, FKTN, LARGE1, and FKRP. Case report: We present a fetus with WWS showing at ultrasound severe triventricular hydrocephalus. Pregnancy was legally terminated at 21 weeks +2 days of gestation. In vivo and postmortem magnetic resonance revealed corpus callosum agenesis and cerebellar hypoplasia. Cobblestone lissencephaly was observed at post-mortem. Next generation sequencing (NGS) of 193 genes, performed on fetal DNA extracted from amniocytes, detected two heterozygous mutations in the POMT2 gene. The c.1238G > C p.(Arg413Pro) mutation was paternally inherited and is known to be pathogenic. The c.553G > A p.(Gly185Arg) mutation was maternally inherited and has not been previously described. Conclusion: Compound heterozygous mutations in the POMT2 gene caused a severe cerebral fetal phenotype diagnosed prenatally at midgestation allowing therapeutic pregnancy termination.


Asunto(s)
Lisencefalia de Cobblestone , Hidrocefalia , Síndrome de Walker-Warburg , Humanos , Femenino , Embarazo , Síndrome de Walker-Warburg/diagnóstico , Síndrome de Walker-Warburg/genética , Mutación Missense , Lisencefalia de Cobblestone/genética , Mutación , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/genética , Presentación en Trabajo de Parto , Pentosiltransferasa/genética
6.
J Gene Med ; 24(5): e3417, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35338537

RESUMEN

BACKGROUND: Congenital hydrocephalus is one of the symptoms of Walker-Warburg syndrome that is attributed to the disruptions of the genes, among which the B3GALNT2 gene is rarely reported. A diagnosis of the Walker-Warburg syndrome depends on the clinical manifestations and the whole-exome sequencing after birth, which is unfavorable for an early diagnosis. METHODS: Walker-Warburg Syndrome was suspected in two families with severe fetal congenital hydrocephalus. Whole-exome sequencing and Sanger sequencing were performed on the affected fetuses. RESULTS: The compound heterozygous variants c.1A>G p.(Met1Val) and c.1151+1G>A, and c.1068dupT p.(D357*) and c.1052 T>A p.(L351*) in the B3GALNT2 gene were identified, which were predicted to be pathogenic and likely pathogenic, respectively. Walker-Warburg syndrome was prenatally diagnosed on the basis of fetal imaging and whole-exome sequencing. CONCLUSIONS: Our findings expand the spectrum of pathogenic mutations in Walker-Warburg syndrome and provide new insights into the prenatal diagnosis of the disease.


Asunto(s)
Hidrocefalia , N-Acetilgalactosaminiltransferasas , Síndrome de Walker-Warburg , Femenino , Humanos , Mutación , N-Acetilgalactosaminiltransferasas/genética , Embarazo , Diagnóstico Prenatal , Síndrome de Walker-Warburg/diagnóstico , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patología , Secuenciación del Exoma
7.
Hum Mol Genet ; 28(20): 3369-3390, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31348492

RESUMEN

Congenital muscular dystrophy type-1A (Lama2-CMD) and Duchenne muscular dystrophy (DMD) result from deficiencies of laminin-α2 and dystrophin proteins, respectively. Although both proteins strengthen the sarcolemma, they are implicated in clinically distinct phenotypes. We used RNA-deep sequencing (RNA-Seq) of dy2J/dy2J, Lama2-CMD mouse model, skeletal muscle at 8 weeks of age to elucidate disease pathophysiology. This study is the first report of dy2J/dy2J model whole transcriptome profile. RNA-Seq of the mdx mouse model of DMD and wild-type (WT) mouse was carried as well in order to enable a novel comparison of dy2J/dy2J to mdx. A large group of shared differentially expressed genes (DEGs) was found in dy2J/dy2J and mdx models (1834 common DEGs, false discovery rate [FDR] < 0.05). Enrichment pathway analysis using ingenuity pathway analysis showed enrichment of inflammation, fibrosis, cellular movement, migration and proliferation of cells, apoptosis and necrosis in both mouse models (P-values 3E-10-9E-37). Via canonical pathway analysis, actin cytoskeleton, integrin, integrin-linked kinase, NF-kB, renin-angiotensin, epithelial-mesenchymal transition, and calcium signaling were also enriched and upregulated in both models (FDR < 0.05). Interestingly, significant downregulation of Pax7 was detected in dy2J/dy2J compared to upregulation of this key regeneration gene in mdx mice. Pax3 and Mamstr genes were also downregulated in dy2J/dy2J compared to WT mice. These results may explain the distinct disease course and severity in these models. While the mdx model at that stage shows massive regeneration, the dy2J/dy2J shows progressive dystrophic process. Our data deepen our understanding of the molecular pathophysiology and suggest new targets for additional therapies to upregulate regeneration in Lama2-CMD.


Asunto(s)
Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX7/metabolismo , Animales , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Necrosis/genética , Necrosis/metabolismo , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/metabolismo
8.
Mol Ther ; 28(2): 664-676, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31843448

RESUMEN

Patients with α-dystroglycanopathies, a subgroup of rare congenital muscular dystrophies, present with a spectrum of clinical manifestations that includes muscular dystrophy as well as CNS and ocular abnormalities. Although patients with α-dystroglycanopathies are genetically heterogeneous, they share a common defect of aberrant post-translational glycosylation modification of the dystroglycan alpha-subunit, which renders it defective in binding to several extracellular ligands such as laminin-211 in skeletal muscles, agrin in neuromuscular junctions, neurexin in the CNS, and pikachurin in the eye, leading to various symptoms. The genetic heterogeneity associated with the development of α-dystroglycanopathies poses significant challenges to developing a generalized treatment to address the spectrum of genetic defects. Here, we propose the development of a bispecific antibody (biAb) that functions as a surrogate molecular linker to reconnect laminin-211 and the dystroglycan beta-subunit to ameliorate sarcolemmal fragility, a primary pathology in patients with α-dystroglycan-related muscular dystrophies. We show that the treatment of LARGEmyd-3J mice, an α-dystroglycanopathy model, with the biAb improved muscle function and protected muscles from exercise-induced damage. These results demonstrate the viability of a biAb that binds to laminin-211 and dystroglycan simultaneously as a potential treatment for patients with α-dystroglycanopathy.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Distroglicanos/metabolismo , Laminina/metabolismo , Síndrome de Walker-Warburg/metabolismo , Animales , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/metabolismo , Modelos Animales de Enfermedad , Distroglicanos/inmunología , Expresión Génica , Humanos , Inmunohistoquímica , Inyecciones Intramusculares , Laminina/genética , Laminina/inmunología , Ratones , Ratones Noqueados , Modelos Biológicos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Unión Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas/genética , Sarcolema/efectos de los fármacos , Sarcolema/metabolismo , Síndrome de Walker-Warburg/tratamiento farmacológico , Síndrome de Walker-Warburg/etiología
9.
Glycoconj J ; 37(1): 77-93, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31823246

RESUMEN

Dystroglycanopathies are diseases characterized by progressive muscular degeneration and impairment of patient's quality of life. They are associated with altered glycosylation of the dystrophin-glycoprotein (DGC) complex components, such as α-dystroglycan (α-DG), fundamental in the structural and functional stability of the muscle fiber. The diagnosis of dystroglycanopathies is currently based on the observation of clinical manifestations, muscle biopsies and enzymatic measures, and the available monoclonal antibodies are not specific for the dystrophic hypoglycosylated muscle condition. Thus, modified α-DG mucins have been considered potential targets for the development of new diagnostic strategies toward these diseases. In this context, this work describes the synthesis of the hypoglycosylated α-DG mimetic glycopeptide NHAc-Gly-Pro-Thr-Val-Thr[αMan]-Ile-Arg-Gly-BSA (1) as a potential tool for the development of novel antibodies applicable to dystroglycanopathies diagnosis. Glycopeptide 1 was used for the development of polyclonal antibodies and recombinant monoclonal antibodies by Phage Display technology. Accordingly, polyclonal antibodies were reactive to glycopeptide 1, which enables the application of anti-glycopeptide 1 antibodies in immune reactive assays targeting hypoglycosylated α-DG. Regarding monoclonal antibodies, for the first time variable heavy (VH) and variable light (VL) immunoglobulin domains were selected by Phage Display, identified by NGS and described by in silico analysis. The best-characterized VH and VL domains were cloned, expressed in E. coli Shuffle T7 cells, and used to construct a single chain fragment variable that recognized the Glycopeptide 1 (GpαDG1 scFv). Molecular modelling of glycopeptide 1 and GpαDG1 scFv suggested that their interaction occurs through hydrogen bonds and hydrophobic contacts involving amino acids from scFv (I51, Y33, S229, Y235, and P233) and R8 and α-mannose from Glycopeptide 1.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Distroglicanos/inmunología , Glicoproteínas/inmunología , Mucinas/inmunología , Síndrome de Walker-Warburg/diagnóstico , Distroglicanos/química , Glicoproteínas/síntesis química , Humanos , Mucinas/química
10.
J Infect Chemother ; 26(5): 516-519, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31983616

RESUMEN

BACKGROUND: Fukuyama congenital muscular dystrophy (FCMD), which is characterized by generalized muscle weakness, hypotonia, and motor delay during early infancy, gradually progresses with advanced age. Although acute rhabdomyolysis following infection in patients with FCMD has occasionally been reported, no studies have investigated rhabdomyolysis following viral infection in FCMD patients during early infancy. CASE REPORT: We report the case of a 50-day-old girl with no apparent symptoms of muscular dystrophy who developed severe acute rhabdomyolysis caused by viral infection, resulting in quadriplegia and respiratory failure therefore requiring mechanical ventilation. Brain magnetic resonance imaging incidentally showed the typical characteristics of FCMD, and FCMD was confirmed by genetic analysis, which revealed a 3-kb retrotransposon insertion in one allele of the fukutin gene and a deep intronic splicing variant in intron 5 in another allele. The virus etiology was confirmed to be Coxsackie A4. CONCLUSION: We report a severe case of acute rhabdomyolysis with the earliest onset of symptoms due to the Coxsackie A4 virus in a patient with FCMD. The present findings indicate that physicians should consider FCMD with viral infection a differential diagnosis if the patient presents with acute rhabdomyolysis following a fever.


Asunto(s)
Infecciones por Coxsackievirus/virología , Enterovirus Humano A/patogenicidad , Rabdomiólisis/virología , Síndrome de Walker-Warburg/complicaciones , Enfermedad Aguda , Infecciones por Coxsackievirus/complicaciones , Infecciones por Coxsackievirus/diagnóstico , Diagnóstico Diferencial , Enterovirus Humano A/genética , Enterovirus Humano A/aislamiento & purificación , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Proteínas de la Membrana/genética , Reacción en Cadena de la Polimerasa , Cuadriplejía/etiología , ARN Viral , Respiración Artificial , Insuficiencia Respiratoria/etiología , Rabdomiólisis/complicaciones , Rabdomiólisis/diagnóstico , Índice de Severidad de la Enfermedad , Síndrome de Walker-Warburg/diagnóstico , Síndrome de Walker-Warburg/virología
11.
Am J Med Genet A ; 179(12): 2481-2485, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31580529

RESUMEN

Muscle-eye-brain disease (MEB) is a recessively inherited rare disease. Sixteen different gene mutations are known, with the most common mutations in the POMGNT1 gene. The disease is now called congenital muscular dystrophy-dystroglycanopathy type A3 (MDDGA3). It manifests itself as muscular dystrophy with eye and brain anomalies and intellectual disability. Previous clinical reports describe young patients. We have been able to follow two patients for almost 40 years. Their clinical picture has remained quite stable since adolescence, appearing as severe intellectual and motor disability, extremely limited communication skills, visual impairment, epilepsy, joint contractures, repeated bowel obstructions, teeth abrasion due to bruxism, an irregular sleep pattern and as a previously unreported feature hypothermic periods manifesting as excessive sleepiness.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Síndrome de Walker-Warburg/diagnóstico , Síndrome de Walker-Warburg/genética , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Facies , Femenino , Finlandia , Efecto Fundador , Mutación de Línea Germinal , Humanos , Persona de Mediana Edad , N-Acetilglucosaminiltransferasas/genética , Fenotipo
13.
BMC Pediatr ; 19(1): 98, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30961548

RESUMEN

BACKGROUND: Dystroglycanopathies, which are caused by reduced glycosylation of alpha-dystroglycan, are a heterogeneous group of neurodegenerative disorders characterized by variable brain and skeletal muscle involvement. Muscle-eye-brain disease (or muscular dystrophy-dystroglycanopathy type 3 A) is an autosomal recessive disorder characterized by congenital muscular dystrophy, ocular abnormalities, and lissencephaly. CASE PRESENTATION: We report clinical and genetic characteristics of a 6-year-old boy affected by muscular dystrophy-dystroglycanopathy. He has severe a delay in psychomotor and speech development, muscle hypotony, congenital myopia, partial atrophy of the optic nerve disc, increased level of creatine kinase, primary-muscle lesion, polymicrogyria, ventriculomegaly, hypoplasia of the corpus callosum, cysts of the cerebellum. Exome sequencing revealed compound heterozygous mutations in POMGNT1 gene (transcript NM_001243766.1): c.1539 + 1G > A and c.385C > T. CONCLUSIONS: The present case report shows diagnostic algorithm step by step and helps better understand the clinical and genetic features of congenital muscular dystrophy.


Asunto(s)
Mutación , N-Acetilglucosaminiltransferasas/genética , Síndrome de Walker-Warburg/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Exoma , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Análisis de Secuencia de ADN
14.
PLoS Genet ; 12(8): e1006235, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27508411

RESUMEN

Forward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT), to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing), development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT-1.1 in ciliated sensory neuron function and morphogenesis. BGNT-1.1 functions at the trans-Golgi network of sheath cells (glia) to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT-1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS). WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy.


Asunto(s)
Anomalías del Ojo/genética , Morfogénesis/genética , N-Acetilglucosaminiltransferasas/genética , Células Receptoras Sensoriales/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Caenorhabditis elegans/genética , Cilios/genética , Cilios/metabolismo , Anomalías del Ojo/patología , Genoma , Humanos , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación , Fenotipo , Células Receptoras Sensoriales/patología , Síndrome de Walker-Warburg/genética , Red trans-Golgi/genética
15.
Hum Mutat ; 39(2): 266-280, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29134705

RESUMEN

Dystroglycan (DG) is a cell adhesion complex composed by two subunits, the highly glycosylated α-DG and the transmembrane ß-DG. In skeletal muscle, DG is involved in dystroglycanopathies, a group of heterogeneous muscular dystrophies characterized by a reduced glycosylation of α-DG. The genes mutated in secondary dystroglycanopathies are involved in the synthesis of O-mannosyl glycans and in the O-mannosylation pathway of α-DG. Mutations in the DG gene (DAG1), causing primary dystroglycanopathies, destabilize the α-DG core protein influencing its binding to modifying enzymes. Recently, a homozygous mutation (p.Cys699Phe) hitting the ß-DG ectodomain has been identified in a patient affected by muscle-eye-brain disease with multicystic leucodystrophy, suggesting that other mechanisms than hypoglycosylation of α-DG could be implicated in dystroglycanopathies. Herein, we have characterized the DG murine mutant counterpart by transfection in cellular systems and high-resolution microscopy. We observed that the mutation alters the DG processing leading to retention of its uncleaved precursor in the endoplasmic reticulum. Accordingly, small-angle X-ray scattering data, corroborated by biochemical and biophysical experiments, revealed that the mutation provokes an alteration in the ß-DG ectodomain overall folding, resulting in disulfide-associated oligomerization. Our data provide the first evidence of a novel intracellular mechanism, featuring an anomalous endoplasmic reticulum-retention, underlying dystroglycanopathy.


Asunto(s)
Distroglicanos/genética , Leucoencefalopatías/genética , Proteínas Mutantes/genética , Síndrome de Walker-Warburg/genética , Línea Celular , Humanos
16.
Cancer Sci ; 109(8): 2423-2434, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29869834

RESUMEN

Cancer cells typically shift their metabolism to aerobic glycolysis to fulfill the demand of energy and macromolecules to support their proliferation. Glucose transporter (GLUT) family-mediated glucose transport is the pacesetter of aerobic glycolysis and, thus, is critical for tumor cell metabolism. Yin Yang 1 (YY1) is an oncogene crucial for tumorigenesis; however, its role in tumor cell glucose metabolism remains unclear. Here, we revealed that YY1 activates GLUT3 transcription by directly binding to its promoter and, concomitantly, enhances tumor cell aerobic glycolysis. This regulatory effect of YY1 on glucose entry into the cells is critical for YY1-induced tumor cell proliferation and tumorigenesis. Intriguingly, YY1 regulation of GLUT3 expression, and, subsequently, of tumor cell aerobic glycolysis and tumorigenesis, occurs p53-independently. Our results also showed that clinical drug oxaliplatin suppresses colon carcinoma cell proliferation by inhibiting the YY1/GLUT3 axis. Together, these results link YY1's tumorigenic potential with the critical first step of aerobic glycolysis. Thus, our novel findings not only provide new insights into the complex role of YY1 in tumorigenesis but also indicate the potential of YY1 as a target for cancer therapy irrespective of the p53 status.


Asunto(s)
Carcinogénesis/genética , Transportador de Glucosa de Tipo 3/genética , Síndrome de Walker-Warburg/genética , Factor de Transcripción YY1/genética , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Glucólisis/efectos de los fármacos , Glucólisis/genética , Células HCT116 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Compuestos Organoplatinos/farmacología , Oxaliplatino , Regiones Promotoras Genéticas/genética , Proteína p53 Supresora de Tumor/genética , Síndrome de Walker-Warburg/patología
17.
Mol Vis ; 24: 43-58, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29416295

RESUMEN

Purpose: Dystroglycanopathies are a heterogeneous group of recessive neuromuscular dystrophies that affect the muscle, brain and retina, and are caused by deficiencies in the O-glycosylation of α-dystroglycan. This post-translational modification is essential for the formation and maintenance of ribbon synapses in the retina. Fukutin and fukutin-related protein (FKRP) are two glycosyltransferases whose deficiency is associated with severe dystroglycanopathies. These enzymes carry out in vitro the addition of a tandem ribitol 5-phosphate moiety to the so-called core M3 phosphotrisaccharide of α-dystroglycan. However, their expression pattern and function in the healthy mammalian retina has not so far been investigated. In this work, we have addressed the expression of the FKTN (fukutin) and FKRP genes in the retina of mammals, and characterized the distribution pattern of their protein products in the adult mouse retina and the 661W photoreceptor cell line. Methods: By means of reverse transcription (RT)-PCR and immunoblotting, we have studied the expression at the mRNA and protein levels of the fukutin and FKRP genes in different mammalian species, from rodents to humans. Immunofluorescence confocal microscopy analyses were performed to characterize the distribution profile of their protein products in mouse retinal sections and in 661W cultured cells. Results: Both genes were expressed at the mRNA and protein levels in the neural retina of all mammals studied. Fukutin was present in the cytoplasmic and nuclear fractions in the mouse retina and 661W cells, and accumulated in the endoplasmic reticulum. FKRP was located in the cytoplasmic fraction in the mouse retina and concentrated in the Golgi complex. However, and in contrast to retinal tissue, FKRP additionally accumulated in the nucleus of the 661W photoreceptors. Conclusions: Our results suggest that fukutin and FKRP not only participate in the synthesis of O-mannosyl glycans added to α-dystroglycan in the endoplasmic reticulum and Golgi complex, but that they could also play a role, that remains to be established, in the nucleus of retinal neurons.


Asunto(s)
Distroglicanos/genética , Proteínas de la Membrana/genética , Procesamiento Proteico-Postraduccional , Proteínas/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Animales , Bovinos , Línea Celular , Distroglicanos/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Expresión Génica , Genes Recesivos , Glicosilación , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Macaca fascicularis , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Pentosiltransferasa , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Células Fotorreceptoras Retinianas Conos/citología , Transducción de Señal , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/metabolismo , Síndrome de Walker-Warburg/patología
18.
Neuropediatrics ; 49(4): 289-295, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29791932

RESUMEN

Mutations in B3GALNT2, encoding a glycosyltransferase enzyme involved in α-dystroglycan glycosylation, have been recently associated with dystroglycanopathy, a well-recognized subtype of congenital muscular dystrophy (CMD). Only a few cases have been reported with B3GALNT2-related dystroglycanopathy with variable severity ranging from mild CMD to severe muscle-eye-brain disease. Here, we describe a child with a novel homozygous nonsense mutation in B3GALNT2. The affected child has severe neurological disease since birth, including muscle disease manifested as hypotonia, muscle weakness, and wasting with elevated creatine kinase, eye disease including microphthalmia and blindness, brain disease with extensive brain malformations including massive hydrocephalus, diffuse cobblestone-lissencephaly, deformed craniocervical junction, and pontocerebellar hypoplasia. The clinical and radiologic findings are compatible with a diagnosis of severe muscle-eye-brain disease and more specifically Walker-Warburg syndrome. A more distinct aspect of the clinical phenotype in this child is the presence of refractory epilepsy in the form of epileptic spasms, epileptic encephalopathy, and West syndrome, as well as sensorineural hearing loss. These findings could expand the phenotype of B3GALNT2-related dystroglycanopathy. In this report, we also provide a detailed review of previously reported cases with B3GALNT2-related dystroglycanopathy and compare them to our reported child. In addition, we study the genotype-phenotype correlation in these cases.


Asunto(s)
Codón sin Sentido , N-Acetilgalactosaminiltransferasas/genética , Síndrome de Walker-Warburg/genética , Preescolar , Diagnóstico Tardío , Femenino , Estudios de Asociación Genética , Pérdida Auditiva Sensorineural/genética , Humanos , Lactante , Fenotipo , Espasmos Infantiles/genética , Síndrome de Walker-Warburg/diagnóstico por imagen , Síndrome de Walker-Warburg/fisiopatología , Síndrome de Walker-Warburg/terapia
19.
Mol Cell Proteomics ; 15(11): 3424-3434, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27601598

RESUMEN

Dystroglycanopathy is a major class of congenital muscular dystrophy caused by a deficiency of functional glycans on α-dystroglycan (αDG) with laminin-binding activity. Recent advances have led to identification of several causative gene products of dystroglycanopathy and characterization of their in vitro enzymatic activities. However, the in vivo functional roles remain equivocal for enzymes such as ISPD, FKTN, FKRP, and TMEM5 that are supposed to be involved in post-phosphoryl modifications linking the GalNAc-ß3-GlcNAc-ß4-Man-6-phosphate core and the outer laminin-binding glycans. Herein, by direct nano-LC-MS2/MS3 analysis of tryptic glycopeptides derived from a truncated recombinant αDG expressed in the wild-type and a panel of mutated cells deficient in one of these enzymes, we sought to define the full extent of variable modifications on this phosphorylated core O-glycan at the functional Thr317/Thr319 sites. We showed that the most abundant glycoforms carried a phosphorylated core at each of the two sites, with and without a single ribitol phosphate (RboP) extending from terminal HexNAc. At much lower signal intensity, a novel substituent tentatively assigned as glycerol phosphate (GroP) was additionally detected. As expected, tandem RboP extended with a GlcA-Xyl unit was only identified in wild type, whereas knocking out of either ISPD or FKTN prevented formation of RboP. In the absence of FKRP, glycoforms with single but not tandem RboP accumulated, consistent with the suggested role of this enzyme in transferring the second RboP. Intriguingly, the single GroP modification also required functional FKTN whereas absence of TMEM5 significantly hindered only the addition of RboP. Our findings thus revealed additional levels of complexity associated with the core structures, suggesting functional interplay among these enzymes through their interactions. The simplified analytical workflow developed here should facilitate rapid mapping across a wider range of cell types to gain better insights into its physiological relevance.


Asunto(s)
Distroglicanos/química , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética , Síndrome de Walker-Warburg/genética , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad , Células HCT116 , Células HEK293 , Humanos , Pentosiltransferasa , Fosforilación , Proteínas/genética
20.
J Cell Mol Med ; 21(7): 1388-1393, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28157257

RESUMEN

Muscular dystrophy-dystroglycanopathy (MDDG) is a genetically and clinically heterogeneous group of muscular disorders, characterized by congenital muscular dystrophy or later-onset limb-girdle muscular dystrophy accompanied by brain and ocular abnormalities, resulting from aberrant alpha-dystroglycan glycosylation. Exome sequencing and Sanger sequencing were performed on a six-generation consanguineous Han Chinese family, members of which had autosomal recessive MDDG. Compound heterozygous mutations, c.1338+1G>A (p.H415Kfs*3) and c.1457G>C (p.W486S, rs746849558), in the protein O-mannosyltransferase 1 gene (POMT1), were identified as the genetic cause. Patients that exhibited milder MDDG manifested as later-onset progressive proximal pelvic, shoulder girdle and limb muscle weakness, joint contractures, mental retardation and elevated creatine kinase, without structural brain or ocular abnormalities, were further genetically diagnosed as MDDGC1. The POMT1 gene splice-site mutation (c.1338+1G>A) which leads to exon 13 skipping and results in a truncated protein may contribute to a severe phenotype, while the allelic missense mutation (p.W486S) may reduce MDDG severity. These findings may expand phenotype and mutation spectrum of the POMT1 gene. Clinical diagnosis supplemented with molecular screening may result in more accurate diagnoses of, prognoses for, and improved genetic counselling for this disease.


Asunto(s)
Exoma/genética , Predisposición Genética a la Enfermedad , Manosiltransferasas/genética , Síndrome de Walker-Warburg/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Consanguinidad , Análisis Mutacional de ADN , Femenino , Asesoramiento Genético , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Sitios de Empalme de ARN/genética , Síndrome de Walker-Warburg/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA