Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood Cells Mol Dis ; 107: 102858, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796983

RESUMEN

Immune thrombocytopenia (ITP) is an autoimmune disease caused by the loss of immune tolerance to platelet autoantigens, resulting in reduced platelet production and increased platelet destruction. Impaired megakaryocyte differentiation and maturation is a key factor in the pathogenesis and treatment of ITP. Sarcandra glabra, a plant of the Chloranthaceae family, is commonly used in clinical practice to treat ITP, and daucosterol (Dau) is one of its active ingredients. However, whether Dau can treat ITP and the key mechanism of its effect are still unclear. In this study, we found that Dau could effectively promote the differentiation and maturation of megakaryocytes and the formation of polyploidy in the megakaryocyte differentiation disorder model constructed by co-culturing Dami and HS-5 cells. In vivo experiments showed that Dau could not only increase the number of polyploidized megakaryocytes in the ITP rat model, but also promote the recovery of platelet count. In addition, through network pharmacology analysis, we speculated that the JAK2-STAT3 signaling pathway might be involved in the process of Dau promoting megakaryocyte differentiation. Western blot results showed that Dau inhibited the expression of P-JAK2 and P-STAT3. In summary, these results provide a basis for further studying the pharmacological mechanism of Dau in treating ITP.


Asunto(s)
Diferenciación Celular , Janus Quinasa 2 , Megacariocitos , Púrpura Trombocitopénica Idiopática , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Humanos , Masculino , Ratas , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Janus Quinasa 2/metabolismo , Megacariocitos/metabolismo , Megacariocitos/efectos de los fármacos , Megacariocitos/citología , Púrpura Trombocitopénica Idiopática/metabolismo , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/patología , Transducción de Señal/efectos de los fármacos , Sitoesteroles/farmacología , Factor de Transcripción STAT3/metabolismo
2.
BMC Vet Res ; 20(1): 76, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413949

RESUMEN

BACKGROUND: Newcastle Disease Virus (NDV) causes severe economic losses in the poultry industry worldwide. Hence, this study aimed to discover a novel bioactive antiviral agent for controlling NDV. Streptomyces misakiensis was isolated from Egyptian soil and its secondary metabolites were identified using infrared spectroscopy (IR), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The inhibitory activity of bioactive metabolite against NDV were examined. Three experimental groups of 10-day-old specific pathogen-free embryonated chicken eggs (SPF-ECEs), including the bioactive metabolite control group, NDV control positive group, and α-sitosterol and NDV mixture-treated group were inoculated. RESULTS: α-sitosterol (Ethyl-6-methylheptan-2-yl]-10,13-dimethyl-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol), a secondary metabolite of S. misakiensis, completely inhibited hemagglutination (HA) activity of the NDV strain. The HA activity of the NDV strain was 8 log2 and 9 log2 for 0.5 and 0.75% RBCs, respectively. The NDV HA activity for the two concentrations of RBCs was significantly (P < 0.0001) inhibited after α-sitosterol treatment. There was a significant (P < 0.0001) decrease in the log 2 of HA activity, with values of - 0.500 (75%, chicken RBCs) before inoculation in SPF-ECEs and - 1.161 (50%, RBCs) and - 1.403 (75%, RBCs) following SPF-ECE inoculation. Compared to ECEs inoculated with NDV alone, the α-sitosterol-treated group showed improvement in histological lesion ratings for chorioallantoic membranes (CAM) and hepatic tissues. The CAM of the α-sitosterol- inoculated SPF-ECEs was preserved. The epithelial and stromal layers were noticeably thicker with extensive hemorrhages, clogged vasculatures, and certain inflammatory cells in the stroma layer in the NDV group. However, mild edema and inflammatory cell infiltration were observed in the CAM of the treated group. ECEs inoculated with α-sitosterol alone showed normal histology of the hepatic acini, central veins, and portal triads. Severe degenerative alterations, including steatosis, clogged sinusoids, and central veins, were observed in ECEs inoculated with NDV. Mild hepatic degenerative alterations, with perivascular round cell infiltration, were observed in the treated group. CONCLUSION: To the best of our knowledge, this is the first study to highlight that the potentially bioactive secondary metabolite, α-sitosterol, belonging to the terpene family, has the potential to be a biological weapon against virulent NDV. It could be used for the development of innovative antiviral drugs to control NDV after further clinical investigation.


Asunto(s)
Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Streptomycetaceae , Animales , Virus de la Enfermedad de Newcastle , Antivirales/farmacología , Antivirales/uso terapéutico , Sitoesteroles/farmacología , Sitoesteroles/uso terapéutico , Pollos , Enfermedad de Newcastle/tratamiento farmacológico , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/prevención & control
3.
Anim Biotechnol ; 35(1): 2339406, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38634284

RESUMEN

Fat deposition affects beef quantity and quality via preadipocyte proliferation. Beta-sitosterol, a natural small molecular compound, has various functions, such as anti-inflammation, antibacterial, and anticancer properties. The mechanism of action of Beta-sitosterol on bovine preadipocytes remains unclear. This study, based on RNA-seq, reveals the impact of Beta -sitosterol on the proliferation of bovine preadipocytes. Compared to the control group, Beta-sitosterol demonstrated a more pronounced inhibitory effect on cell proliferation after 48 hours of treatment than after 24 hours, as evidenced by the results of EdU staining and flow cytometry. RNA-seq and Western Blot analyses further substantiated these findings. Our results suggest that the impact of Beta-sitosterol on the proliferation of bovine preadipocytes is not significant after a 24-hour treatment. It is only after extending the treatment time to 48 hours that Beta-sitosterol may induce cell cycle arrest at the G2/M phase by suppressing the expression of CCNB1, thereby inhibiting the proliferation of bovine preadipocytes.


Asunto(s)
Adipocitos , Proliferación Celular , Sitoesteroles , Animales , Bovinos , Sitoesteroles/farmacología , Proliferación Celular/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipocitos/citología , Perfilación de la Expresión Génica , Células Cultivadas , Transcriptoma/efectos de los fármacos
4.
Phytother Res ; 38(2): 592-619, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37929761

RESUMEN

Sterols, including ß-sitosterol, are essential components of cellular membranes in both plant and animal cells. Despite being a major phytosterol in various plant materials, comprehensive scientific knowledge regarding the properties of ß-sitosterol and its potential applications is essential for scholarly pursuits and utilization purposes. ß-sitosterol shares similar chemical characteristics with cholesterol and exhibits several pharmacological activities without major toxicity. This study aims to bridge the gap between phytochemistry and current pharmacological evidence of ß-sitosterol, focusing on its anticancer activity and other biomedical properties. The goal is to provide a comprehensive understanding of ß-sitosterol's potential for future translational approaches. A thorough examination of the literature was conducted to gather relevant information on the biological properties of ß-sitosterol, particularly its anticancer therapeutic potential. Various databases were searched, including PubMed/MedLine, Scopus, Google Scholar, and Web of Science using appropriate keywords. Studies investigating the effects of ß-sitosterol on different types of cancer were analyzed, focusing on mechanisms of action, pharmacological screening, and chemosensitizing properties. Modern pharmacological screening studies have revealed the potential anticancer therapeutic properties of ß-sitosterol against various types of cancer, including leukemia, lung, stomach, breast, colon, ovarian, and prostate cancer. ß-sitosterol has demonstrated chemosensitizing effects on cancer cells, interfering with multiple cell signaling pathways involved in proliferation, cell cycle arrest, apoptosis, survival, metastasis invasion, angiogenesis, and inflammation. Structural derivatives of ß-sitosterol have also shown anti-cancer effects. However, research in the field of drug delivery and the detailed mode of action of ß-sitosterol-mediated anticancer activities remains limited. ß-sitosterol, as a non-toxic compound with significant pharmacological potential, exhibits promising anticancer effects against various cancer types. Despite being relatively less potent than conventional cancer chemotherapeutics, ß-sitosterol holds potential as a safe and effective nutraceutical against cancer. Further comprehensive studies are recommended to explore the biological properties of ß-sitosterol, including its mode of action, and develop novel formulations for its potential use in cancer treatment. This review provides a foundation for future investigations and highlights the need for further research on ß-sitosterol as a potent superfood in combating cancer.


Asunto(s)
Leucemia , Fitosteroles , Neoplasias de la Próstata , Humanos , Masculino , Animales , Extractos Vegetales/farmacología , Sitoesteroles/farmacología , Sitoesteroles/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Etnofarmacología
5.
Pulm Pharmacol Ther ; 78: 102183, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36481301

RESUMEN

INTRODUCTION: In most asthma patients, symptoms are controlled by treatment with glucocorticoid, but long-term or high-dose use can produce adverse effects. Therefore, it is crucial to find new therapeutic strategies. ß-sitosterol could suppress type Ⅱ inflammation in ovalbumin (OVA)-induced mice, but its mechanisms have remained unclear. METHODS: A binding activity of ß-sitosterol with glucocorticoid receptor (GR) was analyzed by molecular docking. Human bronchial epithelial cells (BEAS-2B) and human bronchial smooth muscle cells (HBSMC) were treated with different concentrations (0, 1, 5, 10, 20, and 50 µg/mL) of ß-sitosterol for suitable concentration selection. In transforming growth factor (TGF)-ß1 treated BEAS-2B and HBSMC, cells were treated with 20 µg/mL ß-sitosterol or dexamethasone (Dex) to analyze its possible mechanism. In OVA-induced mice, 2.5 mg/kg ß-sitosterol or Dex administration was performed to analyze the therapeutic mechanism of ß-sitosterol. A GR antagonist RU486 was used to confirm the mechanism of ß-sitosterol in the treatment of asthma. RESULTS: A good binding of ß-sitosterol to GR (score = -8.2 kcal/mol) was found, and the GR expression was upregulated with ß-sitosterol dose increase in BEAS-2B and HBSMC. Interleukin (IL)-25 and IL-33 secretion was significantly decreased by ß-sitosterol in the TGF-ß1-induced BEAS-2B, and the levels of collagen 1A and α-smooth muscle actin (SMA) were reduced in the TGF-ß1-induced HBSMC. In the OVA-challenged mice, ß-sitosterol treatment improved airway inflammation and remodeling through suppressing type Ⅱ immune response and collagen deposition. The therapeutic effects of ß-sitosterol were similar to Dex treatment in vitro and in vivo. RU486 treatment clearly hampered the therapeutic effects of ß-sitosterol in the TGF-ß1-induced cells and OVA-induced mice. CONCLUSION: This study identified that ß-sitosterol binds GR to perform its functions in asthma treatment. ß-sitosterol represent a potential therapeutic drug for allergic asthma.


Asunto(s)
Asma , Receptores de Glucocorticoides , Sitoesteroles , Animales , Humanos , Ratones , Remodelación de las Vías Aéreas (Respiratorias) , Asma/tratamiento farmacológico , Asma/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Pulmón , Ratones Endogámicos BALB C , Mifepristona/farmacología , Mifepristona/uso terapéutico , Simulación del Acoplamiento Molecular , Ovalbúmina , Receptores de Glucocorticoides/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Sitoesteroles/farmacología
6.
Chem Biodivers ; 20(5): e202201135, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37026603

RESUMEN

In this research article, we investigated the effect of Euphorbia bivonae extract compounds on the lethality of brine shrimp Artemia salina and on embryonic cell lines (HEK293) proliferation. Our GC/MS analysis revealed that the E. bivonae ethanolic extract contained essentially sitosterol, euphol, and lupeol. The 24-h LC50 was determined using the probit analysis method (LC50=357.11 mg l-1 ). Depending on this cytotoxicity test result, E. bivona extract induced a significant increase in Superoxide Dismutase (SOD), Catalase (CAT), Glutathione-Peroxidase (GPx) activities, and lipid peroxidation (LPO) in A. salina larvae. In addition, the cytotoxicity effect of this extract had proved against the HEK293 cell lines in vitro. We suggest that the three compounds of E. bivonae extract (sitosterol, euphol, and lupeol) are the most responsible for this cytotoxicity. The possible application of this extract as an alternative natural antiproliferative is considered.


Asunto(s)
Euphorbia , Animales , Humanos , Euphorbia/química , Extractos Vegetales/química , Artemia , Células HEK293 , Sitoesteroles/farmacología , Antioxidantes/toxicidad , Riñón
7.
Med Sci Monit ; 28: e934102, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35075100

RESUMEN

BACKGROUND Heat-clearing and detoxifying herbs (HDHs) play an important role in the prevention and treatment of coronavirus infection. However, their mechanism of action needs further study. This study aimed to explore the anti-coronavirus basis and mechanism of HDHs. MATERIAL AND METHODS Database mining was performed on 7 HDHs. Core ingredients and targets were screened according to ADME rules combined with Neighborhood, Co-occurrence, Co-expression, and other algorithms. GO enrichment and KEGG pathway analyses were performed using the R language. Finally, high-throughput molecular docking was used for verification. RESULTS HDHs mainly acts on NOS3, EGFR, IL-6, MAPK8, PTGS2, MAPK14, NFKB1, and CASP3 through quercetin, luteolin, wogonin, indirubin alkaloids, ß-sitosterol, and isolariciresinol. These targets are mainly involved in the regulation of biological processes such as inflammation, activation of MAPK activity, and positive regulation of NF-kappaB transcription factor activity. Pathway analysis further revealed that the pathways regulated by these targets mainly include: signaling pathways related to viral and bacterial infections such as tuberculosis, influenza A, Ras signaling pathways; inflammation-related pathways such as the TLR, TNF, MAPK, and HIF-1 signaling pathways; and immune-related pathways such as NOD receptor signaling pathways. These pathways play a synergistic role in inhibiting lung inflammation and regulating immunity and antiviral activity. CONCLUSIONS HDHs play a role in the treatment of coronavirus infection by regulating the body's immunity, fighting inflammation, and antiviral activities, suggesting a molecular basis and new strategies for the treatment of COVID-19 and a foundation for the screening of new antiviral drugs.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , SARS-CoV-2/efectos de los fármacos , Alcaloides/química , Alcaloides/farmacología , Caspasa 3/efectos de los fármacos , Caspasa 3/genética , Coronavirus/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Ciclooxigenasa 2/efectos de los fármacos , Ciclooxigenasa 2/genética , Bases de Datos Farmacéuticas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Flavanonas/química , Flavanonas/farmacología , Humanos , Indoles/química , Indoles/farmacología , Interleucina-6/genética , Lignina/química , Lignina/farmacología , Luteolina/química , Luteolina/farmacología , Proteína Quinasa 14 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 8 Activada por Mitógenos/genética , Simulación del Acoplamiento Molecular , Subunidad p50 de NF-kappa B/efectos de los fármacos , Subunidad p50 de NF-kappa B/genética , Naftoles/química , Naftoles/farmacología , Óxido Nítrico Sintasa de Tipo III/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/genética , Mapas de Interacción de Proteínas , Quercetina/química , Quercetina/farmacología , SARS-CoV-2/metabolismo , Transducción de Señal , Sitoesteroles/química , Sitoesteroles/farmacología , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
8.
Immunopharmacol Immunotoxicol ; 44(6): 1013-1021, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35850599

RESUMEN

AIM: To investigate the effects of ß-sitosterol (B-SIT) and the underlying mechanisms of action in an ovalbumin-induced rat model of asthma. METHODS: The pathological and morphological changes in lung and tracheal tissues were observed by H&E, PAS, and Masson's staining. The levels of IgE, TNF-α, and IFN-γ in the bronchoalveolar lavage fluid (BALF) and those of IL-6, TGF-ß1, and IL-10 in serum were measured by ELISA. The relative expression levels of IL-5, IL-13, IL-21, CD11c, CD80, and CD86 mRNA in lung tissue were examined by RT-qPCR. Flow cytometry was performed to assess the levels of immune cells, including macrophages and neutrophils in spleen tissue and Th cells, Tc cells, NK cells, and DCs in peripheral blood. The protein expression levels of CD68, MPO, CD11c, CD80, and CD86 were detected by western blotting or immunohistochemistry. RESULTS: B-SIT improved the injury in OVA-induced pathology, decreased the levels of inflammatory factors of IgE, TNF-α, IL-6, TGF-ß1, IL-5, IL-13, and IL-21 and increased the levels of IFN-γ and IL-10. In addition, B-SIT decreased the number of macrophages and neutrophils and the relative expression levels of CD68 and MPO in the spleen. Moreover, B-SIT increased the number of Th cells, Tc cells, NK cells, and DCs in peripheral blood and upregulated the levels of CD11c, CD80, and CD86 in the spleen and lung. CONCLUSION: B-SIT improved symptoms in a rat model of asthma likely via the inhibition of inflammation by regulating dendritic cells.


Asunto(s)
Asma , Células Dendríticas , Sitoesteroles , Animales , Ratas , Células Dendríticas/inmunología , Interleucina-10 , Interleucina-13 , Interleucina-5 , Interleucina-6 , Ovalbúmina , Factor de Crecimiento Transformador beta1 , Factor de Necrosis Tumoral alfa , Asma/tratamiento farmacológico , Sitoesteroles/farmacología
9.
J Wound Care ; 31(Sup10): S41-S52, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36240870

RESUMEN

OBJECTIVE: Hard-to-heal wounds are a global health challenge, and effective treatments are still lacking. Moist exposed burn ointment (MEBO) and maggots are traditional treatments for promoting wound healing. This study was a preliminary exploration of combined maggot therapy and MEBO in the treatment of hard-to-heal wounds. METHOD: A coexistence experiment was conducted to determine the survival rates of maggots in MEBO. The maggots were placed in two different existence conditions: one set in MEBO (MEBO group), and another set as the control group (no MEBO) to compare survival rates. Case reports describe the use of the combined application of MEBO and maggots in the treatment of patients with hard-to-heal wounds. RESULTS: The coexistence experiment indicated that maggots in the MEBO group had a higher survival rate. From the therapeutic effect of the clinical cases (n=7), the combined application was safe and effective, with all the reported wounds eventually healing. CONCLUSION: Based on the findings of this study, we believe the combined application of MEBO and maggots is a promising way of promoting wound healing. Further studies and clinical trials are needed to elucidate the mechanism of the combined application in promoting wound healing and to more persuasively clarify the therapeutic effect.


Asunto(s)
Sitoesteroles , Cicatrización de Heridas , Animales , Desbridamiento , Humanos , Larva , Sitoesteroles/farmacología
10.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36293029

RESUMEN

The interplay between steroids and triterpenoids, compounds sharing the same biosynthetic pathway but exerting distinctive functions, is an important part of the defense strategy of plants, and includes metabolic modifications triggered by stress hormones such as jasmonic acid. Two experimental models, Calendula officinalis hairy root cultures and greenhouse cultivated plants (pot plants), were applied for the investigation of the effects of exogenously applied jasmonic acid on the biosynthesis and accumulation of steroids and triterpenoids, characterized by targeted GC-MS (gas chromatography-mass spectroscopy) metabolomic profiling. Jasmonic acid elicitation strongly increased triterpenoid saponin production in hairy root cultures (up to 86-fold) and their release to the medium (up to 533-fold), whereas the effect observed in pot plants was less remarkable (two-fold enhancement of saponin biosynthesis after a single foliar application). In both models, the increase of triterpenoid biosynthesis was coupled with hampering the biomass formation and modifying the sterol content, involving stigmasterol-to-sitosterol ratio, and the proportions between ester and glycoside conjugates. The study revealed that various organs in the same plant can react differently to jasmonic acid elicitation; hairy root cultures are a useful in vitro model to track metabolic changes, and enhanced glycosylation (of both triterpenoids and sterols) seems to be important strategy in plant defense response.


Asunto(s)
Calendula , Saponinas , Triterpenos , Triterpenos/farmacología , Triterpenos/metabolismo , Sitoesteroles/metabolismo , Sitoesteroles/farmacología , Estigmasterol/metabolismo , Raíces de Plantas/metabolismo , Saponinas/farmacología , Saponinas/metabolismo , Glicósidos/farmacología , Esteroides/metabolismo , Ésteres/metabolismo , Hormonas/metabolismo
11.
Bioorg Med Chem Lett ; 48: 128248, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34252548

RESUMEN

The observation of a dog eating the roots of Odontonema strictum in 2008 in Lubumbashi (DR. Congo) was the starting point of this research which later led to the isolation of ß-sitosterol (BSL), a known phytosterol, isolated for the first time from the leaves of this tropical plant which has a large range of medicinal properties including anti-inflammation, anti-hypertension and antibacterial. The analysis of the 1H NMR spectrum showed that the active compound contains 60% of BSL and 40% of stigmasterol. With a melting point (m.p.) of 134-136 °C and the Rf value 0.55 in EtOAc-hexane (1:3) on silica gel TLC, the active compound was confirmed to be BSL. Here, we determined the minimal inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of BSL on Staphylococcus aureus by the broth dilution method. The MIC and MBC were found to be 1.24 mg/mL and 2.208 mg/mL, respectively. For the crude extract, the MIC and MBC were 4.33 mg/mL and the MBC was 7.66 mg/mL, respectively. The Total antibacterial activity underlined the fact that the crude extract from 1 g of plant materials could be diluted 65 times and still retains the ability to inhibit the growth of S. aureus. This is the first report of the antibacterial activity of BSL from this plant.


Asunto(s)
Acanthaceae/química , Antibacterianos/farmacología , Sitoesteroles/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Hojas de la Planta/química , Sitoesteroles/química , Sitoesteroles/aislamiento & purificación , Relación Estructura-Actividad
12.
Biol Pharm Bull ; 44(6): 888-893, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34078822

RESUMEN

Cholesterol suppresses the hemolysis and the detachment of cytoskeletal proteins from bilayer in the human erythrocyte membrane under stress conditions. However, there is little information on how cholesterol functions. So, examining the role of a short side chain of cholesterol, we used the plant sterols such as ß-sitosterol and stigmasterol. Incorporation of sterols into the membrane using a sterol/methyl-ß-cyclodextrin complex was confirmed by the mass spectrometry. Hemolysis of human erythrocytes under high hydrostatic pressure (200 MPa) or hypotonic conditions was suppressed by cholesterol, but not by ß-sitosterol and stigmasterol. Moreover, the bilayer-cytoskeleton interaction was also strengthened by cholesterol, but not by ß-sitosterol and stigmasterol. Taken together, we suggest that the short side chain of cholesterol plays an important role in the membrane stability of human erythrocytes.


Asunto(s)
Membrana Celular/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Sitoesteroles/farmacología , Estigmasterol/farmacología , beta-Ciclodextrinas/farmacología , Células Cultivadas , Colesterol/farmacología , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/efectos de los fármacos , Eritrocitos/metabolismo , Hemólisis/efectos de los fármacos , Humanos
13.
Molecules ; 26(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073781

RESUMEN

Estrogenic molecules have been reported to regulate glucose homeostasis and may be beneficial for diabetes management. Here, we investigated the estrogenic effect of ß-sitosterol-3-O-D-glucopyranoside (BSD), isolated from the fruits of Cupressus sempervirens and monitored its ability to regulate glucose utilization in skeletal muscle cells. BSD stimulated ERE-mediated luciferase activity in both ERα and ERß-ERE luc expression system with greater response through ERß in HEK-293T cells, and induced the expression of estrogen-regulated genes in estrogen responsive MCF-7 cells. In silico docking and molecular interaction studies revealed the affinity and interaction of BSD with ERß through hydrophobic interaction and hydrogen bond pairing. Furthermore, prolonged exposure of L6-GLUT4myc myotubes to BSD raised the glucose uptake under basal conditions without affecting the insulin-stimulated glucose uptake, the effect associated with enhanced translocation of GLUT4 to the cell periphery. The BSD-mediated biological response to increase GLUT4 translocation was obliterated by PI-3-K inhibitor wortmannin, and BSD significantly increased the phosphorylation of AKT (Ser-473). Moreover, BSD-induced GLUT4 translocation was prevented in the presence of fulvestrant. Our findings reveal the estrogenic activity of BSD to stimulate glucose utilization in skeletal muscle cells via PI-3K/AKT-dependent mechanism.


Asunto(s)
Glucosa/metabolismo , Imitación Molecular , Músculo Esquelético/metabolismo , Fitoestrógenos/farmacología , Sitoesteroles/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Músculo Esquelético/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Sitoesteroles/química
14.
Molecules ; 26(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34885777

RESUMEN

Phytochemical investigation of chloroform fraction (DBC) and ethyl acetate fraction (DBE) of D. bupleuroides (Acanthaceae) resulted in the isolation of ß-sitosterol (1) from DBC and vanillic acid (2) from DBE, which were first to be isolated from D. bupleuroides. ß-Sitosterol (1) exhibited substantial antioxidant activity (IC50 = 198.87 µg/mL), whereas vanillic acid (2) showed significant antioxidant power (IC50 = 92.68 µg/mL) employing 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical scavenging capacity assay. Both compounds showed pronounced antimicrobial activity using the agar disc diffusion method, particularly against fungi showing MIC values of 0.182 and 0.02 concerning Candida albicans, respectively, and 0.001 mg/mL regarding Penicillium notatum. They revealed considerable antibacterial activity with MIC values ranging between 0.467 and 0.809 mg/mL. Vanillic acid (2) exhibited substantial anticancer potential displaying 48.67% cell viability at a concentration of 100 µg/mL using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-Diphenyl-2H-Tetrazolium Bromide) assay concerning HepG2 cell lines. These results were further consolidated by in silico studies on different enzymes, where vanillic acid displayed a high fitting score in the active pockets of DNA-gyrase, dihydrofolate reductase, aminoglycoside nucleotidyltransferase, and ß-lactamase. It also inhibited human cyclin-dependent kinase 2 (CDK-2) and DNA topoisomerase II, as revealed by the in silico studies. ADME/TOPKAT (absorption, distribution, metabolism, excretion, and toxicity) prediction showed that vanillic acid exhibited reasonable pharmacodynamic, pharmacokinetic, and toxicity properties and, thus, could perfectly together with D. bupleuroides crude extract be incorporated in pharmaceutical preparations to counteract cancer and microbial invasion, as well as oxidative stress. Thus, it is concluded that D. bupleroides could be a potential source of therapeutically active compounds, which would be helpful for the discovery of clinically effective and safe drugs.


Asunto(s)
Acanthaceae/química , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Simulación por Computador , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Hongos/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Sitoesteroles/aislamiento & purificación , Sitoesteroles/farmacología , Termodinámica , Ácido Vanílico/aislamiento & purificación , Ácido Vanílico/farmacología
15.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885712

RESUMEN

Mandarin is a favorite fruit of the citrus family. Mandarin seeds are considered a source of nontraditional oil obtained from byproduct materials. This investigation aimed to assess the biomolecules of mandarin seeds and evaluated their antimycotic and antimycotoxigenic impact on fungi. Moreover, it evaluated the protective role of mandarin oil against aflatoxin toxicity in cell lines. The two types of extracted oil (fixed and volatile) were ecofriendly. The fatty acid composition, tocopherol, sterols, and carotenoids were determined in the fixed oil, whereas volatiles and phenolics were estimated in the essential oil. A mixture of the two oils was prepared and evaluated for its antimicrobial impact. The reduction effect of this mixture was also investigated to reduce mycotoxin secretion using a simulated experiment. The protective effect of the oil was evaluated using healthy strains of cell lines. Fixed oil was distinguished by the omega fatty acid content (76.24%), lutein was the major carotenoid (504.3 mg/100 g) and it had a high ß-sitosterol content (294.6 mg/100 g). Essential oil contained limonene (66.05%), α-pinene (6.82%), ß-pinene (4.32%), and γ-terpinene (12.31%) in significant amounts, while gallic acid and catechol were recorded as the dominant phenolics. Evaluation of the oil mix for antimicrobial potency reflected a considerable impact against pathogenic bacteria and toxigenic fungi. By its application to the fungal media, this oil mix possessed a capacity for reducing mycotoxin secretion. The oil mix was also shown to have a low cytotoxic effect against healthy strains of cell lines and had potency in reducing the mortality impact of aflatoxin B1 applied to cell lines. These results recommend further study to involve this oil in food safety applications.


Asunto(s)
Bacterias/efectos de los fármacos , Citrus/química , Aceites Volátiles/química , Aceites de Plantas/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Bacterias/patogenicidad , Monoterpenos Bicíclicos/química , Monoterpenos Bicíclicos/farmacología , Monoterpenos Ciclohexánicos/química , Monoterpenos Ciclohexánicos/farmacología , Frutas/química , Hongos/efectos de los fármacos , Humanos , Limoneno/química , Limoneno/farmacología , Micotoxinas/antagonistas & inhibidores , Micotoxinas/química , Aceites Volátiles/farmacología , Fitosteroles/química , Fitosteroles/farmacología , Aceites de Plantas/farmacología , Sitoesteroles/química , Sitoesteroles/farmacología
16.
Molecules ; 26(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917607

RESUMEN

ß-sitosterol (SIT), the most abundant bioactive component of vegetable oil and other plants, is a highly potent antidiabetic drug. Our previous studies show that SIT controls hyperglycemia and insulin resistance by activating insulin receptor and glucose transporter 4 (GLUT-4) in the adipocytes of obesity induced type 2 diabetic rats. The current research was undertaken to investigate if SIT could also exert its antidiabetic effects by circumventing adipocyte induced inflammation, a key driving factor for insulin resistance in obese individuals. Effective dose of SIT (20 mg/kg b.wt) was administered orally for 30 days to high fat diet and sucrose induced type-2 diabetic rats. Metformin, the conventionally used antidiabetic drug was used as a positive control. Interestingly, SIT treatment restores the elevated serum levels of proinflammatory cytokines including leptin, resistin, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to normalcy and increases anti-inflammatory adipocytokines including adiponectin in type 2 diabetic rats. Furthermore, SIT decreases sterol regulatory element binding protein-1c (SREBP-1c) and enhances Peroxisome Proliferator-activated receptor-γ (PPAR-γ) gene expression in adipocytes of diabetic rats. The gene and protein expression of c-Jun-N-terminal kinase-1 (JNK1), inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß) and nuclear factor kappa B (NF-κB) were also significantly attenuated in SIT treated groups. More importantly, SIT acts very effectively as metformin to circumvent inflammation and insulin resistance in diabetic rats. Our results clearly show that SIT inhibits obesity induced insulin resistance by ameliorating the inflammatory events in the adipose tissue through the downregulation of IKKß/NF-κB and c-Jun-N-terminal kinase (JNK) signaling pathway.


Asunto(s)
Adipocitos/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Regulación hacia Abajo , Quinasa I-kappa B/metabolismo , Inflamación/tratamiento farmacológico , Resistencia a la Insulina , Obesidad/complicaciones , Sitoesteroles/uso terapéutico , Adipocitos/efectos de los fármacos , Adipoquinas/sangre , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Peso Corporal/efectos de los fármacos , Citocinas/sangre , Citocinas/genética , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Regulación hacia Abajo/efectos de los fármacos , Conducta Alimentaria , Inflamación/sangre , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Obesidad/sangre , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Sitoesteroles/farmacología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Sacarosa , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
17.
Pak J Pharm Sci ; 34(1(Supplementary)): 197-203, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34275843

RESUMEN

The current study is focused towards screening for its phytochemicals, phenolic and flavonoid contents of different species of Chenopodium. The plants were also screened for corroborating the traditional use of medicinal plants locally used for pain by determining the extract and their fractions for the in-vivo analgesic activity by using the modern scientific system. Among chloroform fractions, a high level of total phenolic contents was found in chloroform fraction of Chenopodium ambrosioides (ChAm-Chf) with 57.12±1.02 followed by Chenopodium botrys (ChBt-Chf) with 56.79±0.71. High content of flavonoids was found in chloroform fraction of Chenopodium botrys (ChBt-Chf) extract with 78.35±0.84 followed by Chenopodium ambrosioides (ChAm-Chf) with 75.20±0.81. The crude extract Chenopodium album, Chenopodium botrys and Chenopodium ambrosioides (ChAl-Crd, ChBt-Crd and ChAm-Crd) at 100 and 200 mg/kg, chloroform and ethylacetate fractions (ChAl-Chf, ChBt-Chf, ChAm-Chf, ChAl-Et, ChBt-Et and ChAm-Et) at 75 mg/kg caused significant inhibition (P<0.05, P<0.01, P<0.001, n=8) of the analgesic response induced by acetic acid, formalin and hotplate method. Mechanistically, the naloxone overturns completely the analgesic effects of beta-sitosterol (SN2) while partial reversal was observed by ursolic acid (SN1) indicating other possible mechanisms in association with opioid receptors.


Asunto(s)
Analgésicos/farmacología , Conducta Animal/efectos de los fármacos , Chenopodium , Fenoles/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Animales , Chenopodium album , Chenopodium ambrosioides , Descubrimiento de Drogas , Flavonoides , Ratones , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Fitoterapia , Extractos Vegetales/química , Sitoesteroles/farmacología , Triterpenos/farmacología , Ácido Ursólico
18.
J Lipid Res ; 61(6): 830-839, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32291331

RESUMEN

Niemann-Pick type C (NPC)1 disease is a rare genetic condition in which the function of the lysosomal cholesterol transporter NPC1 protein is impaired. Consequently, sphingolipids and cholesterol accumulate in lysosomes of all tissues, triggering a cascade of pathological events that culminate in severe systemic and neurological symptoms. Lysosomal cholesterol accumulation is also a key factor in the development of atherosclerosis and NASH. In these two metabolic diseases, the administration of plant stanol esters has been shown to ameliorate cellular cholesterol accumulation and inflammation. Given the overlap of pathological mechanisms among atherosclerosis, NASH, and NPC1 disease, we sought to investigate whether dietary supplementation with plant stanol esters improves the peripheral features of NPC1 disease. To this end, we used an NPC1 murine model featuring a Npc1-null allele (Npc1nih ), creating a dysfunctional NPC1 protein. Npc1nih mice were fed a 2% or 6% plant stanol ester-enriched diet over the course of 5 weeks. During this period, hepatic and blood lipid and inflammatory profiles were assessed. Npc1nih mice fed the plant stanol-enriched diet exhibited lower hepatic cholesterol accumulation, damage, and inflammation than regular chow-fed Npc1nih mice. Moreover, plant stanol consumption shifted circulating T-cells and monocytes in particular toward an anti-inflammatory profile. Overall, these effects were stronger following dietary supplementation with 6% stanols, suggesting a dose-dependent effect. The findings of our study highlight the potential use of plant stanols as an affordable complementary means to ameliorate disorders in hepatic and blood lipid metabolism and reduce inflammation in NPC1 disease.


Asunto(s)
Suplementos Dietéticos , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Sitoesteroles/farmacología , Animales , Colesterol/metabolismo , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Enfermedad de Niemann-Pick Tipo C/metabolismo , Sitoesteroles/uso terapéutico , Esfingolípidos/metabolismo
19.
Arch Biochem Biophys ; 696: 108654, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33130087

RESUMEN

ß-Sitosterol (ßSito) is the most abundant phytosterol found in vegetable oils, grains such as wheat, beans, and corn, and in many phytosterol-enriched foods. It is prone to oxidation by reactive oxygen species, such as ozone, leading to the formation of oxyphytosterols. A better understanding regarding the biological effects and mechanism of action of oxyphytosterols is required since the beneficial and adverse side effects of these compounds on human health remain highly controversial. In this work, we investigated the biological effects of ß-Secosterol (ßSec), a new oxyphytosterol generated by the reaction of ßSito with ozone. Treatment of HepG2 cells with ßSito or ßSec (0.1-100 µM) for 24, 48, and 72 h induced a dose-dependent reduction of cell viability in the MTT assay, with ßSec showing higher efficacy than ßSito. However, ßSec presented a lower potency than ßSito, showing IC50 = 37.32 µM, higher than ßSito (IC50 = 0.23 µM) at 48 h. Cell cycle analyses by flow cytometry showed a slight decrease of G0/G1 phase with ßSito 0.5 µM, but a significant cell cycle arrest at the G0/G1 phase in the treatment for 48 h with ßSec 20 µM (62.69 ± 2.15%, p < 0.05) and ßSec 40 µM (66.96 ± 5.39%, p < 0.0001) when compared to control (56.97 ± 2.60%). No suggestion of apoptosis was indicated by flow cytometry data. Also, ßSec (20 and 40 µM) reduced the mitotic index. In the laser scanning confocal microscopy analysis no alterations in cell morphology were observed with ßSito (0.5 µM). Nevertheless, round-shaped cells, abnormal nuclear morphology with shrinkage, and formation of microtubules clusters were observed in the treatment with ßSec, indicating a disruption in the microtubules network organization. N-acetyl-l-cysteine was not able to inhibit any of these cellular effects, indicating a lack of involvement of oxidative stress in the mechanism of action of ßSec. Although not further investigated in this study, it was discussed the hypothesis that covalent adduct formation with lysine residues of proteins, could play an important role in the biological effects elicited by ßSec. Elucidation of the primary cellular processes induced by ßSec provides the essential knowledge to be aware of its potential adverse side effects or therapeutic use of this oxyphytosterol.


Asunto(s)
Sitoesteroles/farmacología , Acetilcisteína/farmacología , Núcleo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Células Hep G2 , Humanos , Microtúbulos/efectos de los fármacos , Índice Mitótico , Estrés Oxidativo/efectos de los fármacos , Ozono/química , Sitoesteroles/síntesis química , Sitoesteroles/química
20.
Bioorg Chem ; 98: 103150, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31983469

RESUMEN

ß-Sitosterols, is a common steroid that can be identified in a variety of plants and their efficacy in promoting wound healing has been demonstrated. Na+/K+-ATPase, more than a pump, its signal transduction function for involvement in cell growth regulation attracts widespread concern. The Na+/K+-ATPase/Src receptor complex can serve as a receptor involved in multiple signaling pathways including promoting wound healing pathways. To finding potent accelerating wound healing small molecular, we choose the high inhibitory activity of Na+/K+-ATPase and non-cardiotoxic natural compound, ß-sitosterol as the substrate. A series of ß-sitosterol derivatives were designed, synthesized and evaluated as potential Na+/K+-ATPase inhibitors. Among them, compounds 31, 47, 49, showed improved inhibitory activity on Na+/K+-ATPase, with IC50 value of 3.0 µM, 3.4 µM, 2.2 µM, which are more potent than ß-sitosterol with IC50 7.6 µM. Especially, compound 49 can induce cell proliferation, migration and soluble collagen production in L929 fibroblasts. Compared to model, compound 49 can accelerate wound healing in SD rats. Further studies indicated that 49 can activate the sarcoma (Src), uptake the protein kinase B (Akt), extracellular signal-regulated kinase (ERK) proteins expression in a concentration dependent manner. Finally, binding mode of compound 49 with Na+/K+-ATPase was studied, which provides insights into the determinants of potency and selectivity. These results proved ß-stitosterol derivative 49 can serve as an effective inhibitor of Na+/K+-ATPase and potential candidate for accelerating wound healing agents.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Sitoesteroles/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Cicatrización de Heridas/efectos de los fármacos , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Masculino , Ratones , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Sitoesteroles/síntesis química , Sitoesteroles/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA