Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36850724

RESUMEN

The behavior of a new 1,3-dioctadecyl-1H-imidazol-3-ium tetraphenylborate (DODI-TPB) surfactant sensor was studied in single and complex mixtures of technical grade QACs-benzalkonium chloride (BAC), N,N-didecyl-N,N-dimethylammonium chloride (DDAC), and N,N-dioctyl-N,N-dimethylammonium chloride (DOAC) usually used in COVID-19 disinfecting agents formulations. The results obtained with the new DODI-TPB sensor were in good agreement with data measured by a 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DMI-TPB) surfactant sensor, as well as two-phase titration used as a reference method. The quantitative titrations of a two-component mixture of the cationic homologs (a) DDAC and DOAC; and (b) BAC and DOAC showed that the new DODI-TPB surfactant sensor can clearly distinguish two separate mixture components in a single potentiometric titration curve with two characteristic inflexion points. The consumption of SDS (used as a titrant) in the end-point 1 (EP 1) corresponded to the content of DDAC (or BAC), whereas the consumption in the end-point 2 (EP 2) corresponded to the total content of both cationic surfactants in the mixture. DOAC content in both mixtures can be calculated from the difference of the titrant used to achieve EP1 and EP2. The addition of nonionic surfactants resulted in the signal change decrease from 333.2 mV (1:0; no nonionic surfactant added) to 243.0 mV (1:10, w/w). The sensor was successfully tested in ten two-component COVID-19 disinfecting formulations.


Asunto(s)
COVID-19 , Tensoactivos , Humanos , Tetrafenilborato , Compuestos de Benzalconio
2.
Molecules ; 28(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446807

RESUMEN

Supramolecular gemifloxacin (GF) sensors have been developed. Supramolecular chemistry is primarily concerned with noncovalent intermolecular and intramolecular interactions, which are far weaker than covalent connections, but they can be exploited to develop sensors with remarkable affinity for a target analyte. In order to determine the dose form of the quinolone antibacterial drug gemifloxacin, the current study's goal is to adapt three polyvinylchloride (PVC) membrane sensors into an electrochemical technique. Three new potentiometric membrane sensors with cylindric form and responsive to gemifloxacin (GF) were developed. The sensors' setup is based on the usage of o-nitrophenyl octyl ether (o-NPOE) as a plasticizer in a PVC matrix, ß-cyclodextrin (ß-CD) (sensor 1), γ-cyclodextrin (γ-CD) (sensor 2), and 4-tert-butylcalix[8]arene (calixarene) (sensor 3) as an ionophore, potassium tetrakis (4-chlorophenyl) borate (KTpClPB) as an ion additive for determination of GF. The developed method was verified according to IUPAC guidelines. The sensors under examination have good selectivity for GF, according to their selectivity coefficients. The constructed sensors demonstrated a significant response towards to GF over a concentration range of 2.4 × 10-6, 2.7 × 10-6, and 2.42 × 10-6 mol L-1 for sensors 1, 2, and 3, respectively. The sensors showed near-Nernstian cationic response for GF at 55 mV, 56 mV, and 60 mV per decade for sensors 1, 2, and 3, respectively. Good recovery and relative standard deviations during the day and between days are displayed by the sensors. They demonstrated good stability, quick response times, long lives, rapid recovery, and precision while also exhibiting good selectivity for GF in various matrices. To determine GF in bulk and dose form, the developed sensors have been successfully deployed. The sensors were also employed as end-point indicators for titrating GF with sodium tetraphenyl borate.


Asunto(s)
Boratos , Plastificantes , Gemifloxacina , Plastificantes/química , Tetrafenilborato/química , Antibacterianos , Potenciometría/métodos
3.
Sensors (Basel) ; 22(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36501843

RESUMEN

A low-cost and fast potentiometric surfactant sensor for cationic surfactants, based on the new ion-pair 1,3-dioctadecyl-1H-imidazol-3-ium-tetraphenylborate (DODI-TPB), is presented. The new cationic surfactant DODI-Br was synthesized and characterized by NMR, LC-MS, and elemental analysis, and was used for synthesis of the DODI-TPB ionophore. The DODI-TPB surfactant sensor was obtained by implementation of the ionophore in PVC. The sensor showed excellent response characteristics with near-Nernstian slopes to the cationic surfactants DMIC, CPC, CTAB, and Hyamine 1622. The highest voltage responses were obtained for DMIC and CPC (58.7 mV/decade of activity). DMIC had the lowest detection limit (0.9 × 10-6 M) and the broadest useful linear concentration range (1.8 × 10-6 to 1.0 × 10-4 M). An interference study showed remarkable stability. Potentiometric titration curves for the titration of cationic surfactants (DMIC, CPC, CTAB, and Hyamine 1622), with DDS and TPB used as titrants, showed sigmoidal curves with well-defined inflexion points and a broad signal change. The standard addition method was successfully applied with recovery rates from 98.9 to 101.2 at two concentrations. The amount of cationic surfactant found in disinfectants and antiseptics was in good agreement with the referent two-phase titration method and the surfactant sensor on the market. This new surfactant sensor represents a low-cost alternative to existing methods for cationic surfactant detection.


Asunto(s)
Tensoactivos , Tetrafenilborato , Tensoactivos/química , Concentración de Iones de Hidrógeno , Potenciometría/métodos , Ionóforos , Tetrafenilborato/química
4.
Artículo en Inglés | MEDLINE | ID: mdl-33168608

RESUMEN

Neisseria meningitidis and Neisseria gonorrhoeae, two highly related species that might have emerged from a common commensal ancestor, constitute major human threats. Vaccines are available to prevent N. meningitidis infection, whereas there are only a limited number of antibiotics available for N. gonorrhoeae Unfortunately, some strains of these species are rapidly evolving and capable of escaping human interventions. Thus, it is now urgent to develop new avenues to fight these bacteria. This study reports that a boron-based salt, sodium tetraphenylborate (NaBPh4), displays high bactericidal activity and remarkable specificity against N. meningitidis and N. gonorrhoeae Other closely related commensal species such as Neisseria lactamica, which is found in the normal flora of healthy individuals, were found to be less affected even at 5-fold higher doses of NaBPh4 This specificity was further observed when much lower sensitivity was found for more distant Neisseriaceae species (such as Neisseria elongata or Kingella oralis) and completely unrelated species. Significant boron uptake by N. meningitidis cells was observed after incubation with 5 µM NaBPh4, as measured by inductively coupled plasma mass spectrometry, suggesting that this drug candidate's target(s) could be located intracellularly or within the cell envelope. Furthermore, mutants with slightly decreased susceptibility displayed alterations in genes coding for cell envelope elements, which reduced their virulence in an animal model of infection. Finally, a single dose of NaBPh4 resulted in a significant reduction in bacterial burden in a mouse model of N. meningitidis bacteremia. Although numerous boron-containing species were previously reported for their complex biological activities, the observation of this narrow selectivity is unprecedented and of potential importance from a therapeutic standpoint.


Asunto(s)
Infecciones Bacterianas , Neisseria meningitidis , Animales , Kingella , Neisseria gonorrhoeae , Neisseria meningitidis/genética , Tetrafenilborato
5.
Sensors (Basel) ; 21(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34300494

RESUMEN

This work describes a new method for determining K+ concentration, [K+], in blood plasma using a smartphone with a custom-built optical attachment. The method is based on turbidity measurement of blood plasma solutions in the presence of sodium tetraphenylborate, a known potassium precipitating reagent. The images obtained by a smartphone camera are analyzed by a custom image-processing algorithm which enables the transformation of the image data from RGB to HSV color space and calculation of a mean value of the light-intensity component (V). Analysis of images of blood plasma containing different amounts of K+ reveal a correlation between V and [K+]. The accuracy of the method was confirmed by comparing the results with the results obtained using commercial ion-selective electrode device (ISE) and atomic absorption spectroscopy (AAS). The accuracy of the method was within ± 0.18 mM and precision ± 0.27 mM in the [K+] range of 1.5-7.5 mM when using treated blood plasma calibration. Spike tests on a fresh blood plasma show good correlation of the data obtained by the smartphone method with ISE and AAS. The advantage of the method is low cost and integration with a smartphone which offers possibility to measure [K+] on demand and in remote areas where access to hospitals is limited.


Asunto(s)
Potasio , Teléfono Inteligente , Electrodos de Iones Selectos , Plasma , Tetrafenilborato
6.
Molecules ; 26(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34770974

RESUMEN

The binding interactions of bovine serum albumin (BSA) with tetraphenylborate ions ([B(Ph)4]-) have been investigated by a set of experimental methods (isothermal titration calorimetry, steady-state fluorescence spectroscopy, differential scanning calorimetry and circular dichroism spectroscopy) and molecular dynamics-based computational approaches. Two sets of structurally distinctive binding sites in BSA were found under the experimental conditions (10 mM cacodylate buffer, pH 7, 298.15 K). The obtained results, supported by the competitive interactions experiments of SDS with [B(Ph)4]- for BSA, enabled us to find the potential binding sites in BSA. The first site is located in the subdomain I A of the protein and binds two [B(Ph)4]- ions (logK(ITC)1 = 7.09 ± 0.10; ΔG(ITC)1 = -9.67 ± 0.14 kcal mol-1; ΔH(ITC)1 = -3.14 ± 0.12 kcal mol-1; TΔS(ITC)1 = -6.53 kcal mol-1), whereas the second site is localized in the subdomain III A and binds five ions (logK(ITC)2 = 5.39 ± 0.06; ΔG(ITC)2 = -7.35 ± 0.09 kcal mol-1; ΔH(ITC)2 = 4.00 ± 0.14 kcal mol-1; TΔS(ITC)2 = 11.3 kcal mol-1). The formation of the {[B(Ph)4]-}-BSA complex results in an increase in the thermal stability of the alfa-helical content, correlating with the saturation of the particular BSA binding sites, thus hindering its thermal unfolding.


Asunto(s)
Albúmina Sérica Bovina/química , Tetrafenilborato/química , Animales , Calorimetría , Rastreo Diferencial de Calorimetría , Bovinos , Dicroismo Circular , Espectrometría de Fluorescencia
7.
Phys Chem Chem Phys ; 21(42): 23355-23363, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31621727

RESUMEN

Penetrating cations are widely used for the design of bioactive mitochondria-targeted compounds. The introduction of various substituents into the phenyl rings of dodecyltriphenylphosphonium and the measurement of the flip-flop of the synthesized cations by the current relaxation method revealed that methyl groups accelerated significantly the cation penetration through the lipid membrane, depending on the number of groups introduced. However, halogenation slowed down the penetration of the analogues. This result is strictly opposite to the flip-flop acceleration observed for halogenated tetraphenylborate anions. Density functional theory and the polarizable continuum solvent model were used to calculate the solvation energies of methyltriphenylphosphonium and methyltriphenylborate analogues. A good agreement was demonstrated between the difference in the free energy of ion solvation in water and octane and the absolute value of the central free energy barrier estimated from experimental data. Our results reveal that increasing the size of the lipophilic ion can lead to both acceleration and deceleration of the transmembrane flip-flop rate depending on the substituent and sign of the ion. This finding also emphasizes the different nature of ion-water interactions for structurally similar substituted hydrophobic anions and cations.


Asunto(s)
Halógenos/química , Membrana Dobles de Lípidos/química , Teoría Funcional de la Densidad , Electricidad , Interacciones Hidrofóbicas e Hidrofílicas , Iones/química , Compuestos Organofosforados/química , Solventes/química , Tetrafenilborato/química , Agua/química
8.
Sensors (Basel) ; 19(10)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121893

RESUMEN

Several emerging nano scale forms of carbon are showing great promise in electrochemical sensing such as graphene and multi-walled carbon nanotubes (MWCNTs). Herein we present an ecofriendly method to fabricate long life and sensitive ion selective sensors based on graphene and MWCNTs nanocomposites with no need for volatile organic solvents. Both sensors were fabricated, for the analysis of carbachol in ophthalmic solutions, plasma and urine where ion- association complex was formed between cationic carbachol and anionic Sodium tetra phenyl borate (NaTBP) in a ratio 1:1. Both sensors were evaluated according to the IUPAC recommendation data, revealing linear response in the concentration range 10-7 M to 10-2 M with near Nernstian slopes 50.80 ± 5 and 58.14 ± 3 mV/decade and correlation coefficients 0.9992 and 0.9998 for graphene and MWCNTs based sensors, respectively. Both sensors were successfully applied as stability indicating method for the analysis of carbachol in presence of its metabolite choline, in ophthalmic preparations, in plasma and urine showing good recovery percentage values. MWCNTs based sensor showed some advantages over graphene sensor regarding lower limit of detection (LOD), longer life time and higher selectivity towards carbachol. Statistical comparison of the proposed sensors with the official method showed no significant difference for accuracy and precision.


Asunto(s)
Carbacol/análisis , Colina/química , Técnicas Electroquímicas/métodos , Nanocompuestos/química , Soluciones Oftálmicas/química , Carbacol/sangre , Carbacol/orina , Grafito/química , Humanos , Concentración de Iones de Hidrógeno , Límite de Detección , Nanotubos de Carbono/química , Tetrafenilborato/química
9.
Soft Matter ; 13(6): 1120-1131, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28093583

RESUMEN

In this study we have investigated how different proteins interact with big organic ions. Two ions that are similar in size and chemical structure (Ph4B- anion and Ph4As+ cation) were studied. The proteins chosen are the two major allergenic proteins of cow's milk, ß-lactoglobulin and ß-casein, and bovine serum albumin, BSA, as the reference protein. First, a quantitative study to determine the hydrophobic degree of the proteins was performed. Then, electrokinetic and stability measurements on protein-coated polystyrene (PS) microspheres as a function of the tetraphenyl ion concentration were carried out. Our results show that the affinity of the organic ions depends on the hydrophobicity of the interface. Big charge inversions and re-stabilization patterns were observed at very low concentrations of tetraphenyl ions for the most hydrophobic protein studied (with ß-casein). Besides, the ionic concentrations needed to destabilize these colloidal systems were roughly one order of magnitude lower for the anion than for the cation. In addition, we studied conformational changes of the adsorbed proteins with a quartz crystal microbalance. Proteins were adsorbed onto hydrophobic flat substrates and then exposed to the tetraphenyl ions. The protein films swelled or collapsed as a function of the accumulation of tetraphenyl ions. Similarly to the electrokinetic/stability studies, the ionic concentration necessary to trigger structural changes of the protein films was one order of magnitude larger for the cation than for the anion. All the results evidence that the accumulation of these organic ions on an interface depends directly on its degree of hydrophobicity. We attribute the different interactions of the anion and the cation with these interfaces to their dissimilar hydration, which makes the anion show a more hydrophobic behaviour than the cation.


Asunto(s)
Arsenicales/metabolismo , Proteínas/metabolismo , Tetrafenilborato/metabolismo , Animales , Bovinos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Conformación Proteica/efectos de los fármacos , Proteínas/química , Tetrafenilborato/farmacología
10.
Biochim Biophys Acta ; 1848(6): 1277-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25753112

RESUMEN

Conjugation to penetrating cations is a general approach for intramitochondrial delivery of physiologically active compounds, supported by a high membrane potential of mitochondria having negative sign on the matrix side. By using fluorescence correlation spectroscopy, we found here that Atto520-biotin, a conjugate of a fluorescent cationic rhodamine-based dye with the membrane-impermeable vitamin biotin, accumulated in energized mitochondria in contrast to biotin-rhodamine 110. The energy-dependent uptake of Atto520-biotin by mitochondria, being slower than that of the conventional mitochondrial dye tetramethyl-rhodamine ethyl ester, was enhanced by the hydrophobic anion tetraphenylborate (TPB). Atto520-biotin also exhibited accumulation in liposomes driven by membrane potential resulting from potassium ion gradient in the presence valinomycin. The induction of electrical current across planar bilayer lipid membrane by Atto520-biotin proved the ability of the compound to permeate through lipid membrane in a cationic form. Atto520-biotin stained mitochondria in a culture of L929 cells, and the staining was enhanced in the presence of TPB. Therefore, the fluorescent Atto520 moiety can serve as a vehicle for intramitochondrial delivery of hydrophilic drugs. Of importance for biotin-streptavidin technology, binding of Atto520-biotin to streptavidin was found to cause quenching of its fluorescence similar to the case of fluorescein-4-biotin.


Asunto(s)
Compuestos Azo/metabolismo , Biotina/metabolismo , Electricidad , Membrana Dobles de Lípidos/metabolismo , Mitocondrias Hepáticas/metabolismo , Animales , Compuestos Azo/química , Biotina/química , Cationes , Cinética , Microscopía Fluorescente , Mitocondrias Hepáticas/efectos de los fármacos , Compuestos Organometálicos/metabolismo , Permeabilidad/efectos de los fármacos , Ratas , Espectrometría de Fluorescencia , Estreptavidina/metabolismo , Tetrafenilborato/farmacología , Factores de Tiempo
11.
Chemphyschem ; 17(1): 105-11, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26541804

RESUMEN

Emulsification of oils at liquid/liquid interfaces is of fundamental importance across a range of applications, including detergency. Adsorption and partitioning of the anionic surface active ions at the interface between two immiscible solutions is known to cause predictable chaos at the transfer potential region of the surfactant. In this work, the phenomenon that leads to the chaotic behaviour shown by sodium dodecylbenzene sulfonate (SDBS) at the water/1,2-dichloroethane interface is applied to commercial surfactants and aqueous/glyceryl trioleate interface. Electrochemical methods, electrocapillary curves, optical microscopy and conductivity measurements demonstrated that at 1.5 mm of SDBS, surfactants are adsorbed at the interface and assemble into micelles, leading to interfacial instability. As the concentration of the anionic surfactant was enhanced to 8 and 13.4 mm, the Marangoni effect and the interfacial emulsification became more prominent. The chaotic behaviour was found to be dependent on the surfactant concentration and the electrolytes present.


Asunto(s)
Bencenosulfonatos/química , Emulsionantes/química , Adsorción , Técnicas Electroquímicas , Dicloruros de Etileno/química , Cloruro de Litio/química , Octoxinol , Polietilenglicoles/química , Compuestos de Amonio Cuaternario/química , Tetrafenilborato/química , Trioleína/química , Agua/química
12.
Phys Chem Chem Phys ; 17(16): 11006-13, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25823740

RESUMEN

In tracing the biological processes using fluorescent probes, it is desirable to shift the excitation/emission energy to a far-red/near-infrared (FR/NIR) region. In this study, we successfully synthesize FR fluorescent organic nanoparticles via ion-association between the malachite green (MG) cations and tetrakis(4-fluorophenyl)borate (TFPB) anions in the presence of a neutral stabilizing polymer. Binding of MG with TFPB results in the prominent appearance of an absorption band that can be assigned to an H-aggregate of MG. The fluorescence intensity as well as the fluorescence lifetime shows a significant increase with a decrease in the nanoparticle size. Since the MG dye is known as a local viscosity or environmental rigidity probe showing a rotational friction dependence of the excited state lifetime, we find that the rigidity of the organic nanoparticle is strongly size-dependent; that is, the smaller the size of the nanoparticle, the greater the rigidity of the nanoparticle. We also reveal that surface regions of the ion-based organic nanoparticles are more rigid than inner regions. The presence of H-aggregates that are almost non-fluorescent is the major origin of aggregation-caused quenching (ACQ) and still avoids the enhancement of the fluorescence quantum yield of the MG nanoparticles, so we develop a new approach to prevent H-aggregation inside the nanoparticle by incorporating photochemically inert, bulky phosphonium cations, which results in a 430-fold enhancement of its fluorescence yield. We believe that such a methodology will open up an avenue in the development of new types of fluorescent nanomaterials for many applications.


Asunto(s)
Color , Nanopartículas/química , Tamaño de la Partícula , Colorantes de Rosanilina/química , Modelos Moleculares , Conformación Molecular , Povidona/química , Espectrometría de Fluorescencia , Tetrafenilborato/análogos & derivados , Tetrafenilborato/química
13.
J Am Chem Soc ; 136(22): 8042-9, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24809677

RESUMEN

A non-heme iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was formed by oxidation of an iron(II) complex ([(TMC)Fe(II)](2+)) with dioxygen (O2) and tetraphenylborate (BPh4(-)) in the presence of scandium triflate (Sc(OTf)3) in acetonitrile at 298 K via autocatalytic radical chain reactions rather than by a direct O2 activation pathway. The autocatalytic radical chain reaction is initiated by scandium ion-promoted electron transfer from BPh4(-) to [(TMC)Fe(IV)(O)](2+) to produce phenyl radical (Ph(•)). The chain propagation step is composed of the addition of O2 to Ph(•) and the reduction of the resulting phenylperoxyl radical (PhOO(•)) by scandium ion-promoted electron transfer from BPh4(-) to PhOO(•) to produce phenyl hydroperoxide (PhOOH), accompanied by regeneration of phenyl radical. PhOOH reacts with [(TMC)Fe(II)](2+) to yield phenol (PhOH) and [(TMC)Fe(IV)(O)](2+). Biphenyl (Ph-Ph) was formed via the radical chain autoxidation of BPh3 by O2. The induction period of the autocatalytic radical chain reactions was shortened by addition of a catalytic amount of [(TMC)Fe(IV)(O)](2+), whereas addition of a catalytic amount of ferrocene that can reduce [(TMC)Fe(IV)(O)](2+) resulted in elongation of the induction period. Radical chain autoxidation of BPh4(-) by O2 also occurred in the presence of Sc(OTf)3 without [(TMC)Fe(IV)(O)](2+), initiating the autocatalytic oxidation of [(TMC)Fe(II)](2+) with O2 and BPh4(-) to yield [(TMC)Fe(IV)(O)](2+). Thus, the general view for formation of non-heme iron(IV)-oxo complexes via O2-binding iron species (e.g., Fe(III)(O2(•-))) without contribution of autocatalytic radical chain reactions should be viewed with caution.


Asunto(s)
Hierro/química , Oxígeno/química , Escandio/química , Tetrafenilborato/química , Catálisis , Compuestos Ferrosos/química , Radicales Libres , Indicadores y Reactivos , Metalocenos , Proteínas de Hierro no Heme/química , Oxidación-Reducción
14.
Rapid Commun Mass Spectrom ; 28(13): 1530-4, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24861604

RESUMEN

RATIONALE: Because of the threat of bombings using improvised explosives containing ammonium nitrate (AN), law enforcement and intelligence communities have been interested in stable isotope techniques for tracking and discriminating AN sources. Separate analysis of the AN component ions ammonium and nitrate would add discriminatory power to these techniques. METHODS: Ammonium ions in dissolved AN solution were isolated from samples by precipitation using sodium tetraphenylborate solution. We tested the isolation of ammonium from nitrates using solutions of ammonium and nitrate salts with different (15)N/(14)N isotope ratios. Ammonium tetraphenylborate and AN were separately analyzed for their (15)N/(14)N isotope ratios using EA-ConFlo-IRMS, and the (15)N/(14)N isotope ratios of the nitrate ions were calculated using mass balance. Ammonium and nitrate nitrogen isotope ratios were plotted as two separate variables. RESULTS: Isolation of ammonium precipitate from solutions containing dissolved nitrates did not influence the nitrogen isotope ratios of test ammonium salts. A survey set of 42 AN samples showed that the ammonium and nitrate (15)N/(14)N isotope ratios were not significantly correlated, and the paired mean differences were not statistically significant. Both ammonium and nitrate were depleted in (15)N relative to their theoretical atmospheric sources. CONCLUSIONS: Isolation of the ammonium ion from AN adds another dimension for the discrimination of forensic AN samples. This technique using sodium tetraphenylborate is robust and does not require specialized equipment. Our observations indicated that ammonium nitrogen and nitrate nitrogen have independent sources of isotopic variation.


Asunto(s)
Compuestos de Amonio/química , Nitratos/química , Isótopos de Nitrógeno/análisis , Tetrafenilborato/química , Sustancias Explosivas , Ciencias Forenses/métodos , Espectrometría de Masas , Isótopos de Nitrógeno/química , Isótopos de Nitrógeno/aislamiento & purificación , Reproducibilidad de los Resultados
15.
Phys Chem Chem Phys ; 16(48): 26955-62, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25377062

RESUMEN

Interfacial processes controlled by ion transfer voltammetry at the interface between two immiscible electrolyte solutions were studied by in situ Raman spectroscopy. Raman spectra of the interface between a 5 mM NaCl aqueous solution and 10 mM bis(triphenyl-phosphoranydieneammonium) tetrakis(4-chlorophenyl)borate in 1,2-dichloroethane were recorded at open circuit potential and at various interfacial potential differences. At open-circuit potential, Raman peaks assigned to vibrational modes of 1,2-dichloroethane are clearly visible and peaks of weak intensity are measured for the organic electrolyte ions. When a negative interfacial potential difference is applied, the intensity of the peaks of the cation of the organic electrolyte increases, confirming its transfer induced by the interfacial potential difference applied. The electrochemically assisted generation of mesoporous silica deposits was then followed by in situ confocal Raman spectroscopy. The condensation of mesoporous silica was controlled by the transfer of cetyltrimethylammonium (CTA(+)) ions to an aqueous phase containing hydrolysed silanes. The transfer of CTA(+) at the interface was monitored in situ by confocal Raman spectroscopy, and formation of silica was observed.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Electrólitos/química , Dióxido de Silicio/química , Espectrometría Raman/instrumentación , Adsorción , Compuestos de Amonio/química , Compuestos de Cetrimonio/química , Diseño de Equipo , Dicloruros de Etileno/química , Iones/química , Porosidad , Cloruro de Sodio/química , Propiedades de Superficie , Tetrafenilborato/análogos & derivados , Tetrafenilborato/química
16.
J AOAC Int ; 97(6): 1713-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25632448

RESUMEN

A new method using a multi-injection technique combined with SPE was developed for the determination of copper (Cu) in environmental samples. The method is based on SPE of copper ions on naphthalene as its 2-(5-bromo-2-pyridylazo)- 5-diethylaminophenol (5-Br-PADAP)-ammonium tetraphenylborate complex, in the pH range 6.0-9.5, and determined by electrothermal atomic absorption spectrometry. No chemical modifier is required in the graphite furnace. The detection limit can be reduced to 1.5 ng/L using an injection volume of 25.0 µL (five 5.0 µL) without interference by the matrixes. The optimum pyrolysis and atomization temperatures were 500 and 2200°C, respectively, for the concentrated solution of Cu. The sensitivity for 1% absorption was 2.6 pg Cu. Eight replicate determinations for 0.1 µg Cu in 5.0mL dimethylformamide gave an RSD of 2.3% for a single injection and 2.7% for a multi-injection. The procedure was validated with certified reference materials and successfully applied to the determination of copper in water and plant samples.


Asunto(s)
Cobre/análisis , Plantas/química , Extracción en Fase Sólida/métodos , Espectrofotometría Atómica/métodos , Agua/análisis , Compuestos Azo/química , Cobre/aislamiento & purificación , Límite de Detección , Naftalenos/química , Tetrafenilborato/química
17.
Chemosphere ; 288(Pt 2): 132501, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34627819

RESUMEN

Practical adsorbents that could efficiently collect radioactive Cesium (Cs+) are critically important in achieving proper management and treatment measures for nuclear wastes. Herein, a hyper-crosslinked tetraphenylborate-based adsorbent (TPB-X) was prepared by reacting TPB anions as Cs+ binding sites with dimethoxymethane (DMM) as crosslinker. The most efficient TPB-X synthesis was attained at 1:4 TPB/DMM mole ratio with sorbent yield of 81.75%. Various techniques such as FTIR, TGA-DTG, N2 adsorption/desorption and SEM-EDS reveal that TPB-X is a water-insoluble, thermally stable and highly porous granular sorbent. Its hierarchical pore structure explains its very high BET surface area (1030 m2 g-1). Sequestration of Cs+ by TPB-X involves its exchange with H+ followed by its binding with the phenyl rings of TPB through cation-π interactions. The Cs+ adsorption in TPB-X is endothermic and spontaneous, which adheres to the Hill isotherm model (qm = 140.58 mg g-1) and follows pseudo-second order kinetics (k2 = 0.063 g mg-1 h-1). Calculations from the density functional theory reveal that the binding of TPB anion is strongest for Cs+. Thus, TPB-X was able to selectively capture Cs+ in simulated surface water containing Na+, K+, Mg2+, and Ca2+ and in HLLW containing Na+, Rb+, Sr2+, and Ba2+. Hyper-crosslinking was found beneficial in rendering TPB-X reusable as the sorbent was easily retrieved from the feed after Cs+ capture and was able to withstand the acid treatment for its regeneration. TPB-X exhibited consistent performance with no sign of chemical or physical deterioration. TPB-X offers a practical approach in handling Cs+ contaminated streams as it can be repeatedly used to enrich Cs+ in smaller volume of media, which can then be purified for Cs+ reuse or stored for long-term natural Cs+ decay process.


Asunto(s)
Tetrafenilborato , Agua , Adsorción , Cationes , Cinética
18.
Anal Sci ; 38(4): 683-688, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35286650

RESUMEN

A pair of symmetrical cathodic and anodic peaks is observed in cyclic voltammograms for the ion transport across a bilayer lipid membrane (BLM) between two aqueous phases in the presence of tetraphenylborate (TPhB-). Although TPhB- serves as a carrier of a hydrophilic counter ion (Na+) under the steady-state condition, the reason for the appearance of symmetrical peaks has not been clearly explained until now. From the chronoamperometric analysis, it is turned out that the symmetrical peaks are attributed to the translocation of TPhB- between two adsorbed layers on the surface of the BLM.


Asunto(s)
Membrana Dobles de Lípidos , Tetrafenilborato , Interacciones Hidrofóbicas e Hidrofílicas , Transporte Iónico , Iones
19.
Analyst ; 136(7): 1488-95, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21286616

RESUMEN

A screen-printed electrode (SPE) was fabricated for the determination of 1-(ethoxycarbonyl)pentadecyltrimethylammonium bromide (Septonex) based on the use of Septonex-tetraphenylborate as the electroactive substance, and o-nitrophenyloctylether (o-NPOE) as the plasticizing agent. The electrode passes a near-Nernstian cationic slope of 59.33 ± 0.85 mV from activity between pH values of 2 to 9 with a lower detection limit of 9×10(-7) M and response time of about 5 s and exhibits an adequate shelf-life of 6 months. The method was applied for the determination of Septonex in pharmaceutical preparations. A percentage recovery of 99.88% was obtained with RSD=1.24%. The electrode was successfully applied in the determination of Septonex in laboratory-prepared samples by direct potentiometric, calibration curve and standard addition methods. Potentiometric titration of Septonex with sodium tetraphenylborate and phosphotungstic acid as a titrant was monitored with the modified screen-printed electrode as an end-point indicator electrode. Selectivity coefficients for Septonex relative to a number of potential interfering substances were determined. The sensor was highly selective for Septonex over a large number of compounds. Selectivity coefficient data for some common ions show negligible interference; however, cetyltrimethylammonium bromide and iodide ions interfere significantly. The analytical usefulness of the proposed electrode was evaluated by its application in the determination of Septonex in laboratory-prepared pharmaceutical samples with satisfactory results. The results obtained with the fabricated sensor are comparable with those obtained by the British Pharmacopeia method.


Asunto(s)
Preparaciones Farmacéuticas/química , Potenciometría/métodos , Compuestos de Amonio Cuaternario/análisis , Tetrafenilborato/química , Concentración de Iones de Hidrógeno , Electrodos de Iones Selectos , Ácido Fosfotúngstico/química
20.
Inorg Chem ; 50(4): 1513-20, 2011 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21192717

RESUMEN

A series of bis(aryl) bismuth compounds containing (N,C,N)-pincer ligands, [2,6-(Me(2)NCH(2))(2)C(6)H(3)](-) (Ar'), have been synthesized and structurally characterized to compare the coordination chemistry of Bi(3+) with similarly sized lanthanide ions, Ln(3+). Treatment of Ar'(2)BiCl, 1, with ClMg(CH(2)CH═CH(2)) affords the allyl complex Ar'(2)Bi(η(1)-CH(2)CH═CH(2)), 2, in which only one allyl carbon atom coordinates to bismuth. Complex 1 reacts with KO(t)Bu and KOC(6)H(3)Me(2)-2,6 to yield the alkoxide Ar'(2)Bi(O(t)Bu), 3, and aryloxide Ar'(2)Bi(OC(6)H(3)Me(2)-2,6), 4, respectively, but the analogous reaction with the larger KOC(6)H(3)(t)Bu(2)-2,6 forms [Ar'(2)Bi][OC(6)H(3)(t)Bu(2)-2,6], 6, in which the aryloxide ligand acts as an outer sphere anion. Chloride is removed from 1 by NaBPh(4) to form [Ar'(2)Bi][BPh(4)], 5, which crystallizes from THF in an unsolvated form with tetraphenylborate as an outer sphere counteranion.


Asunto(s)
Alcanos/química , Compuestos Alílicos/química , Bismuto/química , Hidrocarburos Cíclicos/química , Compuestos Organometálicos/síntesis química , Óxidos/química , Tetrafenilborato/química , Cationes , Cristalografía por Rayos X , Ligandos , Espectroscopía de Resonancia Magnética , Compuestos Organometálicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA