Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 567, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880885

RESUMEN

Cadmium (Cd) is a nonessential element in plants and has adverse effects on the growth and development of plants. However, the molecular mechanisms of Cd phytotoxicity, tolerance and accumulation in hyperaccumulators Solanum nigrum L. has not been well understood. Here, physiology, transcriptome, and metabolome analyses were conducted to investigate the influence on the S. nigrum under 0, 25, 50, 75 and 100 µM Cd concentrations for 7 days. Pot experiments demonstrated that compared with the control, Cd treatment significantly inhibited the biomass, promoted the Cd accumulation and translocation, and disturbed the balance of mineral nutrient metabolism in S. nigrum, particularly at 100 µM Cd level. Moreover, the photosynthetic pigments contents were severely decreased, while the content of total protein, proline, malondialdehyde (MDA), H2O2, and antioxidant enzyme activities generally increased first and then slightly declined with increasing Cd concentrations, in both leaves and roots. Furthermore, combined with the previous transcriptomic data, numerous crucial coding-genes related to mineral nutrients and Cd ion transport, and the antioxidant enzymes biosynthesis were identified, and their expression pattern was regulated under different Cd stress. Simultaneously, metabolomic analyses revealed that Cd treatment significantly changed the expression level of many metabolites related to amino acid, lipid, carbohydrate, and nucleotide metabolism. Metabolic pathway analysis also showed that S. nigrum roots activated some differentially expressed metabolites (DEMs) involved in energy metabolism, which may enhance the energy supply for detoxification. Importantly, central common metabolism pathways of DEGs and DEMs, including the "TCA cycle", "glutathione metabolic pathway" and "glyoxylate and dicarboxylate metabolism" were screened using conjoint transcriptomics and metabolomics analysis. Our results provide some novel evidences on the physiological and molecular mechanisms of Cd tolerance in hyperaccumulator S. nigrum plants.


Asunto(s)
Cadmio , Metaboloma , Solanum nigrum , Transcriptoma , Solanum nigrum/genética , Solanum nigrum/metabolismo , Solanum nigrum/efectos de los fármacos , Cadmio/toxicidad , Cadmio/metabolismo , Transcriptoma/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metabolómica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética
2.
J Microsc ; 293(2): 86-97, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38108660

RESUMEN

In this paper, we present an enhanced method for automatically capturing a large number of consecutive paraffin sections using a microscope. Leveraging these microstructural images, we employed three-dimensional visualisation and reconstruction techniques to investigate the dispersal growth process of pollen tube bundles upon entering the ovary of Solanum nigrum. Additionally, we explored their behaviour within different ovules and examined the relationship between the germination rate of seeds and the fertilisation process. Our findings reveal that despite the abundance of Solanum nigrum seeds, only a fraction of them is capable of successful germination. The germination rate of seeds is closely related to whether fertilisation of the ovules and pollen tubes is completed. Due to the limited number of pollen tubes entering the ovary, only a portion of the ovules can be fertilised. The proportion of fertilised ovules positively correlates with the germination rate of the seeds. Through three-dimensional reconstruction, we observed a phenomenon of proximity during the pollination process, wherein ovules closer to the pollen tube bundles are more likely to be fertilised. Furthermore, fertilised ovules exhibited significant changes in morphology and embryo sac structure. The number of fertilised ovules directly impacts the germination rate of wild Solanum nigrum seeds. Although all Solanum nigrum ovules have the potential to develop into seeds, most seeds originating from unfertilised ovules are unable to germinate normally, resulting in an incomplete germination rate of seeds and preventing it from reaching 100%.


Asunto(s)
Tubo Polínico , Solanum nigrum , Ovario , Imagenología Tridimensional , Flores/anatomía & histología , Fertilidad
3.
Environ Res ; 248: 118393, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38309564

RESUMEN

Soil solution pH and dissolved organic carbon (DOC) influence cadmium (Cd) uptake by hyperaccumulators but their tradeoff in calcareous soils is unclear. This study investigated the mechanisms of Solanum nigrum L. and Solanum alatum Moench in calcareous soil using a combination of concentration gradient experiments (0.6-100 mg Cd kg-1) and soil solution composition analysis. The results showed that the soil solution pH of S. nigrum remained stable despite Cd stress. On average, the soil solution pH of S. alatum was 0.23 units higher than that of S. nigrum, although pH decreased significantly under high Cd stress. In addition, the concentrations of potassium (K) and calcium (Ca) in the soil solution of S. nigrum increased and decreased under low and high levels of Cd stress, respectively. In S. alatum, the K and Ca concentrations in the soil solution generally increased with increasing Cd stress levels. Moreover, the level of DOC in the soil solution of both plants was higher under Cd stress compared to the control, and a gradually increasing trend with Cd stress level was observed in S. alatum. Consequently, the bioconcentration factors of the roots (2.62-19.35) and shoots (1.20-9.59) of both plants were >1, while the translocation factors were <1, showing an obstacle of Solanum hyperaccumulators in transferring Cd into their aboveground parts. Redundancy analysis revealed that the Cd concentration in S. nigrum roots was significantly negatively correlated with the soil solutions of K and Ca. In contrast, Cd concentrations in S. alatum roots and shoots were significantly positively correlated with soil solution DOC, K, and Ca but negatively correlated with pH. Our results suggest that calcareous soil neutralizes the acidity of released protons but does not affect cation exchange, inhibiting DOC in assisting the translocation of Cd within plants.


Asunto(s)
Contaminantes del Suelo , Solanum nigrum , Solanum , Cadmio/análisis , Materia Orgánica Disuelta , Suelo/química , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Minerales/análisis , Iones/análisis , Raíces de Plantas/química , Calcio/análisis , Concentración de Iones de Hidrógeno
4.
Chem Biodivers ; 21(7): e202400208, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713365

RESUMEN

Solanum nigrum is a common weed in arable land, while being used in traditional medicine around the world due to its remarkable levels of valuable secondary metabolites. Agronomic and biological techniques can alter the production of a specific metabolite by influencing plant growth and metabolism. The effects of colonization with three arbuscular mycorrhizal fungi (AMF), including Funneliformis mosseae, Rhizoglomus intraradices, and Rhizoglomus fasciculatum, on the chemical composition of S. nigrum fruits were evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. More than 100 different chemical constituents were evaluated by GC-MS. Our study revealed that the levels of phenols (quinic acid), benzenes (hydroquinone), sulfur-containing compounds, lactone and carboxylic acids were improved by R. intraradices. In contrast, hydroxymethylfurfural increased by 68 % in R. fasciculatum inoculated with uninoculated S. nigrum plants, and this species was also the most efficient in inducing sugar compounds (D-galactose, lactose, and melezitose). Our results suggest that AMF colonization is an effective biological strategy that can alter the chemical composition and improve the medicinal properties of S. nigrum.


Asunto(s)
Frutas , Micorrizas , Solanum nigrum , Simbiosis , Solanum nigrum/química , Solanum nigrum/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/microbiología , Micorrizas/metabolismo , Micorrizas/química , Cromatografía de Gases y Espectrometría de Masas , Metabolismo Secundario , Glomeromycota/metabolismo , Glomeromycota/química , Glomeromycota/fisiología
5.
Chem Biodivers ; 21(7): e202400872, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38668815

RESUMEN

Three undescribed solalodine-type glycoalkaloids, named solanigrinoside A-C (1-3), and six known compounds (4-9) were isolated from the whole plants of Solanum nigrum. Their structures were elucidated based on analysis of HR-ESI-MS, 1D- and 2D-NMR spectral data, and comparison with those reported in literatures. The solanigrinoside A-C (1-3), solasodine (4), and 3-acetoxysolasodine (5) exhibited cytotoxic effects against LU-1, Hep-G2, and MCF-7 cells with IC50 values in range from 4.6 µM to 56.2 µM. Compound 2 showed the significant cytotoxic activity with corresponding IC50 values of 5.7 µM, 7.9 µM, and 4.6 µM, respectively.


Asunto(s)
Antineoplásicos Fitogénicos , Ensayos de Selección de Medicamentos Antitumorales , Alcaloides Solanáceos , Solanum nigrum , Humanos , Solanum nigrum/química , Alcaloides Solanáceos/farmacología , Alcaloides Solanáceos/química , Alcaloides Solanáceos/aislamiento & purificación , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Supervivencia Celular/efectos de los fármacos , Conformación Molecular
6.
Phytochem Anal ; 35(2): 350-368, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37849391

RESUMEN

INTRODUCTION: Solanum nigrum L. is a traditional medicinal herb and edible plant. Many studies provide evidence that S. nigrum L. is a nutritious vegetable. Polyphenols and steroidal glycoalkaloids are the main components. OBJECTIVES: This study aimed to systemically evaluate the phytochemical profile, quantification, and bioactivities of polyphenolics and glycoalkaloids in different parts of S. nigrum L. RESULTS: Total polyphenols (TPC) and total glycoalkaloids (TGK) were determined using the Folin-Ciocalteu and acid dye colorimetric methods, respectively. A total of 55 polyphenolic constituents (including 22 phenolic acids and 33 flavonoids) and 24 steroidal glycoalkaloids were identified from different parts using ultrahigh-performance liquid chromatography Q-exactive high-resolution mass spectrometry (UHPLC-QE-HRMS), of which 40 polyphenols (including 15 phenolic acids and 25 flavonoids) and one steroidal glycoalkaloid were characterised for the first time in S. nigrum L. Moreover, typical polyphenols and glycoalkaloids were determined using HPLC-UV and HPLC-evaporative light-scattering detector (ELSD), respectively. In addition, the TPC and TGK and their typical constituents were compared in different anatomical parts. Finally, the antioxidant capacities of polyphenolic extracts from different parts of S. nigrum L. were evaluated by ·OH, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric-reducing antioxidant power (FRAP) assay in vitro. In addition, the antitumour effects of TGK from different parts of S. nigrum L. on the proliferation of PC-3 cells were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polyphenolic and glycoalkaloid extracts from different parts of S. nigrum L. showed different antioxidant and cytotoxic capacities in vitro. CONCLUSION: This is the first study to systematically differentiate between polyphenolic and glycoalkaloid profiles from different parts of S. nigrum L.


Asunto(s)
Antioxidantes , Solanum nigrum , Antioxidantes/farmacología , Esteroides , Flavonoides/farmacología , Polifenoles/farmacología
7.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38338897

RESUMEN

Virus infections cause devastative economic losses for various plant species, and early diagnosis and prevention are the most effective strategies to avoid the losses. Exploring virus genomic evolution and constructing virus infectious cDNA clones is essential to achieve a deeper understanding of the interaction between host plant and virus. Therefore, this work aims to guide people to better prevent, control, and utilize the youcai mosaic virus (YoMV). Here, the YoMV was found to infect the Solanum nigrum under natural conditions. Then, an infectious cDNA clone of YoMV was successfully constructed using triple-shuttling vector-based yeast recombination. Furthermore, we established phylogenetic trees based on the complete genomic sequences, the replicase gene, movement protein gene, and coat protein gene using the corresponding deposited sequences in NCBI. Simultaneously, the evolutionary relationship of the YoMV discovered on S. nigrum to others was determined and analyzed. Moreover, the constructed cDNA infectious clone of YoMV from S. nigrum could systematically infect the Nicotiana benthamiana and S. nigrum by agrobacterium-mediated infiltration. Our investigation supplied a reverse genetic tool for YoMV study, which will also contribute to in-depth study and profound understanding of the interaction between YoMV and host plant.


Asunto(s)
Solanum nigrum , Tobamovirus , Humanos , Virulencia , Solanum nigrum/genética , ADN Complementario/genética , Filogenia , Tobamovirus/genética , Enfermedades de las Plantas
8.
J Virol ; 96(16): e0042122, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35924924

RESUMEN

Weeds surrounding crops may act as alternative hosts, playing important epidemiological roles as virus reservoirs and impacting virus evolution. We used high-throughput sequencing to identify viruses in Spanish melon crops and plants belonging to three pluriannual weed species, Ecballium elaterium, Malva sylvestris, and Solanum nigrum, sampled at the edges of the crops. Melon and E. elaterium, both belonging to the family Cucurbitaceae, shared three virus species, whereas there was no virus species overlap between melon and the other two weeds. The diversity of cucurbit aphid-borne yellows virus (CABYV) and tomato leaf curl New Delhi virus (ToLCNDV), both in melon and E. elaterium, was further studied by amplicon sequencing. Phylogenetic and population genetics analyses showed that the CABYV population was structured by the host, identifying three sites in the CABYV RNA-dependent RNA polymerase under positive selection, perhaps reflecting host adaptation. The ToLCNDV population was much less diverse than the CABYV one, likely as a consequence of the relatively recent introduction of ToLCNDV in Spain. In spite of its low diversity, we identified geographical but no host differentiation for ToLCNDV. Potential virus migration fluxes between E. elaterium and melon plants were also analyzed. For CABYV, no evidence of migration between the populations of the two hosts was found, whereas important fluxes were identified between geographically distant subpopulations for each host. For ToLCNDV, in contrast, evidence of migration from melon to E. elaterium was found, but not the other way around. IMPORTANCE It has been reported that about half of the emerging diseases affecting plants are caused by viruses. Alternative hosts often play critical roles in virus emergence as virus reservoirs, bridging host species that are otherwise unconnected and/or favoring virus diversification. In spite of this, the viromes of potential alternative hosts remain largely unexplored. In the case of crops, pluriannual weeds at the crop edges may play these roles. Here, we took advantage of the power of high-throughput sequencing to characterize the viromes of three weed species frequently found at the edges of melon crops. We identified three viruses shared by melon and the cucurbit weed, with two of them being epidemiologically relevant for melon crops. Further genetic analyses showed that these two viruses had contrasting patterns of diversification and migration, providing an interesting example on the role that weeds may play in the ecology and evolution of viruses affecting crops.


Asunto(s)
Begomovirus , Productos Agrícolas , Cucurbitaceae , Interacciones Microbiota-Huesped , Luteoviridae , Enfermedades de las Plantas , Malezas , Animales , Áfidos/virología , Begomovirus/clasificación , Begomovirus/genética , Productos Agrícolas/virología , Cucurbitaceae/virología , Genética de Población , Interacciones Microbiota-Huesped/genética , Luteoviridae/genética , Malva/virología , Filogenia , Enfermedades de las Plantas/virología , Malezas/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Solanum nigrum/virología
9.
Mol Cell Biochem ; 478(10): 2221-2240, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36689040

RESUMEN

COVID-19 is caused by severe acute respiratory syndrome coronavirus-2, SARS-CoV-2. COVID-19 has changed the world scenario and caused mortality around the globe. Patients who recovered from COVID-19 have shown neurological, psychological, renal, cardiovascular, pulmonary, and hematological complications. In some patients, complications lasted more than 6 months. However, significantly less attention has been given to post-COVID complications. Currently available drugs are used to tackle the complications, but new interventions must address the problem. Phytochemicals from natural sources have been evaluated in recent times to cure or alleviate COVID-19 symptoms. An edible plant, Solanum nigrum, could be therapeutic in treating COVID-19 as the AYUSH ministry of India prescribes it during the pandemic. S. nigrum demonstrates anti-inflammatory, immunomodulatory, and antiviral action to treat the SARS-CoV-2 infection and its post-complications. Different parts of the plant represent a reduction in proinflammatory cytokines and prevent multi-organ failure by protecting various organs (liver, kidney, heart, neuro, and lung). The review proposes the possible role of the plant S. nigrum in managing the symptoms of COVID-19 and its post-COVID complications based on in silico docking and pharmacological studies. Further systematic and experimental studies are required to validate our hypothesis.


Asunto(s)
COVID-19 , Solanum nigrum , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Pulmón , Antivirales/farmacología
10.
Physiol Plant ; 175(5): e14028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882308

RESUMEN

Solanum nigrum, which belongs to the Solanaceae family, is an essential plant for food and medicine. It has many important secondary compounds, including glycoproteins, glycoalkaloids, polyphenolics, and anthocyanin-rich purple berries, as well as many ideal characteristics such as self-fertilization, a short life cycle and a small genome size that make it a potential model plant for the study of secondary metabolism and fruit development. In this study, we report a highly efficient and convenient tissue culture, transformation and genome editing method for S. nigrum using leaf segments after 8 weeks of tissue culture, with a required period from transformation initiation to harvest of about 3.5 months. Our results also show multi-shoot regeneration per leaf segment and a 100% shoot regeneration efficiency in a shoot regeneration medium. Moreover, over 82% of kanamycin-resistant plants exhibited strong green fluorescence marker protein expression, with genetic integration confirmed by PCR results and green fluorescence protein expression in their T1 progeny. Furthermore, we successfully applied this transformation method to achieve an average of 83% genome editing efficiency of SnMYB1, a gene involved in regulating the anthocyanin biosynthetic pathway of S. nigrum in response to missing nutrients. Taken together, the combination of highly efficient tissue culture, transformation and genome editing systems can provide a powerful platform for supporting fundamental research on the molecular mechanisms of secondary metabolism, fruit development, and production of important compounds by biotechnology.


Asunto(s)
Solanum nigrum , Solanum nigrum/genética , Solanum nigrum/metabolismo , Edición Génica , Verduras/genética , Antocianinas/metabolismo , Frutas/genética , Transformación Genética
11.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 136-142, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37953574

RESUMEN

Breast cancer is the most progressive cancer among women worldwide. The currently available chemotherapeutic agents induce severe unacceptable adverse effects in breast cancer patients. In this context, natural medicinal herbs are gaining importance to find non-toxic effective anticancer drugs. Solanum nigrum is one of the major traditional medicinal plants widely used in Ayurveda for the treatment of various diseases. This study investigated the anticancer effect of Solanum nigrum water extract (SNWE) against MCF-7 and triple-negative MDA-MB-231 breast cancer cell lines. SNWE significantly induced oxidative stress-mediated apoptotic cell death in a concentration-dependent manner. Real-time PCR results illustrated the upregulation of proapoptotic genes and downregulation of antiapoptotic genes after SNWE treatment in MCF-7 and MDA-MB-231 cell lines. Immunofluorescence analysis showed increased expressions of apoptotic markers like p53, Caspase3 and BAX by SNWE treatment. In conclusion, the findings of this study indicate the antiproliferative effect and apoptosis-inducing property of SNWE in both cell lines. Further studies are warranted on testing the anticancer activity of S. nigrum L. using animal models of cancer.


Asunto(s)
Neoplasias de la Mama , Plantas Medicinales , Solanum nigrum , Animales , Humanos , Femenino , Agua/farmacología , Apoptosis , Estrés Oxidativo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Células MCF-7 , Línea Celular Tumoral , Proliferación Celular
12.
J Sep Sci ; 46(13): e2200804, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37096863

RESUMEN

Solanum nigrum fruit is like a treasure house for anticancer drugs because of its steroidal alkaloids. However, the clinical treatment of cancer mainly uses immature fruits, which can cause a toxic reaction if eaten directly, while mature fruits are eaten as fruit. In order to clarify the reasons for the differences in pharmacodynamics and toxicity between them, we studied the composition and metabolism of steroidal alkaloids in fruits of different maturities based on liquid chromatography-tandem mass spectrometry and molecular networking. As a result, 114 steroidal glycoalkaloids were identified. During fruit ripening, the aglycones of steroidal alkaloids mainly undergo hydroxylation and carboxylation, and the sugar side chains mainly undergo acylation and glycosylation reactions. Furthermore, 219 steroidal alkaloids were identified in a metabolism experiment in rats. Metabolic processes include deglycosylation, redox, sulfuric acid binding, acetyl binding, and glucuronic acid-binding. Steroidal alkaloids in mature fruits have high molecular weight and polarity, which are difficult to absorb, and most of them are excreted through feces and urine, which may be the reason for their poor efficacy. This study lays a foundation for research on the biosynthesis of steroidal alkaloids and provides potential candidates for the discovery of new steroidal alkaloid anticancer drugs.


Asunto(s)
Alcaloides , Solanum nigrum , Solanum , Ratas , Animales , Solanum nigrum/química , Frutas/química , Espectrometría de Masas en Tándem , Alcaloides/análisis , Esteroides/química , Cromatografía Liquida , Solanum/química
13.
Ecotoxicol Environ Saf ; 256: 114849, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37011513

RESUMEN

High Cd pollution can damage plant physiology and seriously threaten ecological security and human health. Therefore, we designed a cropping system, arbuscular mycorrhizal fungi (AMF) - soybean - Solanum nigrum L., to solve the high Cd pollution problem in an environmentally and economically friendly way. The results showed that AMF were able to break free from the constraints of cocultivation and still promote plant photosynthesis and growth in combined treatments to resist Cd stress. In addition, cocultivation combined with AMF improved the antioxidant defense to scavenge reactive oxygen species by promoting the production of antioxidant enzymes and nonenzyme substances in host plants. The glutathione content in soybean and the catalase activity in nightshade were recorded at the highest values under cocultivation combined with AMF treatment, which were 23.68% and 129.12% higher than those of monoculture without AMF treatments. The improvement in antioxidant defense alleviated oxidative stress, which was manifested by the reduction in Cd dense electronic particles in the ultrastructure and a 26.38% decrease in MDA content. Furthermore, this cropping mode combined the advantages of cocultivation to improve the Cd extraction efficiency and Rhizophagus intraradices to limit Cd accumulation and transport so that Cd was more accumulated and restricted in the roots of the cocultivated Solanum nigrum L., and the Cd concentration in soybean beans was reduced by 56% compared with the soybean monoculture without AMF treatment. Therefore, we suggest that this cropping system is a comprehensive and mild remediation technology suitable for highly Cd-contaminated soil.


Asunto(s)
Micorrizas , Contaminantes del Suelo , Solanum nigrum , Humanos , Antioxidantes/metabolismo , Cadmio/análisis , Solanum nigrum/metabolismo , Glycine max/metabolismo , Técnicas de Cocultivo , Micorrizas/fisiología , Raíces de Plantas/metabolismo , Fotosíntesis , Contaminantes del Suelo/análisis
14.
Phytother Res ; 37(7): 3009-3024, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36877123

RESUMEN

Multiple drug resistance (MDR) often occurs after prolonged chemotherapy, leading to refractory tumors and cancer recurrence. In this study, we demonstrated that the total steroidal saponins from Solanum nigrum L. (SN) had broad-spectrum cytotoxic activity against various human leukemia cancer cell lines, especially in adriamycin (ADR)-sensitive and resistant K562 cell lines. Moreover, SN could effectively inhibit the expression of ABC transporter in K562/ADR cells in vivo and in vitro. In vivo, by establishing K562/ADR xenograft tumor model, we demonstrated that SN might overcome drug resistance and inhibit the proliferation of tumors by regulating autophagy. In vitro, the increased LC3 puncta, the expression of LC3-II and Beclin-1, and the decreased expression of p62/SQSTM1 in SN-treated K562/ADR and K562 cells demonstrated autophagy induced by SN. Moreover, using the autophagy inhibitors or transfecting the ATG5 shRNA, we confirmed that autophagy induced by SN was a key factor in overcoming MDR thereby promoting cell death in K562/ADR cells. More importantly, SN-induced autophagy through the mTOR signaling pathway to overcome drug resistance and ultimately induced autophagy-mediated cell death in K562/ADR cells. Taken together, our findings suggest that SN has the potential to treat multidrug-resistant leukemia.


Asunto(s)
Leucemia , Saponinas , Solanum nigrum , Humanos , Resistencia a Antineoplásicos , Resistencia a Múltiples Medicamentos , Doxorrubicina/farmacología , Células K562 , Saponinas/farmacología , Muerte Celular , Autofagia
15.
Int J Phytoremediation ; 25(9): 1106-1115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36264021

RESUMEN

This study focused to enhance the cadmium (Cd) phytoextraction efficiency in Solanum nigrum by applying four biodegradable chelants (10 mM)-ethylene glycol tetraacetic acid (EGTA), ethylenediamine disuccinate (EDDS), nitrilotriacetic acid (NTA), and citric acid (CA), when grown in Cd-spiked soil (12 and 48 mg kg-1). Plant height, dry biomass, photosynthetic traits, and metal accumulation varied significantly with Cd and chelant treatments. Cadmium-toxicity resulted in reduction of plant growth and photosynthetic physiology, whereas chelant supplementation alleviated the toxic effect of Cd and increased its accumulation. Tolerance index value increased with addition of chelants in the order: EGTA (1.57-1.63) >EDDS (1.39-1.58) >NTA (1.14-1.50) >CA (1-1.22) compared with Cd (0.46-1.08). Transfer coefficient of root increased with supplementation of EGTA (3.40-3.85), EDDS (3.10-3.40), NTA (2.60-2.90), and CA (1.85-2.29), over Cd-alone (1.61-1.63). Similarly, translocation factor was also increased upon addition of EGTA (0.52-0.73), EDDS (0.35-0.81), NTA (0.38-0.75), and CA (0.53-0.54), compared with Cd-alone (0.36-0.59). Maximum Cd removal (67.67% at Cd12 and 36.05% at Cd48) was observed with supplementation of EGTA. The study concludes that the supplementation of EGTA and EDDS with S. nigrum can be employed as an efficient and environmentally safe technique for reclamation of Cd-contaminated soils.


Apart from the selection of a good hyperaccumulator, the choice of chelant (biodegradable/non-biodegradable) is an important aspect for the successful phytoextraction of metals from contaminated soil. We reported for the first time the potential of ethylene glycol tetraacetic acid (EGTA; a biodegradable chelant) in enhancing Cd phytoextraction by Solanum nigrum. Comparative appraisal of metal extraction efficiency of biodegradable chelants at low (12 mg kg−1) and high (48 mg kg−1) Cd dose depicted that EGTA performed better than EDDS, NTA, and CA (other biodegradable chelants). EGTA supplementation did not induce toxicity in plants; rather it improved metal accumulation, morphology, and photosynthetic physiology.


Asunto(s)
Contaminantes del Suelo , Solanum nigrum , Cadmio , Quelantes/farmacología , Ácido Egtácico , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Ácido Nitrilotriacético , Suelo , Ácido Cítrico
16.
J Environ Manage ; 334: 117259, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36764191

RESUMEN

The hormetic effect of rare earth elements (REEs) has been found in a variety of crops and has been promoting crop growth for decades. Spraying leaves with REEs can enhance the endocytosis of plant roots. The non-selectivity of endocytosis is conducive to the direct absorption of environmental pollutants. The hyperaccumulator Solanum nigrum L. (S. nigrum), as a plant with high biomass and heavy metal tolerance, is a good candidate for phytoremediation. La(III), as a typical light REE, also has an obvious hormetic effect on S. nigrum. At 10 µM La(III), the biomass of S. nigrum reached the maximum, which was 89% greater than the control, and La(III) concentration was much lower than the previously reported optimum of 56 µM for general plants. In the present study, enhanced endocytosis after foliar spraying of La(III) was firstly observed in the root cell of hyperaccumulation plants, and La(III) increased the biomass of S. nigrum by improving the photosynthetic system, and promoting nutrient uptake and root development. The antioxidant defense system improved by La(III) contributed to the tolerance of S. nigrum to heavy metals. Applying a reasonable range of La(III) is beneficial to improving S. nigrum growth and tolerance of heavy metals. Compared with spraying deionized water, the translocation factor and bioaccumulation factor value of S. nigrum to cadmium increased by 15% and 21% respectively when spraying 10 µM La(III). Our findings provide a reference for improving hyperaccumulator plant growth and biomass, which improves phytoremediation efficiency.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Solanum nigrum , Lantano , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Cadmio/farmacología , Raíces de Plantas/química , Suelo
17.
Molecules ; 28(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37764423

RESUMEN

(1) Background: Solanum nigrum L. is a plant of the genus Solanum in the family Solanaceae and is commonly used to treat tumors. Solasonin (SS) is a steroidal alkaloid extracted from Solanum nigrum L. that has anti-colorectal cancer (CRC) activity. (2) Methods: Column chromatography, semi-preparative HPLC and cellular activity screening were used to isolate potential anti-CRC active compounds in Solanum nigrum L., and structure identification using 1H-NMR and 13C-NMR techniques. Expression levels of HDAC in CRC were mined in the UALCAN database. The in vitro effects of SS on SW620 cell line and its mechanism were examined via Western blot, EdU staining, flow cytometry and immunofluorescence. CRC xenograft model and IHC staining were mainly used to evaluate the role of SS in vivo. (3) Results: The results showed that SS was the most potent anti-CRC component in Solanum nigrum L., which induced apoptosis and cell cycle arrest in the SW620 cell line. HDAC was highly expressed in CRC. The treatment of SW620 cell line with SS resulted in a significant downregulation of HDAC, an increase in the level of P53 acetylation and a subsequent increase in the level of P21. The in vivo validation results showed that SS could effectively inhibit CRC growth, which was associated with the downregulation of HDAC. (4) Conclusions: SS treatment for CRC mainly works through the induction of apoptosis and cycle arrest, and its mechanism of action is mainly related to HDAC-induced P53 acetylation, and the HDAC/P53 signaling pathway may be a potential pathway for the treatment of CRC.


Asunto(s)
Neoplasias , Solanum nigrum , Solanum , Humanos , Acetilación , Proteína p53 Supresora de Tumor/genética , Regulación hacia Abajo
18.
Molecules ; 28(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37446619

RESUMEN

Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.


Asunto(s)
Alcaloides , Salud Poblacional , Solanum lycopersicum , Solanum nigrum , Solanum tuberosum , Solanum , Humanos , Solanum/metabolismo , Alcaloides/química , Solanum tuberosum/metabolismo , Solanum nigrum/metabolismo
19.
Inflammopharmacology ; 31(6): 3281-3301, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864683

RESUMEN

Solanum nigrum L. is a popular traditional medicine for various inflammatory conditions including rheumatism and joint pain. The current study aimed to evaluate the anti-arthritic mechanism of Solanum nigrum L. Four extracts were prepared using n-hexane, methanol, chloroform, and water. The anti-nociceptive and anti-inflammatory activity was carried out with 100, 200, and 300 mg/kg body wt. PO of each extract by the hot plate and carrageenan-induced paw oedema methods, respectively. The anti-arthritic study was performed with chloroform and aqueous extracts (300 mg/kg) in complete Freund's adjuvant (CFA)-induced arthritis. Paw size (mm), ankle joint diameter (mm), and latency time (sec) were recorded on day 0 and every 4th day till 28 days. The hematological, inflammatory, and oxidative biomarkers were estimated. Results showed that significant analgesia (p < 0.05) and reduction in paw inflammation were achieved with all extracts. The highest percent inhibition in Carrageenan-induced inflammation was achieved with 300 mg/kg of chloroform (72.19%) and aqueous (71.30%) extracts, respectively. In the CFA model, both extracts showed a significant reduction in paw size and ankle joint diameter (p < 0.05). The RT-qPCR analysis revealed the upregulation of interleukin-4 and interleukin-10, and down-expression of interleukin-1ß, interleukin-6, tumor necrosis factor-α, cycloxygenase-2, nuclear factor-κB, prostaglandin E synthase 2, and interferon-γ. A significant increase in superoxide dismutase, catalase, and glutathione levels was observed. Hence, it is concluded that Solanum nigrum L. leaf extracts regulate the expression of inflammatory markers and improve oxidative stress resulting in the attenuation of CFA-induced arthritis.


Asunto(s)
Artritis Experimental , Solanum nigrum , Animales , Citocinas/metabolismo , Carragenina , Antioxidantes/farmacología , Solanum nigrum/metabolismo , Extractos Vegetales/farmacología , Adyuvante de Freund , Cloroformo/efectos adversos , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Inflamación/tratamiento farmacológico
20.
Bull Environ Contam Toxicol ; 110(1): 37, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607448

RESUMEN

Phytoextraction is an efficient strategy for remediating heavy metal-contaminated soil. Chelators can improve the bioavailability of heavy metals and increase phytoextraction efficiency. However, traditional chelators have gradually been replaced due to secondary pollution. In this study, a typical organic acid (citric acid, CA) and a novel biodegradable chelator (poly-glutamic acid, PGA), were investigated using pot experiments to compare the phytoextraction efficiency of Solanum nigrum L. (a Cd (hyper)accumulator) for cadmium (Cd) and lead (Pb) in contaminated soil. The results showed CA and PGA significantly improved plant growth, and total Cd and Pb amounts of S. nigrum, both CA and PGA significantly increased the shoot Cd and Pb concentrations. However, only PGA significantly increased the root Pb concentration. CA and PGA application promoted the bioavailability of Cd and Pb in rhizosphere soils and their translocations from roots to shoots in S. nigrum. Both CA and PGA increased the phytoextraction efficiency of Cd and Pb in S. nigrum plants, and the PGA for Cd and Pb phytoextraction was more effective than CA. Our findings demonstrate that the biodegradable chelator PGA has great potential for enhancing phytoextraction from compound Cd-Pb contaminated soils, suggesting that biodegradable chelator-assisted phytoextraction with (hyper)accumulator is strongly recommended in severely contaminated sites.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Solanum nigrum , Cadmio/análisis , Ácido Glutámico , Plomo , Ácido Cítrico , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Quelantes/farmacología , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA