Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Pharmacol Rev ; 63(3): 585-640, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21752877

RESUMEN

The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Animales , Humanos , Ligandos , Microdominios de Membrana/metabolismo , Terapia Molecular Dirigida , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especificidad de Órganos , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/agonistas , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/antagonistas & inhibidores , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Transmisión Sináptica/efectos de los fármacos
2.
SLAS Discov ; 26(6): 783-797, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33955247

RESUMEN

Classical high-throughput screening (HTS) technologies for the analysis of ionic currents across biological membranes can be performed using fluorescence-based, radioactive, and mass spectrometry (MS)-based uptake assays. These assays provide rapid results for pharmacological HTS, but the underlying, indirect analytical character of these assays can be linked to high false-positive hit rates. Thus, orthogonal and secondary assays using more biological target-based technologies are indispensable for further compound validation and optimization. Direct assay technologies for transporter proteins are electrophysiology-based, but are also complex, time-consuming, and not well applicable for automated profiling purposes. In contrast to conventional patch clamp systems, solid supported membrane (SSM)-based electrophysiology is a sensitive, membrane-based method for transporter analysis, and current technical developments target the demand for automated, accelerated, and sensitive assays for transporter-directed compound screening. In this study, the suitability of the SSM-based technique for pharmacological compound identification and optimization was evaluated performing cell-free SSM-based measurements with the electrogenic amino acid transporter B0AT1 (SLC6A19). Electrophysiological characterization of leucine-induced currents demonstrated that the observed signals were specific to B0AT1. Moreover, B0AT1-dependent responses were successfully inhibited using an established in-house tool compound. Evaluation of current stability and data reproducibility verified the robustness and reliability of the applied assay. Active compounds from primary screens of large compound libraries were validated, and false-positive hits were identified. These results clearly demonstrate the suitability of the SSM-based technique as a direct electrophysiological method for rapid and automated identification of small molecules that can inhibit B0AT1 activity.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Fenómenos Electrofisiológicos , Ensayos Analíticos de Alto Rendimiento/métodos , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Animales , Bioensayo/métodos , Transporte Biológico/efectos de los fármacos , Células CHO , Membrana Celular/metabolismo , Cricetulus , Humanos , Ratones , Técnicas de Placa-Clamp/métodos , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
3.
Diabetes ; 67(9): 1795-1806, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29954738

RESUMEN

ß-Cell-ß-cell interactions are required for normal regulation of insulin secretion. We previously found that formation of spheroid clusters (called K20-SC) from MIN6-K20 clonal ß-cells lacking incretin-induced insulin secretion (IIIS) under monolayer culture (called K20-MC) drastically induced incretin responsiveness. Here we investigated the mechanism by which an incretin-unresponsive state transforms to an incretin-responsive state using K20-SC as a model. Glutamate production by glucose through the malate-aspartate shuttle and cAMP signaling, both of which are critical for IIIS, were enhanced in K20-SC. SC formed from ß-cells deficient for aspartate aminotransferase 1, a critical enzyme in the malate-aspartate shuttle, exhibited reduced IIIS. Expression of the sodium-coupled neutral amino acid transporter 5 (SNAT5), which is involved in glutamine transport, was downregulated in K20-SC and pancreatic islets of normal mice but was upregulated in K20-MC and islets of rodent models of obesity and diabetes, both of which exhibit impaired IIIS. Inhibition of SNAT5 significantly increased cellular glutamate content and improved IIIS in islets of these models and in K20-MC. These results suggest that suppression of SNAT5 activity, which results in increased glutamate production, and enhancement of cAMP signaling endows incretin-unresponsive ß-cells with incretin responsiveness.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Incretinas/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Modelos Biológicos , Obesidad/tratamiento farmacológico , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Fármacos Antiobesidad/farmacología , Comunicación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Células Clonales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Resistencia a Medicamentos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/ultraestructura , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Islotes Pancreáticos/ultraestructura , Masculino , Ratones Endogámicos , Microscopía Electrónica de Transmisión , Obesidad/metabolismo , Obesidad/patología , Interferencia de ARN , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Esferoides Celulares/ultraestructura , Técnicas de Cultivo de Tejidos
4.
Eur J Pharmacol ; 479(1-3): 237-47, 2003 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-14612154

RESUMEN

The solute carrier family 1 (SLC1) is composed of five high affinity glutamate transporters, which exhibit the properties of the previously described system XAG-, as well as two Na+-dependent neutral amino acid transporters with characteristics of the so-called "ASC" (alanine, serine and cysteine). The SLC1 family members are structurally similar, with almost identical hydropathy profiles and predicted membrane topologies. The transporters have eight transmembrane domains and a structure reminiscent of a pore loop between the seventh and eighth domains [Neuron 21 (1998) 623]. However, each of these transporters exhibits distinct functional properties. Glutamate transporters mediate transport of L-Glu, L-Asp and D-Asp, accompanied by the cotransport of 3 Na+ and one 1 H+, and the countertransport of 1 K+, whereas ASC transporters mediate Na+-dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr. Given the high concentrating capacity provided by the unique ion coupling pattern of glutamate transporters, they play crucial roles in protecting neurons against glutamate excitotoxicity in the central nervous system (CNS). The regulation and manipulation of their function is a critical issue in the pathogenesis and treatment of CNS disorders involving glutamate excitotoxicity. Loss of function of the glial glutamate transporter GLT1 (SLC1A2) has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), resulting in damage of adjacent motor neurons. The importance of glial glutamate transporters in protecting neurons from extracellular glutamate was further demonstrated in studies of the slc1A2 glutamate transporter knockout mouse. The findings suggest that therapeutic upregulation of GLT1 may be beneficial in a variety of pathological conditions. Selective inhibition of the neuronal glutamate transporter EAAC1 (SLC1A1) but not the glial glutamate transporters may be of therapeutic interest, allowing blockage of glutamate exit from neurons due to "reversed glutamate transport" of EAAC1, which will occur during pathological conditions, such as during ischemia after a stroke.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/fisiología , Sistemas de Transporte de Aminoácidos Neutros/fisiología , Sistema de Transporte de Aminoácidos X-AG/agonistas , Sistema de Transporte de Aminoácidos X-AG/antagonistas & inhibidores , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/farmacología , Humanos
5.
Eur J Pharmacol ; 479(1-3): 249-62, 2003 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-14612155

RESUMEN

Glycine exerts multiple functions in the central nervous system, as an inhibitory neurotransmitter through activation of specific, Cl--permeable, ligand-gated ionotropic receptors and as an obligatory co-agonist with glutamate on the activation of N-methyl-D-aspartate (NMDA) receptors. In some areas of the central nervous system, glycine seems to be co-released with gamma-aminobutyric acid (GABA), the main inhibitory amino acid neurotransmitter. The synaptic action of glycine ends by active recapture through sodium- and chloride-coupled glycine transporters located in glial and neuronal plasma membranes, whose structure-function relationship is being studied. The trafficking and plasma membrane expressions of these proteins are controlled by regulatory mechanisms. Glycine transporter inhibitors may find application in the treatment of muscle tone defects, epilepsy, schizophrenia, pain and neurodegenerative disorders. This review deals on recent progress on localization, transport mechanisms, structure, regulation and pharmacology of the glycine transporters (GLYTs).


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/fisiología , Glicina/farmacología , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Glicina/fisiología , Proteínas de Transporte de Glicina en la Membrana Plasmática , Humanos , Datos de Secuencia Molecular , Conformación Proteica/efectos de los fármacos , Relación Estructura-Actividad
6.
J Physiol ; 559(Pt 1): 169-86, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15235081

RESUMEN

Using whole cell voltage clamp recordings from lamina X neurones in rat spinal cord slices, we investigated the effect of glycine transporter (GlyT) antagonists on both glycinergic inhibitory postsynaptic current (IPSCs) and glutamatergic excitatory postsynaptic current (EPSCs). We used ORG 24598 and ORG 25543, selective antagonists of the glial GlyT (GlyT1) and neuronal GlyT (GlyT2), respectively. In rats (P12-P16) and in the presence of kynurenic acid, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and bicuculline, ORG 24598 and ORG 25543 applied individually at a concentration of 10 microm induced a mean inward current of -10/-50 pA at -60 mV and increased significantly the decay time constants of miniature (mIPSCs), spontaneous (sIPSCs) and electrically evoked glycinergic (eIPSCs) inhibitory postsynaptic currents. ORG 25543, but not ORG 24598, decreased the frequency of mIPSCs and sIPSCs. Replacing extracellular sodium with N-methyl-d-glucamine or superfusing the slice with micromolar concentrations of glycine also increased the decay time constant of glycinergic IPSCs. By contrast, the decay time constant, amplitude and frequency of miniature GABAergic IPSCs recorded in the presence of strychnine were not affected by ORG 24598 and ORG 25543. In the presence of strychnine, bicuculline and CNQX, we recorded electrically evoked NMDA receptor-mediated EPSCs (eEPSCs). eEPSCs were suppressed by 30 micromd-2-amino-5-phosphonovalerate (APV), an antagonist of the NMDA receptor, and by 30 microm dichlorokynurenic acid (DCKA), an antagonist of the glycine site of the NMDA receptor. Glycine (1-5 microm) and d-serine (10 microm) increased the amplitude of eEPSCs whereas l-serine had no effect. ORG 24598 and ORG 25543 increased significantly the amplitude of NMDA receptor-mediated eEPSCs without affecting the amplitude of non-NMDA receptor-mediated eEPSCs. We conclude that blocking glial and/or neuronal glycine transporters increased the level of glycine in spinal cord slices, which in turn prolonged the duration of glycinergic synaptic current and potentiated the NMDA-mediated synaptic response.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/fisiología , Ácido Glutámico/fisiología , Glicina/análogos & derivados , Glicina/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Médula Espinal/fisiología , Transmisión Sináptica/fisiología , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Animales , Ácido Glutámico/farmacología , Glicina/farmacología , Proteínas de Transporte de Glicina en la Membrana Plasmática , Técnicas In Vitro , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/fisiología , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
7.
Brain Res Brain Res Rev ; 45(3): 250-65, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15210307

RESUMEN

L-Glutamate serves as a major excitatory neurotransmitter in the mammalian central nervous system (CNS) and is stored in synaptic vesicles by an uptake system that is dependent on the proton electrochemical gradient (VGLUTs). Following its exocytotic release, glutamate activates fast-acting, excitatory ionotropic receptors and slower-acting metabotropic receptors to mediate neurotransmission. Na+-dependent glutamate transporters (EAATs) located on the plasma membrane of neurons and glial cells rapidly terminate the action of glutamate and maintain its extracellular concentration below excitotoxic levels. Thus far, five Na+-dependent glutamate transporters (EAATs 1-5) and three vesicular glutamate transporters (VGLUTs 1-3) have been identified. Examination of EAATs and VGLUTs in brain preparations and by heterologous expression of the various cloned subtypes shows these two transporter families differ in many of their functional properties including substrate specificity and ion requirements. Alterations in the function and/or expression of these carriers have been implicated in a range of psychiatric and neurological disorders. EAATs have been implicated in cerebral stroke, epilepsy, Alzheimer's disease, HIV-associated dementia, Huntington's disease, amyotrophic lateral sclerosis (ALS) and malignant glioma, while VGLUTs have been implicated in schizophrenia. To examine the physiological role of glutamate transporters in more detail, several classes of transportable and non-transportable inhibitors have been developed, many of which are derivatives of the natural amino acids, aspartate and glutamate. This review summarizes the development of these indispensable pharmacological tools, which have been critical to our understanding of normal and abnormal synaptic transmission.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Proteínas Portadoras/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Proteínas de Transporte de Membrana , Proteínas de Transporte Vesicular , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Animales , Proteínas Portadoras/agonistas , Proteínas Portadoras/antagonistas & inhibidores , Transportador 1 de Aminoácidos Excitadores/agonistas , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Ácido Glutámico/análogos & derivados , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Humanos , Ligandos , Modelos Neurológicos , Conformación Molecular , Estructura Molecular , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Relación Estructura-Actividad , Proteína 1 de Transporte Vesicular de Glutamato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA