Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 277, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38605351

RESUMEN

BACKGROUND: The "woody clade" in Saxifragales (WCS), encompassing four woody families (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae), is a phylogenetically recalcitrant node in the angiosperm tree of life, as the interfamilial relationships of the WCS remain contentious. Based on a comprehensive sampling of WCS genera, this study aims to recover a robust maternal backbone phylogeny of the WCS by analyzing plastid genome (plastome) sequence data using Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) methods, and to explore the possible causes of the phylogenetic recalcitrance with respect to deep relationships within the WCS, in combination with molecular and fossil evidence. RESULTS: Although the four WCS families were identically resolved as monophyletic, the MP analysis recovered different tree topologies for the relationships among Altingiaceae, Cercidiphyllaceae, and Daphniphyllaceae from the ML and BI phylogenies. The fossil-calibrated plastome phylogeny showed that the WCS underwent a rapid divergence of crown groups in the early Cretaceous (between 104.79 and 100.23 Ma), leading to the origin of the stem lineage ancestors of Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae within a very short time span (∼4.56 Ma). Compared with the tree topology recovered in a previous study based on nuclear genome data, cytonuclear discordance regarding the interfamilial relationships of the WCS was detected. CONCLUSIONS: Molecular and fossil evidence imply that the early divergence of the WCS might have experienced radiative diversification of crown groups, extensive extinctions at the genus and species levels around the Cretaceous/Paleocene boundary, and ancient hybridization. Such evolutionarily complex events may introduce biases in topological estimations within the WCS due to incomplete lineage sorting, cytonuclear discordance, and long-branch attraction, potentially impacting the accurate reconstruction of deep relationships.


Asunto(s)
Genoma de Plastidios , Saxifragales , Humanos , Filogenia , Saxifragales/genética , Fósiles , Teorema de Bayes , Plastidios/genética
2.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902302

RESUMEN

Through excellent absorption and transformation, the macrophyte Myriophyllum (M.) aquaticum can considerably remove phosphorus from wastewater. The results of changes in growth rate, chlorophyll content, and roots number and length showed that M. aquaticum could cope better with high phosphorus stress compared with low phosphorus stress. Transcriptome and differentially expressed genes (DEGs) analyses revealed that, when exposed to phosphorus stresses at various concentrations, the roots were more active than the leaves, with more DEGs regulated. M. aquaticum also showed different gene expression and pathway regulatory patterns when exposed to low phosphorus and high phosphorus stresses. M. aquaticum's capacity to cope with phosphorus stress was maybe due to its improved ability to regulate metabolic pathways such as photosynthesis, oxidative stress reduction, phosphorus metabolism, signal transduction, secondary metabolites biosynthesis, and energy metabolism. In general, M. aquaticum has a complex and interconnected regulatory network that deals efficiently with phosphorus stress to varying degrees. This is the first time that the mechanisms of M. aquaticum in sustaining phosphorus stress have been fully examined at the transcriptome level using high-throughput sequencing analysis, which may indicate the direction of follow-up research and have some guiding value for its future applications.


Asunto(s)
Saxifragales , Transcriptoma , Fósforo/metabolismo , Nitrógeno/metabolismo , Aguas Residuales
3.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203426

RESUMEN

Paeonia delavayi var. lutea, Paeonia delavayi var. angustiloba, and Paeonia ludlowii are Chinese endemics that belong to the Paeoniaceae family and have vital medicinal and ornamental value. It is often difficult to classify Paeoniaceae plants based on their morphological characteristics, and the limited genomic information has strongly hindered molecular evolution and phylogenetic studies of Paeoniaceae. In this study, we sequenced, assembled, and annotated the chloroplast genomes of P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii. The chloroplast genomes of these strains were comparatively analyzed, and their phylogenetic relationships and divergence times were inferred. These three chloroplast genomes exhibited a typical quadripartite structure and were 152,687-152,759 bp in length. Each genome contains 126-132 genes, including 81-87 protein-coding genes, 37 transfer RNAs, and 8 ribosomal RNAs. In addition, the genomes had 61-64 SSRs, with mononucleotide repeats being the most abundant. The codon bias patterns of the three species tend to use codons ending in A/U. Six regions of high variability were identified (psbK-psbL, trnG-UCC, petN-psbM, psbC, rps8-rpl14, and ycf1) that can be used as DNA molecular markers for phylogenetic and taxonomic analysis. The Ka/Ks ratio indicates positive selection for the rps18 gene associated with self-replication. The phylogenetic analysis of 99 chloroplast genomes from Saxifragales clarified the phylogenetic relationships of Paeoniaceae and revealed that P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii are monophyletic groups and sisters to P. delavayi. Divergence time estimation revealed two evolutionary divergences of Paeoniaceae species in the early Oligocene and Miocene. Afterward, they underwent rapid adaptive radiation from the Pliocene to the early Pleistocene when P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii formed. The results of this study enrich the chloroplast genomic information of Paeoniaceae and reveal new insights into the phylogeny of Paeoniaceae.


Asunto(s)
Bencenosulfonatos , Genoma del Cloroplasto , Magnoliopsida , Paeonia , Saxifragales , Filogenia , Evolución Biológica
4.
J Environ Manage ; 339: 117886, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37084539

RESUMEN

Phytoremediation is widely used for the restoration of aquatic environments. However, the phytoremediation effects and mechanisms of special submerged species of native aquatic plants, especially under low-temperature conditions, are not yet clear. In this study, two typical submerged plants, Myriophyllum aquaticum (M. aquaticum; an exotic species) and Hippuris vulgaris (H. vulgaris; a native species), in China were investigated for their phosphorus (P) removal efficiencies (REp) and the related mechanisms of phytophysiology and microorganisms in a low-temperature incubator (10 °C during the day and 2 °C at night). At an initial P level of 0.5 mg L-1, the two plants exhibited similar REp, with the highest values (73.5%-92.1%) observed on days 3-6. After 18 days, the residual P concentration in the water was less than the Grade III limit value (0.2 mg L-1; GB 3838-2002). However, M. aquaticum had a faster REp velocity than H. vulgaris at an initial P level of 3.0 mg L-1, which was attributed to the mechanisms of plant and its interactions with microorganisms. Compared to the control group, the superoxide dismutase activity of H. vulgaris was significantly increased and its catalase activity was decreased, whereas for that of M. aquaticum was the opposite. Micro region X-ray fluorescence analysis revealed that there may be synergic absorption effects between P, S, and K, and antagonistic absorption action between P and Mn in H. vulgaris. In addition, Acinetobacter, Novosphingobium and Pseudomonas were enriched at 3.0 mg L-1 P level with these two plants, but Chlorophyta only accumulated with H. vulgaris, respectively. Overall, the native species, H. vulgaris, could replace the exotic M. aquaticum to efficiently remove P from polluted water at low temperatures. These findings provide a theoretical foundation for submerged plants P removal capabilities, and the protection of local ecosystem diversity at low temperatures.


Asunto(s)
Ecosistema , Saxifragales , Temperatura , Fósforo/análisis , Agua/análisis , China , Nitrógeno/análisis
5.
Proc Natl Acad Sci U S A ; 116(22): 10874-10882, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31085636

RESUMEN

Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and trait evolution, but there are plausible alternative models. Little is known about the association between diversification and key ecological and phenotypic traits at broad phylogenetic and spatial scales. Do trait evolutionary rates coincide with rates of diversification, are there lags among these rates, or is diversification niche-neutral? To address these questions, we combine a deeply sampled phylogeny for a major flowering plant clade-Saxifragales-with phenotype and niche data to examine temporal patterns of evolutionary rates. The considerable phenotypic and habitat diversity of Saxifragales is greatest in temperate biomes. Global expansion of these habitats since the mid-Miocene provided ecological opportunities that, with density-dependent adaptive radiation, should result in simultaneous rate increases for diversification, niche, and phenotype, followed by decreases with habitat saturation. Instead, we find that these rates have significantly different timings, with increases in diversification occurring at the mid-Miocene Climatic Optimum (∼15 Mya), followed by increases in niche and phenotypic evolutionary rates by ∼5 Mya; all rates increase exponentially to the present. We attribute this surprising lack of temporal coincidence to initial niche-neutral diversification followed by ecological and phenotypic divergence coincident with more extreme cold and dry habitats that proliferated into the Pleistocene. A lack of density-dependence contrasts with investigations of other cosmopolitan lineages, suggesting alternative patterns may be common in the diversification of temperate lineages.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecosistema , Fenotipo , Filogenia , Saxifragales/clasificación , Saxifragales/genética , Saxifragales/fisiología
6.
J Environ Manage ; 317: 115368, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35636112

RESUMEN

Myriophyllum aquaticum (M. aquaticum) can be used in constructed wetlands (CWs) to effectively purify swine wastewater with high-ammonia nitrogen (NH3-N and NH4+-N) concentrations. However, the understanding of its tolerance mechanism to ammonia nitrogen is limited. The physiological response and tolerance mechanism of M. aquaticum to a wide range of NH4+ concentrations (0-35 mM) were investigated in the present study. The results indicated that M. aquaticum can tolerate NH4+ concentrations of up to 30 mM for 21 days and grow well with high nutrient (N, P) uptake. A suitable concentration of NH4+ for a better growth of M. aquaticum was 0.5-20 mM. The free NH4+ content was no obviously increase at NH4+ concentration below 15 mM, indicated there was no obviously ammonium accumulation. Exogenous NH4+ inhibited K+ absorption and improved Ca2+ absorption, indicating mineral cation could mediate NH4+ homeostasis under NH4+ stress. Moreover, comparison with those in the control group, the activities of glutamine synthetase (GS), glutamate synthetase (GOGAT) in M. aquaticum increased by 52.7%-115% at 1-20 mM NH4+, and superoxide dismutase (SOD) increased by 29.2-143% at 1-35 mM NH4+. This indicated that the high NH4+ tolerance of M. aquaticum was mainly due to the balance of free NH4+ content in tissues, as well as improved nitrogen metabolism and antioxidant system. This could be attributed to the role of the GS-GOGAT cycle and SOD. In conclusion, M. aquaticum, which tolerates high NH4+ concentration and has a high N uptake ability, can be used as a good candidate specie to help develop more efficient management strategies for treating high-NH4+ wastewater in CW systems.


Asunto(s)
Compuestos de Amonio , Saxifragales , Amoníaco/metabolismo , Compuestos de Amonio/metabolismo , Animales , Nitrógeno/análisis , Saxifragales/metabolismo , Superóxido Dismutasa/metabolismo , Porcinos , Aguas Residuales
7.
Plant Foods Hum Nutr ; 77(4): 514-520, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36103040

RESUMEN

Penthorum chinense Pursh (PCP), a medicinal and edible plant, is widely used in many clinical liver diseases. Oxidative stress and autophagy impairment play crucial roles in the pathophysiology of alcoholic liver disease (ALD). Therefore, the aim of this study was to elucidate the mechanism of PCP in attenuating ethanol-induced liver injury. The liver-specific transgenic zebrafish larvae (lfabp: EGFP) at three days post-fertilization (3 dpf) were treated with different concentrations of PCP (100, 50 and 25 µg/mL) for 48 h, after soaked in a 350 mM ethanol for 32 h. Whole-mount oil red O, H&E staining and biochemical kits were used to detect fatty liver function and fat accumulation, western blot (WB) and immunofluorescence were used to determine proteins expression, and RT-qPCR was used to further verify the related gene expression. PCP restored zebrafish liver function. Additionally, PCP (as dose-dependent) blocked the expression of cytochrome P450 2E1 (CYP2E1), the production of intracellular reactive oxygen species (ROS) and alleviated liver fat accumulation and oxidative damage. PCP exerted its hepatoprotective function by downregulating the expression of kelch-like ECH-associated protein 1 (Keap1), up-regulating the expression of nucleus factor-E2-related factor 2 (Nrf2) (transferring to the nucleus), and attenuating systemic oxidative stress. Furthermore, PCP reduced the expression of sequestosome 1 (p62/SQSTM1, p62), Atg13, and Beclin 1, up-regulating autophagy signaling pathway. Taken together, the molecular evidence that PCP protected the ethanol-induced hepatic oxidative stress and autophagy impairment through activating AMPK/p62/Nrf2/mTOR signaling axis.


Asunto(s)
Saxifragales , Pez Cebra , Animales , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Pez Cebra/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Etanol/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Beclina-1/metabolismo , Estrés Oxidativo , Hígado/metabolismo , Autofagia , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
8.
Ecotoxicol Environ Saf ; 213: 112032, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33582409

RESUMEN

Swine wastewater (SW) treatment by Myriophyllum aquaticum is an important biotechnology for its resource utilization. However, some knowledge gaps remain in compound-pollutant removal in SW, especially in practical applications. To clarify the responses of M. aquaticum to the compound pollutants as well as the related operational parameters in SW treatment, three initial doses (0.5, 1.0, and 1.5 kg per pond in 150 L simulated SW) of M. aquaticum and a control (no plant; CK) were allocated to 12 ponds under a plastic roof in Nanjing city of Eastern China during 75 days in the summer of 2019. Results showed that M. aquaticum could be used as a pioneer plant to efficiently remove compounded pollutants of nitrogen (N), phosphorus (P), and especially for heavy metals in simulated SW. Compared with CK, M. aquaticum assisted in improving the total N, NH4+-N, NO3--N, NO2--N, and dissolved organic N by 30.1%, 100%, 100%, 97.6%, 20.2%, 39.8% whereas Cu, Zn, and Cd by 50.4%, 36.4% and 47.9% on average during the 75-day experiment in summer, respectively. Moreover, concentrations of Cu and Cd at day 75 were in the ranges of 1.92-2.82 and 0.64-1.47 g kg-1 DW, respectively, exceeding the corresponding limits of the heavy-metal hyperaccumulator. For the operational parameters, the optimized initial dose was 1.0 kg per pond with M. aquaticum harvested after 45 summer days, respectively. Given that M. aquaticum has been widely used as animal feed in recent years and limit values for Cu and Zn in animal feed are not set in China, the toxicities of Cu and Zn should be assessed and the guideline of their limit values needs to be established for safe feed production. Interestingly, NH4+-N could dominate the removal of heavy metals especially Cd in the simulated SW, however, related mechanisms are needed for further study.


Asunto(s)
Metales Pesados/análisis , Saxifragales/fisiología , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Animales , China , Contaminantes Ambientales , Nitrógeno/análisis , Nutrientes , Fósforo , Porcinos , Purificación del Agua/métodos
9.
Bioorg Chem ; 96: 103526, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32004898

RESUMEN

The current study was aimed to evaluate the prolyl endopeptidase (PEP) inhibitory activity of glutinol (1), azadiradione (2), quercetin 3-O-ß-d-glactopyranoside (3), catechin (4), quercetin (5), naringenin (6) isolated from Parrotia persica C. A. Mey. Naringenin (6) was further derivatized into 7-O-propargylnaringenin (7), 4',6',4″-O-propargylchalcone (8), and 4',4″-O-propargylchalcone (9). All compounds 1-9 were evaluated for their PEP inhibition activity. PEP is associated with several diseases, including dementia, and Alzheimer's disease (AD). Azadiradione (2) was less active with IC50 = 356.80 ± 2.9 µM, whereas quercetin (5) showed a potent activity with IC50 = 37.12 ± 2.2 µM, as compared to IC50 = 125.00 ± 1.5 µM of standard drug bacitracin. Naringenin (6) was found to be inactive, whereas its new analogues 7-9 were identified as potent inhibitors of PEP with IC50 = 35.20, 41.20, and 29.60 µM, respectively. Kinetic studies of active compounds indicated their modes of inhibition. Compounds 7-9 were found to be mixed-type inhibitors, while compound 5 was found to be non-competitive inhibitor.


Asunto(s)
Prolil Oligopeptidasas/antagonistas & inhibidores , Saxifragales/química , Inhibidores de Serina Proteinasa/farmacología , Células 3T3 , Animales , Cinética , Ratones , Espectroscopía de Protones por Resonancia Magnética , Inhibidores de Serina Proteinasa/química , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad
10.
Ecotoxicol Environ Saf ; 195: 110502, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32203771

RESUMEN

Enrichment of the hyperaccumulator bank is important for phytoremediation, and studying new hyperaccumulators has become a research hotspot. In this study, cadmium (Cd), the main representative factor of heavy-metal-polluted water, was the research object, and the Cd bioenrichment ability and tolerance of Myriophyllum aquaticum were studied for the first time. The experiment was conducted for 28 days by establishing experimental groups with different Cd concentrations (0, 10, 20, 40, 80, and 160 mg/L). The results show that M. aquaticum is a new Cd hyperaccumulator. There was no notable damage in the 40 mg/L Cd treatment group, and the Cd enrichment ability of M. aquaticum reached 17,970 ± 1020.01 mg/kg, while the bioconcentration factor (BCF) reached 449.25. At the same time, the antioxidant system (superoxide dismutase (SOD) and peroxidase (POD)) and proline (Pro) levels of M. aquaticum maintained normal plant physiology, but there were physiological anomalies in M. aquaticum at high concentrations and under long-term treatment. The results show that M. aquaticum has a high Cd bioenrichment ability and tolerance in water and can be used for phytoremediation of river water polluted by Cd.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Bioacumulación/efectos de los fármacos , Cadmio/análisis , Saxifragales/metabolismo , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Cadmio/metabolismo , Saxifragales/crecimiento & desarrollo , Contaminantes Químicos del Agua/metabolismo
11.
Ecotoxicol Environ Saf ; 205: 111362, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979807

RESUMEN

Combined antibiotic and heavy metal pollution has generated considerable concern. Constructed wetlands (CWs) have been shown to efficiently remove pollutants; however, the microbial community responses to combined pollutants remain enigmatic. In this study, seven microcosm CWs were planted with Myriophyllum aquaticum, spiked with tetracyclines (TCs) (300-30,000 µg/L), alone or with Cu(II), to investigate the response of plant-associated microbial communities. TCs and the Cu/TC ratio greatly affected the performance of CWs. Tetracyclines led to higher microbial diversity, evenness and richness, while UniFrac distances and principal coordinate (PCO) and redundancy analyses revealed that the co-presence of TCs and Cu(II) led to variations in bacterial communities. Proteobacteria, Cyanobacteria and Bacteroidetes were the dominant microbial phyla and Cloacibacterium, Hydrogenophaga, Rheinheimera and Denitratisoma accounted for 6.2-21.0% of all genera. Therefore, the co-occurrence of heavy metals should be considered when judging the removal potential of TCs in phytoremediation.


Asunto(s)
Antibacterianos/toxicidad , Saxifragales/fisiología , Tetraciclinas/toxicidad , Eliminación de Residuos Líquidos/métodos , Humedales , Biodegradación Ambiental , Cianobacterias , Compuestos Heterocíclicos , Metales Pesados , Microbiota , Proteobacteria , Contaminantes Químicos del Agua/análisis
12.
Mol Biol Rep ; 46(3): 3381-3386, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30989557

RESUMEN

Hamamelidaceae (Saxifragales, previously Rosales) comprises approximately six subfamily, 30 genera and 140 species, most of which are Tertiary relicts. Exbucklandia is the only genus of the subfamily Exbucklandioideae, Hamelidaceae, containing only 2-4 species. Of them, the species E. longipetala H. T. Chang is endemic to China and listed as endangered in The Biodiversity Red List of China: Higher Plant, yet some taxonomists put forward that E. longipetala should be merged into E. tonkinensis (Lecomte) H. T. Chang. Currently, there was nearly no phylogeographic studies on this genus possibly due to the deficiency of efficient molecular markers. In this study, we sequenced the genome of E. tonkinensis based on high throughput sequencing technology, and obtained approximately 6 G raw data, which was further de novo assembled into 303,481 contigs. Based on them, 15,326 SSRs were identified from 13,596 contigs, and primers were successfully designed for 10,660 SSRs. A total of 139 paired primers were synthesized, 106 of them were successfully amplified in six Exbucklandia individuals with expected PCR product size, and 24 demonstrated to be polymorphic among three Exbucklandia populations. Accordingly, the expected and observed heterozygosity were between 0.097-0.717 and 0.098-0.583. Based on these efforts, future researches on genetic diversity and population structure of Exbucklandia can be performed to understand its phylogenetic origins and phylogeographic pattern.


Asunto(s)
Hamamelidaceae/genética , Repeticiones de Microsatélite/genética , Saxifragales/genética , China , Marcadores Genéticos/genética , Genética de Población/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Hojas de la Planta/genética , Polimorfismo Genético/genética , Análisis de Secuencia de ADN/métodos
13.
Ecotoxicol Environ Saf ; 183: 109517, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31394377

RESUMEN

The study aimed to determine the biochar yield of four aquatic plants, the leaching toxicity of copper (Cu) and cadmium (Cd) in the biochar, and the stabilization characteristics of the biochar produced under different pyrolysis conditions (at 350 °C for 1, 2, and 3 h and absence/presence of zeolite powder). The results showed that different plant species required a different pyrolysis duration and the presence or absence of zeolite powder. The stabilization of Cu and Cd was significantly affected by the pyrolysis duration and the external materials for different plant species and different types of admixtures. Pyrolysis temperatures over 350 °C for 1 h without zeolite powder generated stable Cu and Cd in goldfish algae (Ceratophyllum demersum L.), foxtail algae (Myriophyllum verticillatum L.), and penny grass (Hydrocotyle vulgaris). Pyrolysis temperatures over 350 °C for 1 h with zeolite powder made Cu and Cd stable in water celery (Oenanthe javanica (Bl.) DC). The addition of zeolite powder during pyrolysis was possible due to the weight reduction efficiency in plants with Cu and Cd. Furthermore, the surface of the biochar with the zeolite powder showed honeycombs and a spongy porous structure. The duration of the pyrolysis had little effect on the honeycomb pore structure.


Asunto(s)
Organismos Acuáticos/química , Cadmio/análisis , Carbón Orgánico/química , Cobre/análisis , Pirólisis , Contaminantes Químicos del Agua/análisis , Zeolitas/química , Biomasa , Cadmio/toxicidad , Cobre/toxicidad , Calor , Oenanthe/química , Saxifragales/química , Factores de Tiempo , Contaminantes Químicos del Agua/toxicidad
14.
BMC Complement Altern Med ; 19(1): 219, 2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31419969

RESUMEN

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) causes serious infections in hospitals. Penthorum chinense Pursh (PCP), employed by the Miao ethnic minority in China, presents antibacterial activities. In this study, the anti-Staphylococcus aureus activities in the pinocembrin-7-O residue-rich fraction from PCP (PGF) were evaluated and characterized. METHODS: The PGF was prepared with 70% ethanol reflux extraction followed by fractional extraction and column chromatography. Pinocembrin-7-O residue components were identified with electrospray ionization mass spectrometry (ESI-MS). Anti-S. aureus activities of the fraction and the main components were evaluated in vitro with serially diluted microbroth assays. Cytotoxicity was evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) chromogenic assays using the NCTC 1469 cell line. RESULTS: This study indicated that the PGF and three components (S1, S2, and S3) presented anti-S. aureus activities, including against clinically isolated MRSA strains. The molecular masses of S1, S2, and S3 were identical to those of pinocembrin-7-O-[4″,6″-hexahydroxydiphenoyl (HHDP)]-ß-D-glucose, pinocembrin-7-O-[3″-O-galloyl-4″,6″-(s)-HHDP]-ß-D-glucose, and Thonningianin A, respectively. The PGF, S1, S2, and S3 all presented an identical minimum inhibitory concentration (MIC) against S. aureus ATCC 25923 and ATCC 43300, which was 62.5 µg/mL. The minimum bactericidal concentrations (MBCs) of the PGF and S3 against ATCC 25923 were 125 and 250 µg/mL, and the MBCs of the PGF, S2, and S3 against ATCC 43300 were 250, 500, and 250 µg/mL, respectively. A time-kill assay consistently indicated that none of the bacterial clones of ATCC 25923 and ATCC 43300 could survive under 2× and 4× MIC PGF treatment for 24 h, respectively. In contrast, 104 CFU (colony-forming units) of ATCC 25923 and ATCC 43300 were killed by 8× and 4× MIC S3 within 24 h, respectively. Additionally, 1×, 2×, and 4× MIC the PGF presented similar postantibiotic effects (PAEs) on the strain ATCC 25923. However, the PAE of the PGF on the strain ATCC 43300 was concentration dependent (1× < 2× < 4× MIC). Finally, the PGF (200 µg/mL) and S3 (60 µg/mL) showed no cytotoxicity against human hepatoma cells. CONCLUSIONS: The PGF and S3 from PCP present potential for the treatment of S. aureus and MRSA infections. The components S1 and S2 present inhibition activities against S. aureus.


Asunto(s)
Antibacterianos/química , Extractos Vegetales/química , Saxifragales/química , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/análisis , Antibacterianos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Flavonoides/análisis , Flavonoides/química , Flavonoides/farmacología , Ratones , Extractos Vegetales/análisis , Extractos Vegetales/farmacología
15.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934901

RESUMEN

Massively input and accumulated ammonium is one of the main causes of eutrophication in aquatic ecosystems, which severely deteriorates water quality. Previous studies showed that one of the commonly used macrophytes, Myriophyllum aquaticum, was capable of not only withstanding ammonium of high concentration, but also efficiently assimilating extracellular ammonium to constitutive amino acids and proteins. However, the genetic mechanism regulating such efficient nitrogen metabolism in M. aquaticum is still poorly understood. Therefore, RNA-based analysis was performed in this study to understand the ammonium regulatory mechanism in M. aquaticum in response to various concentrations of ammonium. A total of 7721 genes were differentially expressed, of which those related to nitrogen-transport, assimilation, and remobilization were highly-regulated in response to various concentrations of ammonium. We have also identified transcription factors and protein kinases that were rapidly induced in response to ammonium, which suggests their involvement in ammonium-mediated signalling. Meanwhile, secondary metabolism including phenolics and anthocyanins biosynthesis was also activated in response to various concentrations of ammonium, especially at high ammonium concentrations. These results proposed a complex physiological and genetic regulation network related to nitrogen, carbohydrate, transcription factors, and secondary metabolism for nitrogen use efficiency in M. aquaticum.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Nitrógeno/metabolismo , Saxifragales/genética , Análisis de Secuencia de ARN , Transcriptoma/genética , Aminoácidos/análisis , Compuestos de Amonio/farmacología , Metabolismo de los Hidratos de Carbono/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Familia de Multigenes , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo
16.
Plant Foods Hum Nutr ; 74(1): 83-90, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30552560

RESUMEN

Penthorum chinense Pursh (PCP), a medicinal and edible plant, is traditionally used for liver protection and treatment of liver diseases. In this study, we compared the differences of composition and activity of flowers, stems and leaves of PCP to select a bioactive part. The stems of PCP with stronger antioxidant activity (6.25-100 µg/mL) and lower cytotoxicity (25-200 µg/mL) than the flowers and leaves were a better bioactive part. Then the chemical composition and hepatoprotective effects of an aqueous extract and an 70% ethanolic extract made with stems of PCP were investigated. We found that the 70% ethanolic extract enriched more polyphenols and flavonoids and possessed significantly stronger hepatoprotective activity than the aqueous extract in the dose range of 25-200 µg/mL, which indicated that 70% ethanol is the better solvent of PCP in extraction technology. Moreover, ethyl acetate extract of stems of PCP (PSE) was used to evaluate the hepatoprotective ability of PCP against oxidative damage using an in vitro model of a normal rat's liver cell (BRL-3A). Besides, 12 phenolic compounds were identified from PSE by ultra-performance liquid chromatography followed by electrospray ionization mass spectrometry (UPLC-ESI-MS). Obtained results strongly support the traditional use of PCP and prove stems of PCP to be an important source of bioactive compounds associated with hepatoprotective activity.


Asunto(s)
Antioxidantes/farmacología , Fenoles/farmacología , Saxifragales/química , Tés Medicinales/análisis , Animales , Antioxidantes/análisis , Células Cultivadas , Cromatografía Liquida , Etanol , Humanos , Hígado/efectos de los fármacos , Estrés Oxidativo , Fenoles/análisis , Tallos de la Planta/química , Plantas Medicinales , Ratas , Espectrometría de Masa por Ionización de Electrospray , Agua
17.
Mol Phylogenet Evol ; 126: 321-330, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29702217

RESUMEN

Accurately resolving the phylogeny of enigmatic taxa is always a challenge in phylogenetic inference. Such uncertainties could be due to systematic errors or model violations. Here, we provide an example demonstrating how these factors affect the positioning of Paeoniaceae within Saxifragales based on chloroplast genome data. We newly assembled 14 chloroplast genomes from Saxifragales, and by combining these genomes with those of 63 other angiosperms, three datasets were assembled to test different hypotheses proposed by recent studies. These datasets were subjected to maximum parsimony, maximum likelihood and Bayesian analyses with site-homogeneous/heterogeneous models, different data partitioning strategies, and the inclusion/exclusion of weak phylogenetic signals. Three datasets exhibited remarkable heterogeneity among sites and among taxa of Saxifragales. Phylogenetic analyses under homogeneous models or maximum parsimony showed a closer relationship of Paeoniaceae with herbaceous families in the order. Data partitioning strategies did not change the general tree topology. However, PhyloBayes analysis under the CAT+GTR model resulted in a relationship closer to woody families. We conclude that although genomic data significantly increase the phylogenetic resolution of enigmatic taxa with high support, the phylogenetic results inferred from such data might be analysis or signal dependent. The analytical pipeline outlined here combines phylogenomic inference methods with evaluation of lineage-specific rates of substitution, model selection, and assessment of systematic error. These methods would be applicable to resolve similar difficult questions in the tree of life.


Asunto(s)
Genoma del Cloroplasto , Filogenia , Saxifragales/clasificación , Saxifragales/genética , Teorema de Bayes , Funciones de Verosimilitud , Árboles/clasificación , Árboles/genética
18.
Glob Chang Biol ; 24(11): 5231-5242, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30120802

RESUMEN

Temperatures have been rising throughout recent decades and are predicted to rise further in the coming century. Global warming affects carbon cycling in freshwater ecosystems, which both emit and bury substantial amounts of carbon on a global scale. Currently, most studies focus on the effect of warming on overall carbon emissions from freshwater ecosystems, while net effects on carbon budgets may strongly depend on burial in sediments. Here, we tested whether year-round warming increases the production, sedimentation, or decomposition of particulate organic carbon and eventually alters the carbon burial in a typical shallow freshwater system. We performed an indoor experiment in eight mesocosms dominated by the common submerged aquatic plant Myriophyllum spicatum testing two temperature treatments: a temperate seasonal temperature control and a warmed (+4°C) treatment (n = 4). During a full experimental year, the carbon stock in plant biomass, dissolved organic carbon in the water column, sedimented organic matter, and decomposition of plant detritus were measured. Our results showed that year-round warming nearly doubled the final carbon stock in plant biomass from 6.9 ± 1.1 g C in the control treatment to 12.8 ± 0.6 g C (mean ± SE), mainly due to a prolonged growing season in autumn. DOC concentrations did not differ between the treatments, but organic carbon sedimentation increased by 60% from 96 ± 9.6 to 152 ± 16 g C m-2  yaer-1 (mean ± SE) from control to warm treatments. Enhanced decomposition of plant detritus in the warm treatment, however, compensated for the increased sedimentation. As a result, net carbon burial was 40 ± 5.7 g C m-2  year-1 in both temperature treatments when fluxes were combined into a carbon budget model. These results indicate that warming can increase the turnover of organic carbon in shallow macrophyte-dominated systems, while not necessarily affecting net carbon burial on a system scale.


Asunto(s)
Ciclo del Carbono , Secuestro de Carbono , Agua Dulce/química , Calentamiento Global , Biomasa , Carbono , Ecosistema , Saxifragales/fisiología , Estaciones del Año , Temperatura
19.
J Hazard Mater ; 464: 132883, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37952333

RESUMEN

Research on the toxicity effects of nano-plastics on submerged macrophytes has been increasing over the past several years. However, how the endophytic bacteria of submerged macrophytes respond to nano-plastics remains unknown, although they have been widely shown to help terrestrial plants cope with various environmental stressors. Here, a microcosm experiment was performed to unravel the effects of high concentration of nano-plastics (20 mg/L) on three submerged macrophyte (Vallisneria natans, Potamogeton maackianus, Myriophyllum spicatum) and their endophytic bacterial communities. Results indicated that nano-plastics induced antioxidative stress in plants, but significantly reduction in relative growth rate (RGR) only occurred in V. natans (from 0.0034 to -0.0029 day-1), accompanied by change in the stem/leaves endophyte community composition. Further analysis suggested nano-plastics caused a reduction in environmental nutrient availability and the proportion of positive interactions between endophyte communities (43%), resulting in the lowest RGR of V. natans. In contrast, endophytes may help P. maackianus and M. spicatum cope with nano-plastic stress by increasing the proportion of positive correlations among communities (70% and 75%), leaving their RGR unaffected. Collectively, our study elucidates the species-specific response strategies of submerged macrophyte-endophyte to nano-plastics, which helps to reveal the different phytoremediation potential of submerged macrophytes against nano-plastic pollution.


Asunto(s)
Hydrocharitaceae , Potamogetonaceae , Saxifragales , Endófitos , Microplásticos/farmacología , Bacterias
20.
Genes (Basel) ; 15(2)2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38397228

RESUMEN

Paeonia lactiflora (P. lactiflora), a perennial plant renowned for its medicinal roots, provides a unique case for studying the phylogenetic relationships of species based on organelle genomes, as well as the transference of DNA across organelle genomes. In order to investigate this matter, we sequenced and characterized the mitochondrial genome (mitogenome) of P. lactiflora. Similar to the chloroplast genome (cpgenome), the mitogenome of P. lactiflora extends across 181,688 base pairs (bp). Its unique quadripartite structure results from a pair of extensive inverted repeats, each measuring 25,680 bp in length. The annotated mitogenome includes 27 protein-coding genes, 37 tRNAs, 8 rRNAs, and two pseudogenes (rpl5, rpl16). Phylogenetic analysis was performed to identify phylogenetic trees consistent with Paeonia species phylogeny in the APG Ⅳ system. Moreover, a total of 12 MTPT events were identified and 32 RNA editing sites were detected during mitogenome analysis of P. lactiflora. Our research successfully compiled and annotated the mitogenome of P. lactiflora. The study provides valuable insights regarding the taxonomic classification and molecular evolution within the Paeoniaceae family.


Asunto(s)
Genoma Mitocondrial , Paeonia , Saxifragales , Humanos , Filogenia , Genoma Mitocondrial/genética , Paeonia/genética , Saxifragales/genética , Cloroplastos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA