Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 800
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(35): e2407394121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159375

RESUMEN

Aedes aegypti mosquitoes are major vectors of dengue, chikungunya, and other arboviral diseases. Ae. aegypti's capacity to reproduce and to spread disease depends on the female mosquitoes' ability to obtain blood meals and find water-filled containers in which to lay eggs (oviposit). While humidity sensation (hygrosensation) has been implicated in these behaviors, the specific hygrosensory pathways involved have been unclear. Here, we establish the distinct molecular requirements and anatomical locations of Ae. aegypti Dry Cells and Moist Cells and examine their contributions to behavior. We show that Dry Cell and Moist Cell responses to humidity involve different ionotropic receptor (IR) family sensory receptors, with dry air-activated Dry Cells reliant upon the IR Ir40a, and humid air-activated Moist Cells upon Ir68a. Both classes of hygrosensors innervate multiple antennal sensilla, including sensilla ampullacea near the antennal base as well as two classes of coeloconic sensilla near the tip. Dry Cells and Moist Cells each support behaviors linked to mosquito reproduction but contribute differently: Ir40a-dependent Dry Cells act in parallel with Ir68a-dependent Moist Cells to promote blood feeding, while oviposition site seeking is driven specifically by Ir68a-dependent Moist Cells. Together these findings reveal the importance of distinct hygrosensory pathways in blood feeding and oviposition site seeking and suggest Ir40a-dependent Dry Cells and Ir68a-dependent Moist Cells as potential targets for vector control strategies.


Asunto(s)
Aedes , Conducta Alimentaria , Humedad , Mosquitos Vectores , Oviposición , Animales , Aedes/fisiología , Oviposición/fisiología , Femenino , Conducta Alimentaria/fisiología , Mosquitos Vectores/fisiología , Sensilos/fisiología , Receptores Ionotrópicos de Glutamato/metabolismo , Antenas de Artrópodos/fisiología
2.
Nature ; 584(7822): 584-588, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32788724

RESUMEN

Locust plagues threaten agricultural and environmental safety throughout the world1,2. Aggregation pheromones have a crucial role in the transition of locusts from a solitary form to the devastating gregarious form and the formation of large-scale swarms3,4. However, none of the candidate compounds reported5-7 meet all the criteria for a locust aggregation pheromone. Here, using behavioural assays, electrophysiological recording, olfactory receptor characterization and field experiments, we demonstrate that 4-vinylanisole (4VA) (also known as 4-methoxystyrene) is an aggregation pheromone of the migratory locust (Locusta migratoria). Both gregarious and solitary locusts are strongly attracted to 4VA, regardless of age and sex. Although it is emitted specifically by gregarious locusts, 4VA production can be triggered by aggregation of four to five solitary locusts. It elicits responses specifically from basiconic sensilla on locust antennae. We also identified OR35 as a specific olfactory receptor of 4VA. Knockout of OR35 using CRISPR-Cas9 markedly reduced the electrophysiological responses of the antennae and impaired 4VA behavioural attractiveness. Finally, field trapping experiments verified the attractiveness of 4VA to experimental and wild populations. These findings identify a locust aggregation pheromone and provide insights for the development of novel control strategies for locusts.


Asunto(s)
Locusta migratoria/efectos de los fármacos , Locusta migratoria/fisiología , Feromonas/metabolismo , Feromonas/farmacología , Estirenos/metabolismo , Estirenos/farmacología , Envejecimiento , Migración Animal/efectos de los fármacos , Animales , Ecosistema , Femenino , Control de Insectos , Locusta migratoria/química , Masculino , Densidad de Población , Receptores Odorantes/deficiencia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Sensilos/fisiología
3.
Proc Natl Acad Sci U S A ; 119(23): e2112385119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35648836

RESUMEN

Anopheline mosquitoes rely on their highly sensitive chemosensory apparatus to detect diverse chemical stimuli that drive the host-seeking and blood-feeding behaviors required to vector pathogens for malaria and other diseases. This process incorporates a variety of chemosensory receptors and transduction pathways. We used advanced in vivo gene-editing and -labeling approaches to localize and functionally characterize the ionotropic coreceptor AcIr76b in the malaria mosquito Anopheles coluzzii, where it impacts both olfactory and gustatory systems. AcIr76b has a broad expression pattern in female adult antennal grooved pegs, coeloconic sensilla, and T1 and T2 sensilla on the labellum, stylets, and tarsi, as well as the larval sensory peg. AcIr76b is colocalized with the Orco odorant receptor (OR) coreceptor in a subset of cells across the female antennae and labella. In contrast to Orco and Ir8a, chemosensory coreceptors that appear essential for the activity of their respective sets of chemosensory neurons in mosquitoes, AcIr76b−/− mutants maintain wild-type peripheral responses to volatile amines on the adult palps, labellum, and larval sensory cone. Interestingly, AcIr76b−/− mutants display significantly increased responses to amines in antennal grooved peg sensilla, while coeloconic sensilla reveal significant deficits in responses to several acids and amines. Behaviorally, AcIr76b mutants manifest significantly female-specific insemination deficits, and although AcIr76b−/− mutant females can locate, alight on, and probe artificial blood hosts, they are incapable of blood feeding successfully. Taken together, our findings reveal a multidimensional functionality of Ir76b in anopheline olfactory and gustatory pathways that directly impacts the vectorial capacity of these mosquitoes.


Asunto(s)
Anopheles , Conducta Alimentaria , Malaria , Mosquitos Vectores , Receptores Ionotrópicos de Glutamato , Animales , Anopheles/genética , Anopheles/fisiología , Sangre , Femenino , Edición Génica , Malaria/parasitología , Malaria/transmisión , Mosquitos Vectores/genética , Mosquitos Vectores/fisiología , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/fisiología , Sensilos/fisiología , Olfato
4.
Dev Genes Evol ; 234(1): 33-44, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691194

RESUMEN

The antennal flagellum of the locust S. gregaria is an articulated structure bearing a spectrum of sensilla that responds to sensory stimuli. In this study, we focus on the basiconic-type bristles as a model for sensory system development in the antenna. At the end of embryogenesis, these bristles are found at fixed locations and then on only the most distal six articulations of the antenna. They are innervated by a dendrite from a sensory cell cluster in the underlying epithelium, with each cluster directing fused axons topographically to an antennal tract running to the brain. We employ confocal imaging and immunolabeling to (a) identify mitotically active sense organ precursors for sensory cell clusters in the most distal annuli of the early embryonic antenna; (b) observe the subsequent spatial appearance of their neuronal progeny; and (c) map the spatial and temporal organization of axon projections from such clusters into the antennal tracts. We show that early in embryogenesis, proliferative precursors are localized circumferentially within discrete epithelial domains of the flagellum. Progeny first appear distally at the antennal tip and then sequentially in a proximal direction so that sensory neuron populations are distributed in an age-dependent manner along the antenna. Autotracing reveals that axon fasciculation with a tract is also sequential and reflects the location and age of the cell cluster along the most distal annuli. Cell cluster location and bristle location are therefore represented topographically and temporally within the axon profile of the tract and its projection to the brain.


Asunto(s)
Antenas de Artrópodos , Encéfalo , Saltamontes , Animales , Saltamontes/embriología , Antenas de Artrópodos/embriología , Antenas de Artrópodos/ultraestructura , Encéfalo/embriología , Encéfalo/citología , Sensilos/embriología , Sensilos/ultraestructura , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo
5.
Proc Biol Sci ; 291(2024): 20240311, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864337

RESUMEN

Halteres are multifunctional mechanosensory organs unique to the true flies (Diptera). A set of reduced hindwings, the halteres beat at the same frequency as the lift-generating forewings and sense inertial forces via mechanosensory campaniform sensilla. Though haltere ablation makes stable flight impossible, the specific role of wing-synchronous input has not been established. Using small iron filings attached to the halteres of tethered flies and an alternating electromagnetic field, we experimentally decoupled the wings and halteres of flying Drosophila and observed the resulting changes in wingbeat amplitude and head orientation. We find that asynchronous haltere input results in fast amplitude changes in the wing (hitches), but does not appreciably move the head. In multi-modal experiments, we find that wing and gaze optomotor responses are disrupted differently by asynchronous input. These effects of wing-asynchronous haltere input suggest that specific sensory information is necessary for maintaining wing amplitude stability and adaptive gaze control.


Asunto(s)
Drosophila melanogaster , Vuelo Animal , Alas de Animales , Animales , Alas de Animales/fisiología , Alas de Animales/anatomía & histología , Drosophila melanogaster/fisiología , Cabeza/fisiología , Cabeza/anatomía & histología , Mecanorreceptores/fisiología , Movimientos de la Cabeza/fisiología , Sensilos/fisiología , Fenómenos Biomecánicos
6.
Proc Biol Sci ; 291(2015): 20232578, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38228178

RESUMEN

In the silkmoth Bombyx mori, the role of male sensilla trichodea in pheromone detection is well established. Here we study the corresponding female sensilla, which contain two olfactory sensory neurons (OSNs) and come in two lengths, each representing a single physiological type. Only OSNs in medium trichoids respond to the scent of mulberry, the silkworm's exclusive host plant, and are more sensitive in mated females, suggesting a role in oviposition. In long trichoids, one OSN is tuned to (+)-linalool and the other to benzaldehyde and isovaleric acid, both odours emitted by silkworm faeces. While the significance of (+)-linalool detection remains unclear, isovaleric acid repels mated females and may therefore play a role in avoiding crowded oviposition sites. When we examined the underlying molecular components of neurons in female trichoids, we found non-canonical co-expression of Ir8a, the co-receptor for acid responses, and ORco, the co-receptor of odorant receptors, in long trichoids, and the unexpected expression of a specific odorant receptor in both trichoid sensillum types. In addition to elucidating the function of female trichoids, our results suggest that some accepted organizational principles of the insect olfactory system may not apply to the predominant sensilla on the antenna of female B. mori.


Asunto(s)
Monoterpenos Acíclicos , Bombyx , Hemiterpenos , Neuronas Receptoras Olfatorias , Ácidos Pentanoicos , Receptores Odorantes , Animales , Femenino , Bombyx/metabolismo , Sensilos/fisiología , Olfato , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Feromonas/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(45): 28126-28133, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33122443

RESUMEN

Flying insects are known to orient themselves over large distances using minute amounts of odors. Some bear pectinate antennae of remarkable architecture thought to improve olfactory performance. The semiporous, multiscale nature of these antennae influences how odor molecules reach their surface. We focus here on the repeating structural building blocks of these antennae in Saturniid moths. This microstructure consists of one ramus or branch and its many hair-like sensilla, responsible for chemical detection. We experimentally determined leakiness, defined as the proportion of air going through the microstructure rather than flowing around it, by particle image velocimetry visualization of the flow around three-dimensional printed scaled-up mock-ups. The combination of these results with a model of mass transfer showed that most pheromone molecules are deflected around the microstructure at low flow velocities, keeping them out of reach. Capture is thus determined by leakiness. By contrast, at high velocities, molecular diffusion is too slow to be effective, and the molecules pass through the structure without being captured. The sensory structure displays maximal odor capture efficiency at intermediate flow speeds, as encountered by the animal during flight. These findings also provide a rationale for the previously described "olfactory lens," an increase in pheromone reception at the proximal end of the sensors. We posit that it is based on passive mass transfer rather than on physicochemical surface processes.


Asunto(s)
Antenas de Artrópodos , Vuelo Animal/fisiología , Modelos Biológicos , Olfato/fisiología , Animales , Antenas de Artrópodos/anatomía & histología , Antenas de Artrópodos/metabolismo , Antenas de Artrópodos/fisiología , Difusión , Hidrodinámica , Masculino , Mariposas Nocturnas , Odorantes , Feromonas/metabolismo , Sensilos/metabolismo , Sensilos/fisiología
8.
J Insect Sci ; 23(2)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37014302

RESUMEN

The insect equivalent of taste buds are gustatory sensilla, which have been found on mouthparts, pharynxes, antennae, legs, wings, and ovipositors. Most gustatory sensilla are uniporous, but not all apparently uniporous sensilla are gustatory. Among sensilla containing more than one neuron, a tubular body on one dendrite is also indicative of a taste sensillum, with the tubular body adding tactile function. But not all taste sensilla are also tactile. Additional morphological criteria are often used to recognize if a sensillum is gustatory. Further confirmation of such criteria by electrophysiological or behavioral evidence is needed. The five canonical taste qualities to which insects respond are sweet, bitter, sour, salty, and umami. But not all tastants that insects respond to easily fit in these taste qualities. Categories of insect tastants can be based not only on human taste perception, but also on whether the response is deterrent or appetitive and on chemical structure. Other compounds that at least some insects taste include, but are not limited to: water, fatty acids, metals, carbonation, RNA, ATP, pungent tastes as in horseradish, bacterial lipopolysaccharides, and contact pheromones. We propose that, for insects, taste be defined not only as a response to nonvolatiles but also be restricted to responses that are, or are thought to be, mediated by a sensillum. This restriction is useful because some of the receptor proteins in gustatory sensilla are also found elsewhere.


Asunto(s)
Percepción del Gusto , Gusto , Humanos , Animales , Gusto/fisiología , Cuerpo Humano , Sensilos , Insectos
9.
J Neurophysiol ; 128(4): 790-807, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36043841

RESUMEN

In control of walking, sensory signals of decreasing forces are used to regulate leg lifting in initiation of swing and to detect loss of substrate grip (leg slipping). We used extracellular recordings in two insect species to characterize and model responses to force decrements of tibial campaniform sensilla, receptors that detect forces as cuticular strains. Discharges to decreasing forces did not occur upon direct stimulation of the sites of mechanotransduction (cuticular caps) but were readily elicited by bending forces applied to the leg. Responses to bending force decreases were phasic but had rate sensitivities similar to discharges elicited by force increases in the opposite direction. Application of stimuli of equivalent amplitude at different offset levels showed that discharges were strongly dependent upon the tonic level of loading: firing was maximal to complete unloading of the leg but substantially decreased or eliminated by sustained loads. The contribution of cuticle properties to sensory responses was also evaluated: discharges to force increases showed decreased adaptation when mechanical stress relaxation was minimized; firing to force decreases could be related to viscoelastic "creep" in the cuticle. Discharges to force decrements apparently occur due to cuticle viscoelasticity that generates transient strains similar to bending in the opposite direction. Tuning of sensory responses through cuticular and membrane properties effectively distinguishes loss of substrate grip/complete unloading from force variations due to gait in walking. We have successfully reproduced these properties in a mathematical model of the receptors. Sensors with similar tuning could fulfil these functions in legs of walking machines.NEW & NOTEWORTHY Decreases in loading of legs are important in the regulation of posture and walking in both vertebrates and invertebrates. Recordings of activities of tibial campaniform sensilla, which encode forces in insects, showed that their responses are specifically tuned to detect force decreases at the end of the stance phase of walking or when a leg slips. These results have been reproduced in a mathematical model of the receptors and also have potential applications in robotics.


Asunto(s)
Insectos , Mecanotransducción Celular , Animales , Marcha , Insectos/fisiología , Pierna , Postura/fisiología , Sensilos/fisiología , Caminata
10.
J Evol Biol ; 35(9): 1218-1228, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35849730

RESUMEN

The social Hymenoptera have contributed much to our understanding of the evolution of sensory systems. Attention has focussed chiefly on how sociality and sensory systems have evolved together. In the Hymenoptera, the antennal sensilla are important for optimizing the perception of olfactory social information. Social species have denser antennal sensilla than solitary species, which is thought to enhance social cohesion through nestmate recognition. In the current study, we test whether sensilla numbers vary between populations of the socially plastic sweat bee Halictus rubicundus from regions that vary in climate and the degree to which sociality is expressed. We found population differences in both olfactory and hygro/thermoreceptive sensilla numbers. We also found evidence that olfactory sensilla density is developmentally plastic: when we transplanted bees from Scotland to the south-east of England, their offspring (which developed in the south) had more olfactory hairs than the transplanted individuals themselves (which developed in Scotland). The transplanted bees displayed a mix of social (a queen plus workers) and solitary nesting, but neither individual nor nest phenotype was related to sensilla density. We suggest that this general, rather than caste-specific sensory plasticity provides a flexible means to optimize sensory perception according to the most pressing demands of the environment. Sensory plasticity may support social plasticity in H. rubicundus but does not appear to be causally related to it.


Asunto(s)
Himenópteros , Plásticos , Animales , Abejas , Fenotipo , Sensilos , Conducta Social
11.
Artículo en Inglés | MEDLINE | ID: mdl-36242627

RESUMEN

Longhorned beetles (Cerambycidae) are a diverse family of wood-boring insects, many species of which produce volatile pheromones to attract mates over long distances. The composition and structure of the pheromones remain constant across many cerambycid species, and comparative studies of those groups could, therefore, reveal the chemoreceptors responsible for pheromone detection. Here, we use comparative transcriptomics to identify a candidate pheromone receptor in the large and economically important cerambycid genus Monochamus, males of which produce the aggregation-sex pheromone 2-(undecyloxy)-ethanol ("monochamol"). Antennal transcriptomes of the North American species M. maculosus, M. notatus, and M. scutellatus revealed 60-70 odorant receptors (ORs) in each species, including four lineages of simple orthologs that were highly conserved, highly expressed in both sexes, and upregulated in the flagellomeres where olfactory sensilla are localized. Two of these orthologous lineages, OR29 and OR59, remained highly expressed and conserved when we included a re-annotation of an antennal transcriptome of the Eurasian congener M. alternatus. OR29 is also orthologous to a characterized pheromone receptor in the cerambycid Megacyllene caryae, suggesting it as the most likely candidate for a monochamol receptor and highlighting its potential as a conserved lineage of pheromone receptors within one of the largest families of beetles.


Asunto(s)
Escarabajos , Atractivos Sexuales , Masculino , Femenino , Animales , Escarabajos/genética , Receptores de Feromonas/genética , Feromonas , Sensilos
12.
PLoS Biol ; 17(5): e2006619, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31112532

RESUMEN

The Drosophila wing was proposed to be a taste organ more than 35 years ago, but there has been remarkably little study of its role in chemoreception. We carry out a differential RNA-seq analysis of a row of sensilla on the anterior wing margin and find expression of many genes associated with pheromone and chemical perception. To ask whether these sensilla might receive pheromonal input, we devised a dye-transfer paradigm and found that large, hydrophobic molecules comparable to pheromones can be transferred from one fly to the wing margin of another. One gene, Ionotropic receptor (IR)52a, is coexpressed in neurons of these sensilla with fruitless, a marker of sexual circuitry; IR52a is also expressed in legs. Mutation of IR52a and optogenetic silencing of IR52a+ neurons decrease levels of male sexual behavior. Optogenetic activation of IR52a+ neurons induces males to show courtship toward other males and, remarkably, toward females of another species. Surprisingly, IR52a is also required in females for normal sexual behavior. Optogenetic activation of IR52a+ neurons in mated females induces copulation, which normally occurs at very low levels. Unlike other chemoreceptors that act in males to inhibit male-male interactions and promote male-female interactions, IR52a acts in both males and females, and can promote male-male as well as male-female interactions. Moreover, IR52a+ neurons can override the circuitry that normally suppresses sexual behavior toward unproductive targets. Circuit mapping and Ca2+ imaging using the trans-Tango system reveals second-order projections of IR52a+ neurons in the subesophageal zone (SEZ), some of which are sexually dimorphic. Optogenetic activation of IR52a+ neurons in the wing activates second-order projections in the SEZ. Taken together, this study provides a molecular description of the chemosensory sensilla of a greatly understudied taste organ and defines a gene that regulates the sexual circuitry of the fly.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores de Feromonas/metabolismo , Sensilos/metabolismo , Alas de Animales/metabolismo , Animales , Proteínas de Drosophila/genética , Femenino , Silenciador del Gen , Interacciones Hidrofóbicas e Hidrofílicas , Canales Iónicos Activados por Ligandos/genética , Canales Iónicos Activados por Ligandos/metabolismo , Masculino , Neuronas/metabolismo , Optogenética , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Gusto/fisiología
13.
J Exp Biol ; 225(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35770514

RESUMEN

The ladybird beetle (Coccinella septempunctata) is known for swift deployment of its elytra, an action that requires considerable power. However, actuation by thoracic muscles alone may be insufficient to deploy elytra at high speed because the maximum mechanical power that elytral muscles can produce is only 70% of that required for initiation of deployment. Nevertheless, the elytra open rapidly, within 3 ms in the initial phase, at a maximum angular velocity of 66.49±21.29 rad s-1, rivaling the strike velocity of ant lion (Myrmeleon crudelis) mandibles (65±21 rad s-1). Here, we hypothesize that elytra coupling may function as an energy storage mechanism that facilitates rapid opening by releasing elastic strain energy upon deployment. To test this hypothesis and better understand the biomechanics of elytra deployment, we combined micro-computed tomography and scanning electron microscopy to examine the microstructure of the coupling of paired elytra. We found that two rows of setae on the internal edges of the elytra coupling structure undergo elastic deformation when the elytra are locked together. Kinematics observations and mathematical modeling suggest that the elastic potential energy stored in the compressed setae generates 40% of the power required for deployment of elytra. Our findings broaden insights into how ladybirds actuate elytra opening by a strategy of using both muscles and elastic microstructures, and demonstrate a distributed pattern of actuation that adapts to geometrical constraints in elytra locking.


Asunto(s)
Escarabajos , Animales , Fenómenos Biomecánicos/fisiología , Aves , Escarabajos/fisiología , Microscopía Electrónica de Rastreo , Sensilos , Microtomografía por Rayos X
14.
Biol Lett ; 18(7): 20220093, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35857888

RESUMEN

The fascinating adhesion of gecko to virtually any material has been related to surface interactions of myriads of spatula at the tips of gecko feet. Surprisingly, the molecular details of the surface chemistry of gecko adhesion are still largely unknown. Lipids have been identified within gecko adhesive pads. However, the location of the lipids, the extent to which spatula are coated with lipids, and how the lipids are structured are still open questions. Lipids can modulate adhesion properties and surface hydrophobicity and may play an important role in adhesion. We have therefore studied the molecular structure of lipids at spatula surfaces using near-edge X-ray absorption fine structure imaging. We provide evidence that a nanometre-thin layer of lipids is present at the spatula surfaces of the tokay gecko (Gekko gecko) and that the lipids form ordered, densely packed layers. Such dense, thin lipid layers can effectively protect the spatula proteins from dehydration by forming a barrier against water evaporation. Lipids can also render surfaces hydrophobic and thereby support the gecko adhesive system by enhancement of hydrophobic-hydrophobic interactions with surfaces.


Asunto(s)
Lagartos , Sensilos , Adhesividad , Animales , Metabolismo de los Lípidos , Lípidos/química , Lagartos/metabolismo , Proteínas , Sensilos/metabolismo
15.
Arch Insect Biochem Physiol ; 111(1): e21917, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35618668

RESUMEN

The comparative morphology study on antennal sensilla of Aphelocheirus ellipsoideus from the family Aphelocheiridae, carried out with the use of a scanning electron microscope, is provided. Five main types of mechano-, chemo-, and thermo-hygroreceptive sensilla with two subtypes of sensilla basiconica were found and described on their surface, including sensilla trichodea, campaniformia, basiconica, ampullacea, and plate-like. Antennal sensilla of A. ellipsoideus on macropterous and brachypterous forms were different.


Asunto(s)
Heterópteros , Sensilos , Animales , Antenas de Artrópodos , Microscopía Electrónica de Rastreo
16.
Proc Natl Acad Sci U S A ; 116(28): 14300-14308, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221757

RESUMEN

Tsetse flies transmit trypanosomiasis to humans and livestock across much of sub-Saharan Africa. Tsetse are attracted by olfactory cues emanating from their hosts. However, remarkably little is known about the cellular basis of olfaction in tsetse. We have carried out a systematic physiological analysis of the Glossina morsitans antenna. We identify 7 functional classes of olfactory sensilla that respond to human or animal odorants, CO2, sex and alarm pheromones, or other odorants known to attract or repel tsetse. Sensilla differ in their response spectra, show both excitatory and inhibitory responses, and exhibit different response dynamics to different odor stimuli. We find striking differences between the functional organization of the tsetse fly antenna and that of the fruit fly Drosophila melanogaster One morphological type of sensilla has a different function in the 2 species: Trichoid sensilla respond to pheromones in Drosophila but respond to a wide diversity of compounds in G. morsitans. In contrast to Drosophila, all tested G. morsitans sensilla that show excitatory responses are excited by one odorant, 1-octen-3-ol, which is contained in host emanations. The response profiles of some classes of sensilla are distinct but strongly correlated, unlike the organization described in the Drosophila antenna. Taken together, this study defines elements that likely mediate the attraction of tsetse to its hosts and that might be manipulated as a means of controlling the fly and the diseases it transmits.


Asunto(s)
Octanoles/metabolismo , Odorantes/análisis , Atractivos Sexuales/genética , Olfato/genética , Moscas Tse-Tse/fisiología , Animales , Antenas de Artrópodos/metabolismo , Antenas de Artrópodos/fisiología , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Humanos , Octanoles/química , Sensilos/química , Sensilos/metabolismo , Atractivos Sexuales/metabolismo , Olfato/fisiología , Tripanosomiasis/genética , Tripanosomiasis/transmisión , Moscas Tse-Tse/genética
17.
An Acad Bras Cienc ; 94(4): e20200702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35946744

RESUMEN

The tarantula genus Tmesiphantes Simon, 1892 includes 20 valid species distributed in Argentina and Brazil. These spiders are distinguished from other Theraphosinae genera by the presence of an incrassate femur III, more evident in males, urticating hair types III and IV on the abdominal dorsum, few cuspules on the labium (0 to 30), maxillae with a maximum of 200 cuspules and sternum rounded. From recent examination of material from Peru, we discovered specimens that share all the morphological characters of Tmesiphantes, but did not fit with any known species. In the present study T. intiyaykuy sp. nov. is diagnosed, described, and illustrated. This new species resembles T. caymmii in the circular patch with stiff setae on midventral abdomen but can be distinguished by the shape of the palpal bulb and spermathecae. Also, we performed a phylogenetic analysis using morphological characters to infer the taxonomic placement of the new species. The analysis included 26 terminal species and 36 characters. Representatives of Tmesiphantes formed a monophyletic group and T. intiyaykuy sp. nov. is close related with T. caymmii. A dichotomous identification key and a geographic distribution map were constructed for recognized species of Tmesiphantes.


Asunto(s)
Arañas , Distribución Animal , Animales , Masculino , Perú , Filogenia , Sensilos , Especificidad de la Especie , Arañas/genética
18.
J Insect Sci ; 22(6)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36469364

RESUMEN

The wasp Anastatus disparis is an egg endoparasitoid of a number of Lepidopteran pest species. To better understand the A. disparis olfactory system, we observed the antennal sensilla of males and females under a scanning electron microscope and quantified their sizes and morphological characteristics. We identified the types of sensilla and counted the numbers and locations of the different types on the dorsal and ventral antennal surfaces. The antennae of A. disparis are geniculate, with flagella that comprise 11 subsegments in females and eight in males. The mean antenna length was 1324.10 ± 52.50 µm in females and 1323.93 ± 65.20 µm in males. Ten sensillum types were identified in both sexes: Böhm bristles (BBs), sensilla trichodea (ST, with subtypes STI and STII), sensilla chaetica (SCh), sensilla basiconica (SB, with subtypes SBI and SBII), sensilla placodea (SP), sensilla coeleoconica (SCo), sensilla grooved peg (SGP), sensilla auricillica (SAu), sensilla campaniformia (SCa), and glandular pores (GPs). The total numbers of BBs, STI, SBII, SCa, SCo, and GPs did not differ significantly between the sexes, whereas the total numbers of SCh, SBI, and SAu were significantly greater in females, and those of STII, SP, and SGP were significantly lower. The types, number, and density of antennal sensilla increased from the base to the end. The possible functions of these sensilla in host-detection behavior are discussed.


Asunto(s)
Avispas , Animales , Femenino , Masculino , Antenas de Artrópodos/anatomía & histología , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Sensilos
19.
J Insect Sci ; 22(4)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36001302

RESUMEN

The insect olfactory system plays pivotal roles in insect survival and reproduction through odor detection. Morphological and physiological adaptations are caste-specific and evolved independently in workers, soldiers, and reproductives in termites. However, it is unclear whether the olfactory system is involved in the division of labor in termite colonies. In the present study, the antennal sensilla of alates, workers, soldiers, nymphs, and larvae of the termite Reticulitermes aculabialis Tsai et Hwang ( Isoptera: Rhinotermitidae) were investigated. Transcriptomes were used to detect olfactory genes, and differential expression levels of olfactory genes were confirmed in various castes by qRT-PCR analysis. Nine types of sensilla were identified on the antennae of R. aculabialis, and soldiers possessed all 9 types. In 89,475 assembled unigenes, we found 16 olfactory genes, including 6 chemosensory protein (CSP) and 10 odorant-binding protein (OBP) genes. These OBP genes included 8 general odorant-binding protein genes (GOBPs) and 2 pheromone-binding protein-related protein (PBP) genes. Five CSP genes were more highly expressed in alates than in workers, soldiers, larvae, and nymphs, and the expression levels of CSP6 were significantly higher in nymphs. Seven GOBP and two PBP genes exhibited significantly higher expression levels in alates, and there were no significant differences in the expression levels of GOBP2 among workers, soldiers, alates, and larvae. These results suggest that alates, as primary reproductives, have unique expression patterns of olfactory genes, which play key roles in nuptial flight, mate seeking, and new colony foundation.


Asunto(s)
Isópteros , Animales , Isópteros/genética , Larva/genética , Reproducción , Sensilos
20.
J Insect Sci ; 22(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982166

RESUMEN

Aphids, mainly distributed in temperate zones, exhibit seasonal generation-alternating phenomena. Across the life cycle, different morphs are produced. Sitobion avenae (Fabricius 1775) is a major pest of wheat worldwide. To elucidate olfactory perception of morph-specific behavior across their life cycle, we investigated antennal sensilla among seven morphs using scanning electron microscopy. Trichoid, placoid, coeloconic, and campaniform sensilla were identified. Trichoid sensilla, big multiporous placoid sensilla (primary rhinarium), a group of sensilla (primary rhinaria), and campaniform sensilla showed similar distribution and resemblance among morphs, whereas small multiporous placoid sensilla (secondary rhinaria) exhibited obvious differences. Compared to apterous morphs, alate morphs possessed a greater abundance of secondary rhinaria, with the greatest found in males on antennal segments III-V. Alate virginoparae and alate sexuparae ranged from six to fourteen rhinaria on antennal segment III. Fundatrices, apterous virginoparae and apterous sexuparae only had one or two secondary rhinaria on antennal segment III while they disappeared in oviparae. Secondary rhinaria, lying in a cuticle cavity, are convex or concave in their central part. In males, both forms were present, with a greater proportion of convex form than that of the concave form. Fundatrices and virginoparae had the convex form while sexuparae had the concave form. Polyphenism of secondary rhinaria might suggest their association with the olfactory functions of morph-specific behavior. These results have improved our understanding of the adaptive evolution of the antennal sensilla in nonhost-alternating, holocyclic aphids.


Asunto(s)
Áfidos , Antenas de Artrópodos , Sensilos , Animales , Áfidos/anatomía & histología , Áfidos/genética , Antenas de Artrópodos/anatomía & histología , Estadios del Ciclo de Vida , Masculino , Microscopía Electrónica de Rastreo , Percepción Olfatoria , Sensilos/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA