Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 326(1): F39-F56, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881876

RESUMEN

The with-no-lysine kinase 4 (WNK4)-sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway mediates activating phosphorylation of the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the thiazide-sensitive NaCl cotransporter (NCC). The commonly used pT96/pT101-pNKCC2 antibody cross-reacts with pT53-NCC in mice on the C57BL/6 background due to a five amino acid deletion. We generated a new C57BL/6-specific pNKCC2 antibody (anti-pT96-NKCC2) and tested the hypothesis that the WNK4-SPAK/OSR1 pathway strongly regulates the phosphorylation of NCC but not NKCC2. In C57BL/6 mice, anti-pT96-NKCC2 detected pNKCC2 and did not cross-react with NCC. Abundances of pT96-NKCC2 and pT53-NCC were evaluated in Wnk4-/-, Osr1-/-, Spak-/-, and Osr1-/-/Spak-/- mice and in several models of the disease familial hyperkalemic hypertension (FHHt) in which the CUL3-KLHL3 ubiquitin ligase complex that promotes WNK4 degradation is dysregulated (Cul3+/-/Δ9, Klhl3-/-, and Klhl3R528H/R528H). All mice were on the C57BL/6 background. In Wnk4-/- mice, pT53-NCC was almost absent but pT96-NKCC2 was only slightly lower. pT53-NCC was almost absent in Spak-/- and Osr1-/-/Spak-/- mice, but pT96-NKCC2 abundance did not differ from controls. pT96-NKCC2/total NKCC2 was slightly lower in Osr1-/- and Osr1-/-/Spak-/- mice. WNK4 expression colocalized not only with NCC but also with NKCC2 in Klhl3-/- mice, but pT96-NKCC2 abundance was unchanged. Consistent with this, furosemide-induced urinary Na+ excretion following thiazide treatment was similar between Klhl3-/- and controls. pT96-NKCC2 abundance was also unchanged in the other FHHt mouse models. Our data show that disruption of the WNK4-SPAK/OSR1 pathway only mildly affects NKCC2 phosphorylation, suggesting a role for other kinases in NKCC2 activation. In FHHt models NKCC2 phosphorylation is unchanged despite higher WNK4 abundance, explaining the thiazide sensitivity of FHHt.NEW & NOTEWORTHY The renal cation cotransporters NCC and NKCC2 are activated following phosphorylation mediated by the WNK4-SPAK/OSR1 pathway. While disruption of this pathway strongly affects NCC activity, effects on NKCC2 activity are unclear since the commonly used phospho-NKCC2 antibody was recently reported to cross-react with phospho-NCC in mice on the C57BL/6 background. Using a new phospho-NKCC2 antibody specific for C57BL/6, we show that inhibition or activation of the WNK4-SPAK/OSR1 pathway in mice only mildly affects NKCC2 phosphorylation.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Seudohipoaldosteronismo , Animales , Ratones , Furosemida , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Tiazidas
2.
Curr Opin Pediatr ; 36(2): 211-218, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909881

RESUMEN

PURPOSE OF REVIEW: Hypertension, commonly known as high blood pressure, is a widespread health condition affecting a large number of individuals across the globe. Although lifestyle choices and environmental factors are known to have a significant impact on its development, there is growing recognition of the influence of genetic factors in the pathogenesis of hypertension. This review specifically focuses on the hereditary causes of hypertension that are associated with increased sodium transport through the thiazide-sensitive NaCl cotransporter (NCC) or amiloride-sensitive epithelial sodium channel (ENaC), crucial mechanisms involved in regulating blood pressure in the kidneys. By examining genetic mutations and signaling molecules linked to the dysregulation of sodium transport, this review aims to deepen our understanding of the hereditary causes of hypertension and shed light on potential therapeutic targets. RECENT FINDINGS: Liddle syndrome (LS) is a genetic disorder that typically manifests early in life and is characterized by hypertension, hypokalemic metabolic alkalosis, hyporeninemia, and suppressed aldosterone secretion. This condition is primarily caused by gain-of-function mutations in ENaC. In contrast, Pseudohypoaldosteronism type II (PHAII) is marked by hyperkalemia and hypertension, alongside other clinical features such as hyperchloremia, metabolic acidosis, and suppressed plasma renin levels. PHAII results from overactivations of NCC, brought about by gain-of-function mutations in its upstream signaling molecules, including WNK1 (with no lysine (K) 1), WNK4, Kelch-like 3 (KLHL3), and cullin3 (CUL3). SUMMARY: NCC and ENaC are integral components, and their malfunctions lead to disorders like LS and PHAII, hereditary causes of hypertension. Current treatments for LS involve ENaC blockers (e.g., triamterene and amiloride) in conjunction with low-sodium diets, effectively normalizing blood pressure and potassium levels. In PHAII, thiazide diuretics, which inhibit NCC, are the mainstay treatment, albeit with some limitations and potential side effects. Ongoing research in developing alternative treatments, including small molecules targeting key regulators, holds promise for more effective and tailored hypertension solutions.


Asunto(s)
Hipertensión , Seudohipoaldosteronismo , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Amilorida/metabolismo , Hipertensión/genética , Hipertensión/complicaciones , Riñón/metabolismo , Seudohipoaldosteronismo/diagnóstico , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Sodio/metabolismo
3.
Am J Physiol Endocrinol Metab ; 325(1): E1-E9, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37134141

RESUMEN

We investigate the genetic etiology in a cohort of patients with a clinical, biochemical, and hormonal profile suggestive of a mild and transient form of pseudohypoaldosteronism type 1 (PHA1). Twelve patients with PHA1 from four different families with clinical and biochemical data were analyzed. The coding regions of NR3C2 and SCNN1A genes were sequenced. Human α-epithelial sodium channel (ENaC) wild-type (wt), αPhe226Cys and αPhe226Ser ENaC variants were expressed in Xenopus laevis oocytes to evaluate ENaC activity. The protein expression of α-ENaC wt and mutants was determined by Western blot. All patients were homozygotes for the p.Phe226Cys mutation of the α subunit of ENaC. In functional studies in X. laevis oocytes, p.Phe226Cys caused a significant reduction of ENaC activity (83% reduction), reduced the number of active ENαC mutant channels, and reduced the basal open probability compared with wt. Quantitative Western blot analysis revealed that the reduced activity of ENαC mutant channels was due to a reduced ENaC protein expression for the αPhe226Cys compared with wt. We present 12 patients from four different families with a mild and transient autosomal recessive PHA1 due to a novel homozygous missense mutation in the SCNN1A gene. Functional studies showed that the p.Phe226Cys substitution mutation in ENaC leads to a partial loss of function resulting mainly from both a decrease in the intrinsic ENaC activity and a reduction in channel expression at the protein level. The partial loss of ENaC function could explain the mild phenotype, variable expressivity, and the transient course of the disorder in these patients.NEW & NOTEWORTHY This paper demonstrates that mild autosomal recessive pseudohypoaldosteronism type 1 (PHA1) due to p.Phe226Cys missense mutation in the extracellular domain of ENαC α subunit can be transient, with phenotypic variability even with the normal sweat test, and incomplete penetrance. Functional studies explain the phenotype and denote the importance of the location on the extracellular domain of the SCNN1A p.Phe226Cys mutation for the intrinsic ENaC activity and the channel expression at the protein level.


Asunto(s)
Seudohipoaldosteronismo , Humanos , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Canales Epiteliales de Sodio/genética , Mutación , Mutación Missense , Fenotipo
4.
FASEB J ; 36(6): e22363, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35621709

RESUMEN

Mutations in the Kelch-like 3 (KLHL3) gene are the most common cause of inherited pseudohypoaldosteronism type II (PHAII) featuring thiazide-sensitive hypertension and hyperkalemic metabolic acidosis. Although Klhl3R528H/+ knock-in (KI) mice carrying a missense mutation in the Kelch repeat domain have been reported, nonsense KLHL3 mutations in the same domain that cause PHAII have not been fully investigated in vivo. We generated and analyzed Klhl3 KI mice harboring a nonsense W523X mutation (corresponding to the human KLHL3 W470X mutation). Both heterozygous and homozygous Klhl3W523X/+ KI mice exhibited typical PHAII with low-renin hypertension, hyperkalemia with reduced renal potassium excretion, and hyperchloremic metabolic acidosis. Their kidney tissues showed the presence of Klhl3 mRNA and increased Klhl3 protein levels along with enhanced downstream Wnk1/4-Spak/Osr1-N(k)cc phosphorylation. Increased protein expression of total Spak, phosphor(p-)Spak, total Ncc, and p-Ncc from urinary extracellular vesicles (uEVs) also confirmed the activation of the Wnk-mediated Ncc pathway. In vitro studies showed that the human KLHL3 W470X mutation resulted in increased KLHL3 protein stability and disrupted its binding affinity for WNK1/4, leading to the attenuated degradation and increased abundance of total WNKs. In conclusion, nonsense Klhl3W523X/+ mice recapitulating PHAII phenotypes exhibit Klhl3 protein stability, abrogating its binding to Wnks, with enhanced Ncc expression in the kidney tissue and even in uEVs. Activation of the WNK-mediated Na+ -Cl- co-transporter reiterated the in vivo pathogenic role of nonsense KLHL3 mutations in PHAII.


Asunto(s)
Seudohipoaldosteronismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Hipertensión , Secuencia Kelch/genética , Ratones , Proteínas de Microfilamentos/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/genética , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo
5.
Cell Commun Signal ; 21(1): 286, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845702

RESUMEN

Familial hyperkalemic hypertension (FHHt), also known as Pseudohypoaldosteronism type II (PHAII) or Gordon syndrome is a rare Mendelian disease classically characterized by hyperkalemia, hyperchloremic metabolic acidosis, and high systolic blood pressure. The most severe form of the disease is caused by autosomal dominant variants in CUL3 (Cullin 3), a critical subunit of the multimeric CUL3-RING ubiquitin ligase complex. The recent identification of a novel FHHt disease variant of CUL3 revealed intricacies within the underlying disease mechanism. When combined with studies on canonical CUL3 variant-induced FHHt, these findings further support CUL3's role in regulating renal electrolyte transport and maintaining systemic vascular tone. However, the pathophysiological effects of CUL3 variants are often accompanied by diverse systemic disturbances in addition to classical FHHt symptoms. Recent global proteomic analyses provide a rationale for these systemic disturbances, paving the way for future mechanistic studies to reveal how CUL3 variants dysregulate processes outside of the renovascular axis. Video Abstract.


Asunto(s)
Hipertensión , Seudohipoaldosteronismo , Humanos , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/diagnóstico , Seudohipoaldosteronismo/metabolismo , Proteómica , Riñón/metabolismo , Hipertensión/genética , Hipertensión/complicaciones , Proteínas Cullin/genética , Proteínas Cullin/metabolismo
6.
J Am Soc Nephrol ; 33(3): 584-600, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064051

RESUMEN

BACKGROUND: Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) gene cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine (K) Kinase 4 (WNK4), inappropriately activating sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK), which then phosphorylates and hyperactivates the Na+Cl- cotransporter (NCC). The precise mechanism by which CUL3-Δ9 causes FHHt is unclear. We tested the hypothesis that reduced abundance of CUL3 and of Kelch-like 3 (KLHL3), the CUL3 substrate adaptor for WNK4, is mechanistically important. Because JAB1, an enzyme that inhibits CUL3 activity by removing the ubiquitin-like protein NEDD8, cannot interact with CUL3-Δ9, we also determined whether Jab1 disruption mimicked the effects of CUL3-Δ9 expression. METHODS: We used an inducible renal tubule-specific system to generate several mouse models expressing CUL3-Δ9, mice heterozygous for both CUL3 and KLHL3 (Cul3+/-/Klhl3+/- ), and mice with short-term Jab1 disruption (to avoid renal injury associated with long-term disruption). RESULTS: Renal KLHL3 was higher in Cul3-/- mice, but lower in Cul3-/-/Δ9 mice and in the Cul3+/-/Δ9 FHHt model, suggesting KLHL3 is a target for both WT and mutant CUL3. Cul3+/-/Klhl3+/- mice displayed increased WNK4-SPAK activation and phospho-NCC abundance and an FHHt-like phenotype with increased plasma [K+] and salt-sensitive blood pressure. Short-term Jab1 disruption in mice lowered the abundance of CUL3 and KLHL3 and increased the abundance of WNK4 and phospho-NCC. CONCLUSIONS: Jab1-/- mice and Cul3+/-/Klhl3+/- mice recapitulated the effects of CUL3-Δ9 expression on WNK4-SPAK-NCC. Our data suggest degradation of both KLHL3 and CUL3 plays a central mechanistic role in CUL3-Δ9-mediated FHHt.


Asunto(s)
Proteínas Cullin , Hipertensión , Seudohipoaldosteronismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Femenino , Humanos , Hipertensión/genética , Masculino , Ratones , Proteínas de Microfilamentos/genética , Proteínas Serina-Treonina Quinasas/genética , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo
7.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175488

RESUMEN

Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.


Asunto(s)
Hipertensión , Síndrome de Liddle , Seudohipoaldosteronismo , Animales , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Hipertensión/metabolismo , Seudohipoaldosteronismo/metabolismo , Amilorida/farmacología
8.
Sheng Li Xue Bao ; 75(2): 216-230, 2023 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-37089096

RESUMEN

Virtually all of the dietary potassium intake is absorbed in the intestine, over 90% of which is excreted by the kidneys regarded as the most important organ of potassium excretion in the body. The renal excretion of potassium results primarily from the secretion of potassium by the principal cells in the aldosterone-sensitive distal nephron (ASDN), which is coupled to the reabsorption of Na+ by the epithelial Na+ channel (ENaC) located at the apical membrane of principal cells. When Na+ is transferred from the lumen into the cell by ENaC, the negativity in the lumen is relatively increased. K+ efflux, H+ efflux, and Cl- influx are the 3 pathways that respond to Na+ influx, that is, all these 3 pathways are coupled to Na+ influx. In general, Na+ influx is equal to the sum of K+ efflux, H+ efflux, and Cl- influx. Therefore, any alteration in Na+ influx, H+ efflux, or Cl- influx can affect K+ efflux, thereby affecting the renal K+ excretion. Firstly, Na+ influx is affected by the expression level of ENaC, which is mainly regulated by the aldosterone-mineralocorticoid receptor (MR) pathway. ENaC gain-of-function mutations (Liddle syndrome, also known as pseudohyperaldosteronism), MR gain-of-function mutations (Geller syndrome), increased aldosterone levels (primary/secondary hyperaldosteronism), and increased cortisol (Cushing syndrome) or deoxycorticosterone (hypercortisolism) which also activate MR, can lead to up-regulation of ENaC expression, and increased Na+ reabsorption, K+ excretion, as well as H+ excretion, clinically manifested as hypertension, hypokalemia and alkalosis. Conversely, ENaC inactivating mutations (pseudohypoaldosteronism type 1b), MR inactivating mutations (pseudohypoaldosteronism type 1a), or decreased aldosterone levels (hypoaldosteronism) can cause decreased reabsorption of Na+ and decreased excretion of both K+ and H+, clinically manifested as hypotension, hyperkalemia, and acidosis. The ENaC inhibitors amiloride and Triamterene can cause manifestations resembling pseudohypoaldosteronism type 1b; MR antagonist spironolactone causes manifestations similar to pseudohypoaldosteronism type 1a. Secondly, Na+ influx is regulated by the distal delivery of water and sodium. Therefore, when loss-of-function mutations in Na+-K+-2Cl- cotransporter (NKCC) expressed in the thick ascending limb of the loop and in Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule (Bartter syndrome and Gitelman syndrome, respectively) occur, the distal delivery of water and sodium increases, followed by an increase in the reabsorption of Na+ by ENaC at the collecting duct, as well as increased excretion of K+ and H+, clinically manifested as hypokalemia and alkalosis. Loop diuretics acting as NKCC inhibitors and thiazide diuretics acting as NCC inhibitors can cause manifestations resembling Bartter syndrome and Gitelman syndrome, respectively. Conversely, when the distal delivery of water and sodium is reduced (e.g., Gordon syndrome, also known as pseudohypoaldosteronism type 2), it is manifested as hypertension, hyperkalemia, and acidosis. Finally, when the distal delivery of non-chloride anions increases (e.g., proximal renal tubular acidosis and congenital chloride-losing diarrhea), the influx of Cl- in the collecting duct decreases; or when the excretion of hydrogen ions by collecting duct intercalated cells is impaired (e.g., distal renal tubular acidosis), the efflux of H+ decreases. Both above conditions can lead to increased K+ secretion and hypokalemia. In this review, we focus on the regulatory mechanisms of renal potassium excretion and the corresponding diseases arising from dysregulation.


Asunto(s)
Alcalosis , Síndrome de Bartter , Síndrome de Gitelman , Hiperpotasemia , Hipertensión , Hipopotasemia , Seudohipoaldosteronismo , Humanos , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Potasio/metabolismo , Aldosterona/metabolismo , Hipopotasemia/metabolismo , Síndrome de Gitelman/metabolismo , Hiperpotasemia/metabolismo , Relevancia Clínica , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Distales/metabolismo , Sodio/metabolismo , Alcalosis/metabolismo , Agua/metabolismo , Riñón/metabolismo
9.
Am J Physiol Cell Physiol ; 322(6): C1176-C1186, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35442829

RESUMEN

The with no lysine (K) 1 (WNK1) protein kinase maintains cellular ion homeostasis in many tissues through actions on ion cotransporters and channels. Increased accumulation of WNK1 protein leads to pseudohypoaldosteronism type II (PHAII), a form of familial hypertension. WNK1 can be degraded via its adaptor-dependent recruitment to the Cullin3-RBX1 E3 ligase complex by the ubiquitin-proteasome system. Disruption of this process also leads to disease. To determine if this is the primary mechanism of WNK1 turnover, we examined WNK1 protein stability and degradation by measuring its rate of decay after blockade of translation. Here, we show that WNK1 protein degradation exhibits atypical kinetics in HeLa cells. Consistent with this apparent complexity, we found that multiple degradative pathways can modulate cellular WNK1 protein amount. WNK1 protein is degraded by not only the proteasome but also the lysosome. Non-lysosomal cysteine proteases calpain and caspases also influence WNK1 degradation, as inhibitors of these proteases modestly increased WNK1 protein expression. Importantly, we discovered that the E3 ubiquitin ligase UBR5 interacts with WNK1 and its deficiency results in increased WNK1 protein. Our results further demonstrate that increased WNK1 in UBR5-depleted cells is attributable to reduced lysosomal degradation of WNK1 protein. Taken together, our findings provide insights into the multiplicity of degradative pathways involved in WNK1 turnover and uncover UBR5 as a previously unknown regulator of WNK1 protein stability that leads to lysosomal degradation of WNK1 protein.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Seudohipoaldosteronismo , Células HeLa , Humanos , Antígenos de Histocompatibilidad Menor/genética , Complejo de la Endopetidasa Proteasomal , Proteínas Serina-Treonina Quinasas/genética , Seudohipoaldosteronismo/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo
10.
Am J Physiol Renal Physiol ; 323(5): F564-F576, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007890

RESUMEN

Mutations in the ubiquitin ligase scaffold protein cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt). We recently reported that in the kidney, aberrant mutant CUL3 (CUL3-Δ9) activity lowers the abundance of CUL3-Δ9 and Kelch-like 3, the CUL3 substrate adaptor for with-no-lysine kinase 4 (WNK4) and that this is mechanistically important. However, whether CUL3-Δ9 exerts additional effects on other targets that may alter renal function is unclear. Here, we sought to determine 1) whether CUL3-Δ9 expression can rescue the phenotype of renal tubule-specific Cul3 knockout mice, and 2) whether CUL3-Δ9 expression affects other CUL3 substrates. Using an inducible renal tubule-specific system, we studied two CUL3-Δ9-expressing mouse models: Cul3 knockout (Cul3-/-/Δ9) and Cul3 heterozygous background (Cul3+/-/Δ9, FHHt model). The effects of CUL3-Δ9 in these mice were compared with Cul3-/- and Cul3+/- mice. Similar to Cul3-/- mice, Cul3-/-/Δ9 mice displayed polyuria with loss of aquaporin 2 and collecting duct injury; proximal tubule injury also occurred. CUL3-Δ9 did not promote degradation of two CUL3 targets that accumulate in the Cul3-/- kidney: high-molecular-weight (HMW) cyclin E and NAD(P)H:quinone oxidoreductase 1 (NQO1) [a surrogate for the CUL3-Kelch-like ECH-associated protein 1 (KEAP1) substrate nuclear factor erythroid-2-related factor 2]. Since CUL3-Δ9 expression cannot rescue the Cul3-/- phenotype, our data suggest that CUL3-Δ9 cannot normally function in ubiquitin ligase complexes. In Cul3+/-/Δ9 mice, KEAP1 abundance did not differ but NQO1 abundance was higher, suggesting adaptor sequestration by CUL3-Δ9 in vivo. Together, our results provide evidence that in the kidney, CUL3-Δ9 completely lacks normal activity and can trap CUL3 substrate adaptors in inactive complexes.NEW & NOTEWORTHY CUL3 mutation (CUL3-Δ9) causes familial hyperkalemic hypertension (FHHt) by reducing adaptor KLHL3, impairing substrate WNK4 degradation. Whether CUL3-Δ9 affects other targets in kidneys remains unclear. We found that CUL3-Δ9 cannot degrade two CUL3 targets, cyclin E and nuclear factor erythroid-2-related factor 2 (NRF2; using a surrogate marker NQO1), or rescue injury or polyuria caused by Cul3 disruption. In an FHHt model, CUL3-Δ9 impaired NRF2 degradation without reduction of its adaptor KEAP1. Our data provide additional insights into CUL3-Δ9 function in the kidney.


Asunto(s)
Proteínas Cullin , Hipertensión , Riñón , Seudohipoaldosteronismo , Animales , Ratones , Acuaporina 2/metabolismo , Biomarcadores/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ciclina E/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Riñón/fisiopatología , Ratones Noqueados , NAD/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oxidorreductasas/metabolismo , Poliuria/metabolismo , Proteínas Serina-Treonina Quinasas , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo
11.
Mol Biol Rep ; 49(10): 9813-9824, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35585379

RESUMEN

Kelch-like protein 3 (KLHL3) is a substrate adaptor of Cullin3-RING ubiquitin ligase (CRL3), and KLHL3-CUL3 complex plays a vital role in the ubiquitination of specific substrates. Mutations and abnormal post-translational modifications of KLHL3-CUL3 affect substrate ubiquitination and may related to the pathogenesis of Gordon syndrome (GS), Primary Hyperparathyroidism (PHPT), Diabetes Mellitus (DM), Congenital Heart Disease (CHD), Pre-eclampsia (PE) and even cancers. Therefore, it is essential to understand the function and molecular mechanisms of KLHL3-CUL3 for the treatment of related diseases. In this review, we summary the structure and function of KLHL3-CUL3, the effect of KLHL3-CUL3 mutations and aberrant modifications in GS, PHPT, DM, CHD and PE. Moreover, we noted a possible role of KLHL3-CUL3 in carcinogenesis and provided ideas for targeting KLHL3-CUL3 for related disease treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Cullin , Proteínas de Microfilamentos/metabolismo , Seudohipoaldosteronismo , Proteínas Portadoras/genética , Proteínas Cullin/química , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Ubiquitina/metabolismo
12.
Int J Mol Sci ; 23(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563538

RESUMEN

Cullin 3 (CUL3) is the scaffold of Cullin3 Ring E3-ligases (CRL3s), which use various BTB-adaptor proteins to ubiquitinate numerous substrates targeting their proteasomal degradation. CUL3 mutations, responsible for a severe form of familial hyperkalemia and hypertension (FHHt), all result in a deletion of exon 9 (amino-acids 403-459) (CUL3-∆9). Surprisingly, while CUL3-∆9 is hyperneddylated, a post-translational modification that typically activates CRL complexes, it is unable to ubiquitinate its substrates. In order to understand the mechanisms behind this loss-of function, we performed comparative label-free quantitative analyses of CUL3 and CUL3-∆9 interactome by mass spectrometry. It was observed that CUL3-∆9 interactions with COP9 and CAND1, both involved in CRL3 complexes' dynamic assembly, were disrupted. These defects result in a reduction in the dynamic cycling of the CRL3 complexes, making the CRL3-∆9 complex an inactive BTB-adaptor trap, as demonstrated by SILAC experiments. Collectively, the data indicated that the hyperneddylated CUL3-∆9 protein is inactive as a consequence of several structural changes disrupting its dynamic interactions with key regulatory partners.


Asunto(s)
Proteínas Cullin/genética , Hipertensión , Seudohipoaldosteronismo , Proteínas Cullin/metabolismo , Exones/genética , Femenino , Humanos , Hipertensión/genética , Masculino , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Ubiquitina-Proteína Ligasas/genética
13.
Am J Physiol Renal Physiol ; 320(3): F378-F403, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33491560

RESUMEN

With no lysine kinase-4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that causes familial hyperkalemic hypertension. This disease is mainly driven by increased downstream activation of the Ste20/SPS1-related proline-alanine-rich kinase/oxidative stress responsive kinase-1-NCC pathway, which increases salt reabsorption in the distal convoluted tubule and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.


Asunto(s)
Nefronas/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Droga/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Animales , Humanos , Túbulos Renales Distales/metabolismo , Seudohipoaldosteronismo/metabolismo
14.
Acta Pharmacol Sin ; 42(4): 508-517, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32724175

RESUMEN

Hypertension is the most prevalent health condition worldwide, affecting ~1 billion people. Gordon's syndrome is a form of secondary hypertension that can arise due to a number of possible mutations in key genes that encode proteins in a pathway containing the With No Lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive kinase 1 (OSR1). This pathway regulates the activity of the thiazide-sensitive sodium chloride cotransporter (NCC), which is responsible for NaCl reabsorption in the distal nephron. Therefore, mutations in genes encoding proteins that regulate the NCC proteins disrupt ion homeostasis and cause hypertension by increasing NaCl reabsorption. Thiazide diuretics are currently the main treatment option for Gordon's syndrome. However, they have a number of side effects, and chronic usage can lead to compensatory adaptations in the nephron that counteract their action. Therefore, recent research has focused on developing novel inhibitory molecules that inhibit components of the WNK-SPAK/OSR1-NCC pathway, thereby reducing NaCl reabsorption and restoring normal blood pressure. In this review we provide an overview of the currently reported molecular inhibitors of the WNK-SPAK/OSR1-NCC pathway and discuss their potential as treatment options for Gordon's syndrome.


Asunto(s)
Inhibidores de Proteínas Quinasas/uso terapéutico , Seudohipoaldosteronismo/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Presión Sanguínea/efectos de los fármacos , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas Cullin/antagonistas & inhibidores , Diuréticos/uso terapéutico , Humanos , Proteínas de Microfilamentos/antagonistas & inhibidores , Unión Proteica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/metabolismo , Transducción de Señal/fisiología , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/antagonistas & inhibidores , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo
15.
FASEB J ; 33(1): 1051-1061, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30148674

RESUMEN

The Kelch-like 3 ( KLHL3) mutations contributed to the most common causative genes in patients with pseudohypoaldosteronism type II (PHAII); however, the molecular mechanisms of PHAII-causing mutations in BTB domain of KLHL3 in vivo have not been investigated. We generated and analyzed Klhl3 knock-in (KI) mice carrying a missense M131V mutation in the BTB domain (corresponding to human KLHL3 M78V mutation). Klhl3M131V/+ KI mice exhibited typical PHAII phenotype with an exaggerated diuretic response to hydrochlorothiazide. Their kidney tissues showed an unchanged KLHL3, decreased cullin 3 (Cul3), and increased with-no-lysine kinases (WNKs) WNK1 and WNK4 along with an enhanced downstream ste20-related proline/alanine-rich kinase/oxidative stress response kinase 1-N(K)CC phosphorylation. Their Cul3 protein in the cytosol of distal convoluted tubule cells was also significantly attenuated on immunogold-labeling electron microscopy. In microdissected renal tubules, Klhl3M131V/+ KI mice expressed high levels of Wnk4 mRNA in the distal nephron. In vitro coimmunoprecipitation showed the KLHL3 BTB domain mutation retained intact interaction with WNKs but reduced binding to Cul3, thus leading to the increased abundance of total WNKs. In summary, Klhl3M131V/+ KI mice feature typical PHAII with a simultaneous increase of WNK1 and WNK4 through the impaired KLHL3 BTB domain binding to Cul3.-Lin, C.-M., Cheng, C.-J., Yang, S.-S., Tseng, M.-H., Yen, M.-T., Sung, C.-C., Lin, S.-H. Generation and analysis of a mouse model of pseudohypoaldosteronism type II caused by KLHL3 mutation in BTB domain.


Asunto(s)
Dominio BTB-POZ , Proteínas de Microfilamentos/genética , Mutación Missense , Seudohipoaldosteronismo/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Cullin/metabolismo , Modelos Animales de Enfermedad , Furosemida/administración & dosificación , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Hidroclorotiazida/administración & dosificación , Túbulos Renales/metabolismo , Ratones , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/metabolismo , ARN Mensajero/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo
16.
Annu Rev Physiol ; 78: 367-89, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26863326

RESUMEN

The discovery of four genes responsible for pseudohypoaldosteronism type II, or familial hyperkalemic hypertension, which features arterial hypertension with hyperkalemia and metabolic acidosis, unmasked a complex multiprotein system that regulates electrolyte transport in the distal nephron. Two of these genes encode the serine-threonine kinases WNK1 and WNK4. The other two genes [kelch-like 3 (KLHL3) and cullin 3 (CUL3)] form a RING-type E3-ubiquitin ligase complex that modulates WNK1 and WNK4 abundance. WNKs regulate the activity of the Na(+):Cl(-) cotransporter (NCC), the epithelial sodium channel (ENaC), the renal outer medullary potassium channel (ROMK), and other transport pathways. Interestingly, the modulation of NCC occurs via the phosphorylation by WNKs of other serine-threonine kinases known as SPAK-OSR1. In contrast, the process of regulating the channels is independent of SPAK-OSR1. We present a review of the remarkable advances in this area in the past 10 years.


Asunto(s)
Electrólitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transporte Iónico/fisiología , Riñón/metabolismo , Riñón/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Seudohipoaldosteronismo/metabolismo , Seudohipoaldosteronismo/fisiopatología
17.
Biochemistry ; 58(16): 2105-2115, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30931564

RESUMEN

Kelch-like 3 (KLHL3) is a substrate adaptor of an E3 ubiquitin ligase complex that regulates the degradation of its substrates, including with-no-lysine [K] kinase 4 (WNK4). Mutations in KLHL3 are associated with pseudohypoaldosteronism type II (PHAII), a hereditary form of hypertension. Many PHAII-causing mutations are located in the Kelch domain of KLHL3 that binds with WNK4; however, detailed mechanisms by which these mutations disrupt the binding are not well-understood. In the present study we use molecular dynamics simulations and Western blot analyses to examine the effects of these mutations on the interaction between the Kelch domain of KLHL3 and the acidic motif (AM) of WNK4. The simulation results correlated well with those from Western blot analyses with the exception of the L387P mutation, which led to deregulation of AM degradation by KLHL3 but not recapitulated by simulations. On the basis of the simulation results, a mutation on the binding surface of the Kelch domain affected the Kelch-AM interaction through two major mechanisms: altering the electrostatic potential of the AM binding site and disrupting the Kelch-AM hydrogen bonds. The mutations buried inside the Kelch domain were predicted by our simulations to have no or modest effects on the Kelch-AM interaction. Buried mutations R384Q and S410L disrupted intramolecular hydrogen bonds within the Kelch domain and affected the Kelch-AM interaction indirectly. No significant effect of buried mutation A340V or A494T on the AM degradation or Kelch-AM interaction was observed, implying these mutations may disrupt mechanisms other than Kelch-AM interaction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos/genética , Secuencia Kelch/genética , Proteínas de Microfilamentos/genética , Simulación de Dinámica Molecular , Mutación Missense , Proteínas Serina-Treonina Quinasas/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Predisposición Genética a la Enfermedad/genética , Humanos , Enlace de Hidrógeno , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo
18.
Am J Pathol ; 188(1): 95-110, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29107074

RESUMEN

Human subjects with pseudohypoaldosteronism-1 because of loss-of-function mutations in epithelial sodium channel (ENaC) subunits exhibit meibomian gland (MG) dysfunction. A conditional ßENaC MG knockout (KO) mouse model was generated to elucidate the pathogenesis of absent ENaC function in the MG and associated ocular surface disease. ßENaC MG KO mice exhibited a striking age-dependent, female-predominant MG dysfunction phenotype, with white toothpaste-like secretions observed obstructing MG orifices at 7 weeks of age. There were compensatory increases in tear production but higher tear sodium and indexes of mucin concentration in ßENaC MG KO mice. Histologically, MG acinar atrophy was observed with ductal enlargement and ductal epithelial hyperstratification. Inflammatory cell infiltration was observed in both MG and conjunctiva of ßENaC MG KO mice. In older ßENaC MG KO mice (5 to 11 months), significant ocular surface pathologies were noted, including corneal opacification, ulceration, neovascularization, and ectasia. Inflammation in MG and conjunctiva was confirmed by increased cytokine gene and protein expression and positive Ly-6B.2 immunostaining. Cell proliferation assays revealed lower proliferation rates of MG cells derived from ßENaC MG KO than control mice, suggesting that ßENaC plays a role in cell renewal of mouse MG. Loss of ßENaC function resulted in MG disease and severe ocular surface damage that phenocopied aspects of human pseudohypoaldosteronism-1 MG disease and was sex dependent.


Asunto(s)
Canales Epiteliales de Sodio/genética , Glándulas Tarsales/metabolismo , Seudohipoaldosteronismo/genética , Lágrimas/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Fenotipo , Seudohipoaldosteronismo/metabolismo , Factores Sexuales
19.
J Am Soc Nephrol ; 29(11): 2627-2640, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30301860

RESUMEN

BACKGROUND: The familial hyperkalemic hypertension (FHHt) cullin 3 (CUL3) mutant does not degrade WNK kinases normally, thereby leading to thiazide-sensitive Na-Cl cotransporter (NCC) activation. CUL3 mutant (CUL3Δ9) does not bind normally to the COP9 signalosome (CSN), a deneddylase involved in regulating cullin-RING ligases. CUL3Δ9 also caused increased degradation of the CUL3-WNK substrate adaptor kelch-like 3 (KLHL3). Here, we sought to determine how defective CSN action contributes to the CUL3Δ9 phenotype. METHODS: The Pax8/LC1 mouse system was used to generate mice in which the catalytically active CSN subunit, Jab1, was deleted only along the nephron, after full development (KS-Jab1-/-). RESULTS: Western blot analysis demonstrated that Jab1 deletion increased the abundance of neddylated CUL3. Moreover, total CUL3 expression was reduced, suggesting decreased CUL3 stability. KLHL3 was almost completely absent in KS-Jab1-/- mice. Conversely, the protein abundances of WNK1, WNK4, and SPAK kinases were substantially higher. Activation of WNK4, SPAK, and OSR1 was indicated by higher phosphorylated protein levels and translocation of the proteins into puncta, as observed by immunofluorescence. The ratio of phosphorylated NCC to total NCC was also higher. Surprisingly, NCC protein abundance was low, likely contributing to hypokalemia and Na+ and K+ wasting. Additionally, long-term Jab1 deletion resulted in kidney damage. CONCLUSIONS: Together, the results indicate that deficient CSN binding contributes importantly to the FHHt phenotype. Although defective CUL3Δ9-faciliated WNK4 degradation likely contributes, dominant effects on KLHL3 may be a second factor that is necessary for the phenotype.


Asunto(s)
Complejo del Señalosoma COP9/deficiencia , Complejo del Señalosoma COP9/genética , Riñón/metabolismo , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Complejo del Señalosoma COP9/metabolismo , Proteínas Cullin/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente , Mutación , Nefronas/metabolismo , Nefronas/patología , Péptido Hidrolasas/deficiencia , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Seudohipoaldosteronismo/patología , Transducción de Señal
20.
J Pak Med Assoc ; 69(1): 108-112, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30623923

RESUMEN

Patients who have secondary pseudohypoaldosteronism (PHA) in addition to hyponatraemia, hyperpotassaemia and high serum aldosterone levels for the age were included in this retrospective study.Among eight patients, seven patients were diagnosed with PHA secondary to obstructive uropathy (OUP), whereas one patient had PHA secondary to ileostomy. Six patients with OUP had simultaneous urinary tract infection (UTI) and in all except one patient, secondary PHA recovered with only UTI treatment before applying surgical correction. All the patients were younger than 3 months age. In three patients with PUV diagnosis, salt wasting recurred in an UTI episode under 3 months of age.


Asunto(s)
Aldosterona/sangre , Hiperpotasemia , Hiponatremia , Seudohipoaldosteronismo , Infecciones Urinarias , Anomalías Urogenitales , Desequilibrio Hidroelectrolítico , Diagnóstico Diferencial , Femenino , Humanos , Hiperpotasemia/diagnóstico , Hiperpotasemia/etiología , Hiponatremia/diagnóstico , Hiponatremia/etiología , Lactante , Masculino , Natriuresis , Seudohipoaldosteronismo/diagnóstico , Seudohipoaldosteronismo/etiología , Seudohipoaldosteronismo/metabolismo , Seudohipoaldosteronismo/terapia , Estudios Retrospectivos , Turquía , Infecciones Urinarias/complicaciones , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/metabolismo , Anomalías Urogenitales/complicaciones , Anomalías Urogenitales/metabolismo , Anomalías Urogenitales/cirugía , Desequilibrio Hidroelectrolítico/diagnóstico , Desequilibrio Hidroelectrolítico/etiología , Desequilibrio Hidroelectrolítico/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA