Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.091
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell ; 36(4): 919-940, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38180963

RESUMEN

Soil salinity results in oxidative stress and heavy losses to crop production. The S-acylated protein SALT TOLERANCE RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (STRK1) phosphorylates and activates CATALASE C (CatC) to improve rice (Oryza sativa L.) salt tolerance, but the molecular mechanism underlying its S-acylation involved in salt signal transduction awaits elucidation. Here, we show that the DHHC-type zinc finger protein DHHC09 S-acylates STRK1 at Cys5, Cys10, and Cys14 and promotes salt and oxidative stress tolerance by enhancing rice H2O2-scavenging capacity. This modification determines STRK1 targeting to the plasma membrane or lipid nanodomains and is required for its function. DHHC09 promotes salt signaling from STRK1 to CatC via transphosphorylation, and its deficiency impairs salt signal transduction. Our findings demonstrate that DHHC09 S-acylates and anchors STRK1 to the plasma membrane to promote salt signaling from STRK1 to CatC, thereby regulating H2O2 homeostasis and improving salt stress tolerance in rice. Moreover, overexpression of DHHC09 in rice mitigates grain yield loss under salt stress. Together, these results shed light on the mechanism underlying the role of S-acylation in RLK/RLCK-mediated salt signal transduction and provide a strategy for breeding highly salt-tolerant rice.


Asunto(s)
Oryza , Tolerancia a la Sal , Tolerancia a la Sal/genética , Oryza/metabolismo , Peróxido de Hidrógeno/metabolismo , Homeostasis , Dedos de Zinc , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 36(8): 2834-2850, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38701348

RESUMEN

Salt stress is an environmental factor that limits plant growth and crop production. With the rapid expansion of salinized arable land worldwide, investigating the molecular mechanisms underlying the salt stress response in plants is urgently needed. Here, we report that GROWTH REGULATING FACTOR 7 (OsGRF7) promotes salt tolerance by regulating arbutin (hydroquinone-ß-D-glucopyranoside) metabolism in rice (Oryza sativa). Overexpression of OsGRF7 increased arbutin content, and exogenous arbutin application rescued the salt-sensitive phenotype of OsGRF7 knockdown and knockout plants. OsGRF7 directly promoted the expression of the arbutin biosynthesis genes URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASE 1 (OsUGT1) and OsUGT5, and knockout of OsUGT1 or OsUGT5 reduced rice arbutin content, salt tolerance, and grain size. Furthermore, OsGRF7 degradation through its interaction with F-BOX AND OTHER DOMAINS CONTAINING PROTEIN 13 reduced rice salinity tolerance and grain size. These findings highlight an underexplored role of OsGRF7 in modulating rice arbutin metabolism, salt stress response, and grain size, as well as its broad potential use in rice breeding.


Asunto(s)
Arbutina , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Tolerancia a la Sal , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Tolerancia a la Sal/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arbutina/metabolismo , Arbutina/farmacología , Plantas Modificadas Genéticamente , Estrés Salino
3.
Plant Cell ; 35(9): 3604-3625, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37325884

RESUMEN

Catalase (CAT) is often phosphorylated and activated by protein kinases to maintain hydrogen peroxide (H2O2) homeostasis and protect cells against stresses, but whether and how CAT is switched off by protein phosphatases remains inconclusive. Here, we identified a manganese (Mn2+)-dependent protein phosphatase, which we named PHOSPHATASE OF CATALASE 1 (PC1), from rice (Oryza sativa L.) that negatively regulates salt and oxidative stress tolerance. PC1 specifically dephosphorylates CatC at Ser-9 to inhibit its tetramerization and thus activity in the peroxisome. PC1 overexpressing lines exhibited hypersensitivity to salt and oxidative stresses with a lower phospho-serine level of CATs. Phosphatase activity and seminal root growth assays indicated that PC1 promotes growth and plays a vital role during the transition from salt stress to normal growth conditions. Our findings demonstrate that PC1 acts as a molecular switch to dephosphorylate and deactivate CatC and negatively regulate H2O2 homeostasis and salt tolerance in rice. Moreover, knockout of PC1 not only improved H2O2-scavenging capacity and salt tolerance but also limited rice grain yield loss under salt stress conditions. Together, these results shed light on the mechanisms that switch off CAT and provide a strategy for breeding highly salt-tolerant rice.


Asunto(s)
Oryza , Catalasa/genética , Catalasa/metabolismo , Oryza/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteína Fosfatasa 1/metabolismo , Tolerancia a la Sal/genética , Homeostasis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Cell ; 35(7): 2570-2591, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37040621

RESUMEN

SALT OVERLY SENSITIVE1 (SOS1) is a key component of plant salt tolerance. However, how SOS1 transcription is dynamically regulated in plant response to different salinity conditions remains elusive. Here, we report that C-type Cyclin1;1 (CycC1;1) negatively regulates salt tolerance by interfering with WRKY75-mediated transcriptional activation of SOS1 in Arabidopsis (Arabidopsis thaliana). Disruption of CycC1;1 promotes SOS1 expression and salt tolerance in Arabidopsis because CycC1;1 interferes with RNA polymerase II recruitment by occupying the SOS1 promoter. Enhanced salt tolerance of the cycc1;1 mutant was completely compromised by an SOS1 mutation. Moreover, CycC1;1 physically interacts with the transcription factor WRKY75, which can bind to the SOS1 promoter and activate SOS1 expression. In contrast to the cycc1;1 mutant, the wrky75 mutant has attenuated SOS1 expression and salt tolerance, whereas overexpression of SOS1 rescues the salt sensitivity of wrky75. Intriguingly, CycC1;1 inhibits WRKY75-mediated transcriptional activation of SOS1 via their interaction. Thus, increased SOS1 expression and salt tolerance in cycc1;1 were abolished by WRKY75 mutation. Our findings demonstrate that CycC1;1 forms a complex with WRKY75 to inactivate SOS1 transcription under low salinity conditions. By contrast, under high salinity conditions, SOS1 transcription and plant salt tolerance are activated at least partially by increased WRKY75 expression but decreased CycC1;1 expression.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo
5.
Plant Cell ; 36(1): 112-135, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37770034

RESUMEN

Reactive oxygen species (ROS) play an essential role in plant growth and responses to environmental stresses. Plant cells sense and transduce ROS signaling directly via hydrogen peroxide (H2O2)-mediated posttranslational modifications (PTMs) on protein cysteine residues. Here, we show that the H2O2-mediated cysteine oxidation of NAC WITH TRANS-MEMBRANE MOTIF1-LIKE 1 (GmNTL1) in soybean (Glycine max) during salt stress promotes its release from the endoplasmic reticulum (ER) membrane and translocation to the nucleus. We further show that an oxidative posttranslational modification on GmNTL1 residue Cys-247 steers downstream amplification of ROS production by binding to and activating the promoters of RESPIRATORY BURST OXIDASE HOMOLOG B (GmRbohB) genes, thereby creating a feed-forward loop to fine-tune GmNTL1 activity. In addition, oxidation of GmNTL1 Cys-247 directly promotes the expression of CATION H+ EXCHANGER 1 (GmCHX1)/SALT TOLERANCE-ASSOCIATED GENE ON CHROMOSOME 3 (GmSALT3) and Na+/H+ Antiporter 1 (GmNHX1). Accordingly, transgenic overexpression of GmNTL1 in soybean increases the H2O2 levels and K+/Na+ ratio in the cell, promotes salt tolerance, and increases yield under salt stress, while an RNA interference-mediated knockdown of GmNTL1 elicits the opposite effects. Our results reveal that the salt-induced oxidation of GmNTL1 promotes its relocation and transcriptional activity through an H2O2-mediated posttranslational modification on cysteine that improves resilience of soybean against salt stress.


Asunto(s)
Glycine max , Tolerancia a la Sal , Glycine max/genética , Tolerancia a la Sal/genética , Peróxido de Hidrógeno/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cisteína/metabolismo , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Plant Cell ; 35(8): 2997-3020, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119239

RESUMEN

Soil salinity is one of the most detrimental abiotic stresses affecting plant survival, and light is a core environmental signal regulating plant growth and responses to abiotic stress. However, how light modulates the plant's response to salt stress remains largely obscure. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings are more tolerant to salt stress in the light than in the dark, and that the photoreceptors phytochrome A (phyA) and phyB are involved in this tolerance mechanism. We further show that phyA and phyB physically interact with the salt tolerance regulator SALT OVERLY SENSITIVE2 (SOS2) in the cytosol and nucleus, and enhance salt-activated SOS2 kinase activity in the light. Moreover, SOS2 directly interacts with and phosphorylates PHYTOCHROME-INTERACTING FACTORS PIF1 and PIF3 in the nucleus. Accordingly, PIFs act as negative regulators of plant salt tolerance, and SOS2 phosphorylation of PIF1 and PIF3 decreases their stability and relieves their repressive effect on plant salt tolerance in both light and dark conditions. Together, our study demonstrates that photoactivated phyA and phyB promote plant salt tolerance by increasing SOS2-mediated phosphorylation and degradation of PIF1 and PIF3, thus broadening our understanding of how plants adapt to salt stress according to their dynamic light environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Fosforilación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Luz , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
7.
Plant J ; 117(2): 498-515, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37856574

RESUMEN

Salt glands are the unique epidermal structures present in recretohalophytes, plants that actively excrete excess Na+ by salt secretory structures to avoid salt damage. Here, we describe a transmembrane protein that localizes to the plasma membrane of the recretohalophyte Limonium bicolor. As virus-induced gene silencing of the corresponding gene LbRSG in L. bicolor decreased the number of salt glands, we named the gene Reduced Salt Gland. We detected LbRSG transcripts in salt glands by in situ hybridization and transient transformation. Overexpression and silencing of LbRSG in L. bicolor pointed to a positive role in salt gland development and salt secretion by interacting with Lb3G16832. Heterologous LbRSG expression in Arabidopsis enhanced salt tolerance during germination and the seedling stage by alleviating NaCl-induced ion stress and osmotic stress after replacing or deleting the (highly) negatively charged region of extramembranous loop. After screened by immunoprecipitation-mass spectrometry and verified using yeast two-hybrid, PGK1 and BGLU18 were proposed to interact with LbRSG to strengthen salt tolerance. Therefore, we identified (highly) negatively charged regions in the extramembrane loop that may play an essential role in salt tolerance, offering hints about LbRSG function and its potential to confer salt resistance.


Asunto(s)
Plumbaginaceae , Tolerancia a la Sal , Animales , Tolerancia a la Sal/genética , Plumbaginaceae/genética , Plumbaginaceae/metabolismo , Glándula de Sal , Plantones/genética , Germinación , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente
8.
Plant J ; 119(5): 2514-2537, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38970620

RESUMEN

Soil salinity is a major environmental stressor affecting agricultural productivity worldwide. Understanding plant responses to salt stress is crucial for developing resilient crop varieties. Wild relatives of cultivated crops, such as wild tomato, Solanum pimpinellifolium, can serve as a useful resource to further expand the resilience potential of the cultivated germplasm, S. lycopersicum. In this study, we employed high-throughput phenotyping in the greenhouse and field conditions to explore salt stress responses of a S. pimpinellifolium diversity panel. Our study revealed extensive phenotypic variations in response to salt stress, with traits such as transpiration rate, shoot mass, and ion accumulation showing significant correlations with plant performance. We found that while transpiration was a key determinant of plant performance in the greenhouse, shoot mass strongly correlated with yield under field conditions. Conversely, ion accumulation was the least influential factor under greenhouse conditions. Through a Genome Wide Association Study, we identified candidate genes not previously associated with salt stress, highlighting the power of high-throughput phenotyping in uncovering novel aspects of plant stress responses. This study contributes to our understanding of salt stress tolerance in S. pimpinellifolium and lays the groundwork for further investigations into the genetic basis of these traits, ultimately informing breeding efforts for salinity tolerance in tomato and other crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fenotipo , Estrés Salino , Solanum , Solanum/genética , Solanum/fisiología , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología
9.
Plant J ; 118(6): 2068-2084, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531629

RESUMEN

Bermudagrass (Cynodon dactylon) is a globally distributed, extensively used warm-season turf and forage grass with high tolerance to salinity and drought stress in alkaline environments. However, the origin of the species and genetic mechanisms for salinity tolerance in the species are basically unknown. Accordingly, we set out to study evolution divergence events in the Cynodon genome and to identify genes for salinity tolerance. We developed a 604.0 Mb chromosome-level polyploid genome sequence for bermudagrass 'A12359' (n = 18). The C. dactylon genome comprises 2 complete sets of homoeologous chromosomes, each with approximately 30 000 genes, and most genes are conserved as syntenic pairs. Phylogenetic study showed that the initial Cynodon species diverged from Oropetium thomaeum approximately 19.7-25.4 million years ago (Mya), the A and B subgenomes of C. dactylon diverged approximately 6.3-9.1 Mya, and the bermudagrass polyploidization event occurred 1.5 Mya on the African continent. Moreover, we identified 82 candidate genes associated with seven agronomic traits using a genome-wide association study, and three single-nucleotide polymorphisms were strongly associated with three salt resistance genes: RAP2-2, CNG channels, and F14D7.1. These genes may be associated with enhanced bermudagrass salt tolerance. These bermudagrass genomic resources, when integrated, may provide fundamental insights into evolution of diploid and tetraploid genomes and enhance the efficacy of comparative genomics in studying salt tolerance in Cynodon.


Asunto(s)
Cynodon , Genoma de Planta , Filogenia , Tolerancia a la Sal , Secuenciación Completa del Genoma , Cynodon/genética , Tolerancia a la Sal/genética , Genoma de Planta/genética , Tetraploidía , Poliploidía , Cromosomas de las Plantas/genética , Genes de Plantas/genética
10.
Plant J ; 118(5): 1550-1568, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38412303

RESUMEN

The increased soil salinity is becoming a major challenge to produce more crops and feed the growing population of the world. In this study, we demonstrated that overexpression of OsDIR55 gene enhances rice salt tolerance by altering the root diffusion barrier. OsDIR55 is broadly expressed in all examined tissues and organs with the maximum expression levels at lignified regions in rice roots. Salt stress upregulates the expression of OsDIR55 gene in an abscisic acid (ABA)-dependent manner. Loss-function and overexpression of OsDIR55 compromised and improved the development of CS and root diffusion barrier, manifested with the decreased and increased width of CS, respectively, and ultimately affected the permeability of the apoplastic diffusion barrier in roots. OsDIR55 deficiency resulted in Na+ accumulation, ionic imbalance, and growth arrest, whereas overexpression of OsDIR55 enhances salinity tolerance and provides an overall benefit to plant growth and yield potential. Collectively, we propose that OsDIR55 is crucial for ions balance control and salt stress tolerance through regulating lignification-mediated root barrier modifications in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Raíces de Plantas , Tolerancia a la Sal , Oryza/genética , Oryza/fisiología , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Sodio/metabolismo , Plantas Modificadas Genéticamente , Estrés Salino/genética
11.
Plant J ; 119(1): 478-489, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38659310

RESUMEN

The Q transcription factor plays important roles in improving multiple wheat domestication traits such as spike architecture, threshability and rachis fragility. However, whether and how it regulates abiotic stress adaptation remain unclear. We found that the transcriptional expression of Q can be induced by NaCl and abscisic acid treatments. Using the q mutants generated by CRISPR/Cas9 and Q overexpression transgenic lines, we showed that the domesticated Q gene causes a penalty in wheat salt tolerance. Then, we demonstrated that Q directly represses the transcription of TaSOS1-3B and reactive oxygen species (ROS) scavenging genes to regulate Na+ and ROS homeostasis in wheat. Furthermore, we showed that wheat salt tolerance protein TaWD40 interacts with Q to competitively interfere with the interaction between Q and the transcriptional co-repressor TaTPL. Taken together, our findings reveal that Q directly represses the expression of TaSOS1 and some ROS scavenging genes, thus causing a harmful effect on wheat salt tolerance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno , Tolerancia a la Sal , Triticum , Triticum/genética , Triticum/fisiología , Triticum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología
12.
Plant J ; 119(5): 2349-2362, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981025

RESUMEN

Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.


Asunto(s)
Ácido Abscísico , Avicennia , Regulación de la Expresión Génica de las Plantas , Tolerancia a la Sal , Sodio , Trehalosa , Trehalosa/metabolismo , Tolerancia a la Sal/genética , Ácido Abscísico/metabolismo , Avicennia/fisiología , Avicennia/genética , Sodio/metabolismo , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología
13.
Plant J ; 118(4): 1119-1135, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308390

RESUMEN

Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.


Asunto(s)
Homeostasis , Peróxido de Hidrógeno , NADPH Oxidasas , Oxidación-Reducción , Raíces de Plantas , Potasio , Ácido Salicílico , Tolerancia a la Sal , Sodio , Peróxido de Hidrógeno/metabolismo , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Potasio/metabolismo , Tolerancia a la Sal/genética , Sodio/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/fisiología , Regulación de la Expresión Génica de las Plantas , Rhizophoraceae/fisiología , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Plant Physiol ; 194(3): 1906-1922, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37987562

RESUMEN

Salinity is a severe abiotic stress that limits plant survival, growth, and development. 14-3-3 proteins are phosphopeptide-binding proteins that are involved in numerous signaling pathways, such as metabolism, development, and stress responses. However, their roles in salt tolerance are unclear in woody plants. Here, we characterized an apple (Malus domestica) 14-3-3 gene, GENERAL REGULATORY FACTOR 8 (MdGRF8), the product of which promotes salinity tolerance. MdGRF8 overexpression improved salt tolerance in apple plants, whereas MdGRF8-RNA interference (RNAi) weakened it. Yeast 2-hybrid, bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays revealed that MdGRF8 interacts with the transcription factor MdWRKY18. As with MdGRF8, overexpressing MdWRKY18 enhanced salt tolerance in apple plants, whereas silencing MdWRKY18 had the opposite effect. We also determined that MdWRKY18 binds to the promoters of the salt-related genes SALT OVERLY SENSITIVE 2 (MdSOS2) and MdSOS3. Moreover, we showed that the 14-3-3 protein MdGRF8 binds to the phosphorylated form of MdWRKY18, enhancing its stability and transcriptional activation activity. Our findings reveal a regulatory mechanism by the MdGRF8-MdWRKY18 module for promoting the salinity stress response in apple.


Asunto(s)
Malus , Tolerancia a la Sal , Tolerancia a la Sal/genética , Malus/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
15.
Plant Physiol ; 195(3): 2354-2371, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38501602

RESUMEN

Teosinte branched 1/Cycloidea/Proliferating cell factor (TCP) transcription factors function in abiotic stress responses. However, how TCPs confer salt tolerance is unclear. Here, we characterized a TCP transcription factor, BpTCP20, that responds to salt stress in birch (Betula platyphylla Suk). Plants overexpressing BpTCP20 displayed increased salt tolerance, and Bptcp20 knockout mutants displayed reduced salt tolerance relative to the wild-type (WT) birch. BpTCP20 conferred salt tolerance by mediating stomatal closure and reducing reactive oxygen species (ROS) accumulation. Chromatin immunoprecipitation sequencing showed that BpTCP20 binds to NeuroD1, T-box, and two unknown elements (termed TBS1 and TBS2) to regulate target genes. In birch, salt stress led to acetylation of BpTCP20 acetylation at lysine 259. A mutated BpTCP20 variant (abolished for acetylation, termed BpTCP20259) was overexpressed in birch, which led to decreased salt tolerance compared with plants overexpressing BpTCP20. However, BpTCP20259-overexpressing plants still displayed increased salt tolerance relative to untransformed WT plants. BpTCP20259 showed reduced binding to the promoters of target genes and decreased target gene activation, leading to decreased salt tolerance. In addition, we identified dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (BpPDCE23), an acetyltransferase that interacts with and acetylates BpTCP20 to enhance its binding to DNA motifs. Together, these results suggest that BpTCP20 is a transcriptional regulator of salt tolerance, whose activity is modulated by BpPDCE23-mediated acetylation.


Asunto(s)
Betula , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Tolerancia a la Sal , Factores de Transcripción , Tolerancia a la Sal/genética , Acetilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Betula/genética , Betula/metabolismo , Betula/fisiología , Acetiltransferasas/metabolismo , Acetiltransferasas/genética , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo
16.
Plant Physiol ; 195(2): 1038-1052, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38478428

RESUMEN

Drought and soil salinization substantially impact agriculture. While proline's role in enhancing stress tolerance is known, the exact molecular mechanism by which plants process stress signals and control proline synthesis under stress is still not fully understood. In tomato (Solanum lycopersicum L.), drought and salt stress stimulate nitric oxide (NO) production, which boosts proline synthesis by activating Δ1-pyrroline-5-carboxylate synthetase (SlP5CS) and Δ1-pyrroline-5-carboxylate reductase (SlP5CR) genes and the P5CR enzyme. The crucial factor is stress-triggered NO production, which regulates the S-nitrosylation of SlP5CR at Cys-5, thereby increasing its NAD(P)H affinity and enzymatic activity. S-nitrosylation of SlP5CR enables tomato plants to better adapt to changing NAD(P)H levels, boosting both SlP5CR activity and proline synthesis during stress. By comparing tomato lines genetically modified to express different forms of SlP5CR, including a variant mimicking S-nitrosylation (SlP5CRC5W), we found that SlP5CRC5W plants show superior growth and stress tolerance. This is attributed to better P5CR activity, proline production, water use efficiency, reactive oxygen species scavenging, and sodium excretion. Overall, this study demonstrates that tomato engineered to mimic S-nitrosylated SlP5CR exhibits enhanced growth and yield under drought and salt stress conditions, highlighting a promising approach for stress-tolerant tomato cultivation.


Asunto(s)
Sequías , Ingeniería Genética , Plantas Modificadas Genéticamente , Pirrolina Carboxilato Reductasas , Solanum lycopersicum , Solanum lycopersicum/genética , Pirrolina Carboxilato Reductasas/genética , Pirrolina Carboxilato Reductasas/metabolismo , delta-1-Pirrolina-5-Carboxilato Reductasa , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo
17.
Plant Physiol ; 194(2): 1120-1138, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37801620

RESUMEN

Salt stress severely damages the growth and yield of crops. Recently, long noncoding RNAs (lncRNAs) were demonstrated to regulate various biological processes and responses to environmental stresses. However, the regulatory mechanisms of lncRNAs in cotton (Gossypium hirsutum) response to salt stress are still poorly understood. Here, we observed that a lncRNA, trans acting of BGLU24 by lncRNA (TRABA), was highly expressed while GhBGLU24-A was weakly expressed in a salt-tolerant cotton accession (DM37) compared to a salt-sensitive accession (TM-1). Using TRABA as an effector and proGhBGLU24-A-driven GUS as a reporter, we showed that TRABA suppressed GhBGLU24-A promoter activity in double transgenic Arabidopsis (Arabidopsis thaliana), which explained why GhBGLU24-A was weakly expressed in the salt-tolerant accession compared to the salt-sensitive accession. GhBGLU24-A encodes an endoplasmic reticulum (ER)-localized ß-glucosidase that responds to salt stress. Further investigation revealed that GhBGLU24-A interacted with RING-type E3 ubiquitin ligase (GhRUBL). Virus-induced gene silencing (VIGS) and transgenic Arabidopsis studies revealed that both GhBGLU24-A and GhRUBL diminish plant tolerance to salt stress and ER stress. Based on its substantial effect on ER-related degradation (ERAD)-associated gene expression, GhBGLU24-A mediates ER stress likely through the ERAD pathway. These findings provide insights into the regulatory role of the lncRNA TRABA in modulating salt and ER stresses in cotton and have potential implications for developing more resilient crops.


Asunto(s)
Arabidopsis , Celulasas , ARN Largo no Codificante , Tolerancia a la Sal/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Gossypium/metabolismo , Arabidopsis/fisiología , Estrés Fisiológico/genética , Celulasas/genética , Celulasas/metabolismo , Celulasas/farmacología , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/metabolismo
18.
Plant Physiol ; 195(4): 3119-3135, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38668629

RESUMEN

Excessive soil salinity not only hampers plant growth and development but can also lead to plant death. Previously, we found that heat-shock factor A4 (CmHSFA4) enhances the tolerance of chrysanthemum (Chrysanthemum morifolium) to salt. However, the underlying molecular mechanism remains unclear. In this study, we identified a candidate MYB transcription factor, CmMYB121, which responded to salt stress. We observed that the CmMYB121 transcription is suppressed by CmHSFA4. Moreover, overexpression of CmMYB121 exacerbated chrysanthemum sensitivity to salt stress. CmHSFA4 directly bound to the promoter of CmMYB121 at the heat-shock element. Protein-protein interaction assays identified an interaction between CmHSFA4 and CmMYBS3, a transcriptional repressor, and recruited the corepressor TOPLESS (CmTPL) to inhibit CmMYB121 transcription by impairing the H3 and H4 histone acetylation levels of CmMYB121. Our study demonstrated that a CmHSFA4-CmMYBS3-CmTPL complex modulates CmMYB121 expression, consequently regulating the tolerance of chrysanthemum to salt. The findings shed light on the responses of plants to salt stress.


Asunto(s)
Chrysanthemum , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Tolerancia a la Sal , Factores de Transcripción , Chrysanthemum/genética , Chrysanthemum/fisiología , Chrysanthemum/efectos de los fármacos , Chrysanthemum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Tolerancia a la Sal/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Estrés Salino/genética
19.
Proc Natl Acad Sci U S A ; 119(50): e2210338119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36472959

RESUMEN

Salt stress impairs nutrient metabolism in plant cells, leading to growth and yield penalties. However, the mechanism by which plants alter their nutrient metabolism processes in response to salt stress remains elusive. In this study, we identified and characterized the rice (Oryza sativa) rice salt tolerant 1 (rst1) mutant, which displayed improved salt tolerance and grain yield. Map-based cloning revealed that the gene RST1 encoded an auxin response factor (OsARF18). Molecular analyses showed that RST1 directly repressed the expression of the gene encoding asparagine synthetase 1 (OsAS1). Loss of RST1 function increased the expression of OsAS1 and improved nitrogen (N) utilization by promoting asparagine production and avoiding excess ammonium (NH4+) accumulation. RST1 was undergoing directional selection during domestication. The superior haplotype RST1Hap III decreased its transcriptional repression activity and contributed to salt tolerance and grain weight. Together, our findings unravel a synergistic regulator of growth and salt tolerance associated with N metabolism and provide a new strategy for the development of tolerant cultivars.


Asunto(s)
Aspartatoamoníaco Ligasa , Oryza , Tolerancia a la Sal/genética , Oryza/genética , Aspartatoamoníaco Ligasa/genética , Expresión Génica
20.
Physiol Genomics ; 56(9): 609-620, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949516

RESUMEN

Chilika, a native buffalo breed of the Eastern coast of India, is mainly distributed around the Chilika brackish water lake connected with the Bay of Bengal Sea. This breed possesses a unique ability to delve deep into the salty water of the lake and stay there to feed on local vegetation of saline nature. Adaptation to salinity is a genetic phenomenon; however, the genetic basis underlying salinity tolerance is still limited in animals, specifically in livestock. The present study explores the genetic evolution that unveils the Chilika buffalo's adaptation to the harsh saline habitat, including both water and food systems. For this study, whole genome resequencing data on 18 Chilika buffalo and for comparison 10 Murrah buffalo of normal habitat were generated. For identification of selection sweeps, intrapopulation and interpopulation statistics were used. A total of 709, 309, 468, and 354 genes were detected to possess selection sweeps in Chilika buffalo using the nucleotide diversity (θπ), Tajima's D, nucleotide diversity ratio (θπ-ratio), and FST methods, respectively. Further analysis revealed a total of 23 genes including EXOC6B, VPS8, LYPD1, VPS35, CAMKMT, NCKAP5, COMMD1, myosin light chain kinase 3 (MYLK3), and B3GNT2 were found to be common by all the methods. Furthermore, functional annotation study of identified genes provided pathways such as MAPK signaling, renin secretion, endocytosis, oxytocin signaling pathway, etc. Gene network analysis enlists that hub genes provide insights into their interactions with each other. In conclusion, this study has highlighted the genetic basis underlying the local adaptive function of Chilika buffalo under saline environment.NEW & NOTEWORTHY Indian Chilika buffaloes are being maintained on extensive grazing system and have a unique ability to convert local salty vegetation into valuable human food. However, adaptability to saline habitat of Chilika buffalo has not been explored to date. Here, we identified genes and biological pathways involved, such as MAPK signaling, renin secretion, endocytosis, and oxytocin signaling pathway, underlying adaptability of Chilika buffalo to saline environment. This investigation shed light on the mechanisms underlying the buffalo's resilience in its native surroundings.


Asunto(s)
Búfalos , Selección Genética , Animales , Búfalos/genética , Búfalos/fisiología , Adaptación Fisiológica/genética , India , Salinidad , Tolerancia a la Sal/genética , Evolución Molecular , Genoma/genética , Polimorfismo de Nucleótido Simple/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA