Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
Más filtros

Intervalo de año de publicación
1.
Anal Biochem ; 692: 115580, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825159

RESUMEN

Ricin is one of the most toxic substances known and a type B biothreat agent. Shiga toxins (Stxs) produced by E. coli (STEC) and Shigella dysenteriae are foodborne pathogens. There is no effective therapy against ricin or STEC and there is an urgent need for inhibitors. Ricin toxin A subunit (RTA) and A1 subunit of Stx2a (Stx2A1) bind to the C-terminal domain (CTD) of the ribosomal P-stalk proteins to depurinate the sarcin/ricin loop. Modulation of toxin-ribosome interactions has not been explored as a strategy for inhibition. Therefore, development of assays that detect inhibitors targeting toxin-ribosome interactions remains a critical need. Here we describe a fluorescence anisotropy (FA)-based competitive binding assay using a BODIPY-TMR labeled 11-mer peptide (P11) derived from the P-stalk CTD to measure the binding affinity of peptides ranging from 3 to 11 amino acids for the P-stalk pocket of RTA and Stx2A1. Comparison of the affinity with the surface plasmon resonance (SPR) assay indicated that although the rank order was the same by both methods, the FA assay could differentiate better between peptides that show nonspecific interactions by SPR. The FA assay detects only interactions that compete with the labeled P11 and can validate inhibitor specificity and mechanism of action.


Asunto(s)
Polarización de Fluorescencia , Ribosomas , Ricina , Ricina/antagonistas & inhibidores , Ricina/metabolismo , Ricina/química , Polarización de Fluorescencia/métodos , Ribosomas/metabolismo , Resonancia por Plasmón de Superficie , Toxina Shiga/antagonistas & inhibidores , Toxina Shiga/metabolismo , Toxina Shiga/química , Unión Competitiva , Unión Proteica , Toxina Shiga II/antagonistas & inhibidores , Toxina Shiga II/metabolismo , Toxina Shiga II/química
2.
Anal Chem ; 95(50): 18407-18414, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38053255

RESUMEN

The ability to quickly identify specific serotypes of Shiga toxin-producing Escherichia coli (STEC) could facilitate the monitoring and control of STEC pathogens. In this study, we identified the receptors and receptor-binding proteins (RBPs) of three novel phages (pO91, pO103, and pO111) isolated from hospital wastewater. Recombinant versions of these RBPs (pO91-ORF43, pO103-ORF42, and pO111-ORF8) fused to a fluorescent reporter protein were then constructed. Both fluorescence microscopy and transmission electron microscopy showed that all three recombinant RBPs were bound to the bacterial surface. Indirect enzyme-linked immunosorbent assay was used to verify that each recombinant RBP bound specifically to E. coli O91, O103, or O111, but not to any of the 83 strains of E. coli with different O-antigens, nor to 10 other bacterial species that were tested. The recombinant RBPs adsorbed to their respective host bacteria within 10 min of incubation. The minimum concentration of bacteria required for detection by the recombinant RBPs was 33 colony-forming units (CFU)/mL (range: 3.3 × 10 to 3.3 × 108 CFU/mL). Furthermore, each recombinant RBP was also able to detect bacteria in lettuce, chicken breast meat, and infected mice, indicating that their usage will facilitate the detection of STEC and may help to reduce the spread of STEC-related infections and diseases.


Asunto(s)
Bacteriófagos , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Animales , Ratones , Toxina Shiga/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas Portadoras/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
3.
Chemistry ; 29(4): e202202766, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36279320

RESUMEN

The plasma membrane is a complex assembly of proteins and lipids that can self-assemble in submicroscopic domains commonly termed "lipid rafts", which are implicated in membrane signaling and trafficking. Recently, photo-sensitive lipids were introduced to study membrane domain organization, and photo-isomerization was shown to trigger the mixing and de-mixing of liquid-ordered (lo ) domains in artificial phase-separated membranes. Here, we synthesized globotriaosylceramide (Gb3 ) glycosphingolipids that harbor an azobenzene moiety at different positions of the fatty acid to investigate light-induced membrane domain reorganization, and that serve as specific receptors for the protein Shiga toxin (STx). Using phase-separated supported lipid bilayers on mica surfaces doped with four different photo-Gb3 molecules, we found by fluorescence microscopy and atomic force microscopy that liquid disordered (ld ) domains were formed within lo domains upon trans-cis photo-isomerization. The fraction and size of these ld domains were largest for Gb3 molecules with the azobenzene group at the end of the fatty acid. We further investigated the impact of domain reorganization on the interaction of the B-subunits of STx with the photo-Gb3 . Fluorescence and atomic force micrographs clearly demonstrated that STxB binds to the lo phase if Gb3 is in the trans-configuration, whereas two STxB populations are formed if the photo-Gb3 is switched to the cis-configuration highlighting the idea of manipulating lipid-protein interactions with a light stimulus.


Asunto(s)
Membrana Dobles de Lípidos , Toxina Shiga , Toxina Shiga/metabolismo , Isomerismo , Membrana Dobles de Lípidos/metabolismo , Ácidos Grasos
4.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175714

RESUMEN

Oedema disease (OD) in piglets is one of the most important pathologies, as it causes significant losses due to the high mortality because of the Shiga toxin family, which produces Escherichia coli (STEC) strains. The main toxin responsible for the characteristic pathologies in pigs is Shiga toxin 2 subtype e (Stx2e). Moreover, there is growing evidence that Stx's family of toxins also targets immune cells. Therefore, this study evaluated the effect of different concentrations of Stx2e on porcine immune cells. Porcine peripheral blood mononuclear cells were pre-incubated with Stx2e, at three different concentrations (final concentrations of 10, 500, and 5000 CD50/mL) and with a negative control group. Cells were then stimulated with polyclonal mitogens: concanavalin A, phytohemagglutinin, pokeweed mitogen, or lipopolysaccharides. Cell proliferation was assessed by BrdU (or EdU) incorporation into newly created DNA. The activation of the lymphocyte subsets was assessed by the detection of CD25, using flow cytometry. The toxin significantly decreased mitogen-driven proliferation activity, and the effect was partially dose-dependent, with a significant impact on both T and B populations. The percentage of CD25+ cells was slightly lower in the presence of Stx2e in all the defined T cell subpopulations (CD4+, CD8+, and γδTCR+)-in a dose-dependent manner. B cells seemed to be the most affected populations. The negative effects of different concentrations of Stx2e on the immune cells in this study may explain the negative impact of the subclinical course of OD.


Asunto(s)
Infecciones por Escherichia coli , Toxina Shiga , Porcinos , Animales , Toxina Shiga/metabolismo , Leucocitos Mononucleares , Escherichia coli/metabolismo , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Subgrupos Linfocitarios
5.
Physiol Genomics ; 54(5): 153-165, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35384732

RESUMEN

Shiga toxin 2 (Stx2) and lipopolysaccharide (LPS) contribute to the development of hemolytic uremic syndrome (HUS). Mouse models of HUS induced by LPS/Stx2 have been used for elucidating HUS pathophysiology and for therapeutic development. However, the underlying molecular mechanisms and detailed injury sites in this model remain unknown. We analyzed mouse kidneys after LPS/Stx2 administration using microarrays. Decreased urinary osmolality and urinary potassium were observed after LPS/Stx2 administration, suggestive of distal nephron disorders. A total of 1,212 and 1,016 differentially expressed genes were identified in microarrays at 6 h and 72 h after LPS/Stx2 administration, respectively, compared with those in controls. Ingenuity pathway analysis revealed activation of TNFR1/2, iNOS, and IL-6 signaling at both time points, and inhibition of pathways associated with lipid metabolism at 72 h only. The strongly downregulated genes in the 72-h group were expressed in the distal nephrons. In particular, genes associated with distal convoluted tubule (DCT) 2/connecting tubule (CNT) and principal cells of the cortical collecting duct (CCD) were downregulated to a greater extent than those associated with DCT1 and intercalated cells. Stx receptor globotriaosylceramide 3 (Gb3) revealed no colocalization with DCT1-specific PVALB and intercalated cell-specific SLC26A4 but did present colocalization with SLC12A3 (present in both DCT1 and DCT2), and AQP2 in principal cells. Gb3 localization tended to coincide with the segment in which the downregulated genes were present. Thus, the LPS/Stx2-induced kidney injury model represents damage to DCT2/CNT and principal cells in the CCD, based on molecular, biological, and physiological findings.


Asunto(s)
Síndrome Hemolítico-Urémico , Toxina Shiga II , Animales , Acuaporina 2/metabolismo , Síndrome Hemolítico-Urémico/inducido químicamente , Síndrome Hemolítico-Urémico/genética , Lipopolisacáridos/farmacología , Masculino , Ratones , Toxina Shiga/metabolismo , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Transcriptoma/genética
6.
Infect Immun ; 90(2): e0058721, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34871041

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) strains, including the foodborne pathogen E. coli O157:H7, are responsible for thousands of hospitalizations each year. Various environmental triggers can modulate pathogenicity in EHEC by inducing the expression of Shiga toxin (Stx), which is encoded on a lambdoid prophage and transcribed together with phage late genes. Cell-free supernatants of the sequence type 73 (ST73) E. coli strain 0.1229 are potent inducers of Stx2a production in EHEC, suggesting that 0.1229 secretes a factor that activates the SOS response and leads to phage lysis. We previously demonstrated that this factor, designated microcin 1229 (Mcc1229), was proteinaceous and plasmid-encoded. To further characterize Mcc1229 and support its classification as a microcin, we investigated its regulation, determined its receptor, and identified loci providing immunity. The production of Mcc1229 was increased upon iron limitation, as determined by an enzyme-linked immunosorbent assay (ELISA), lacZ fusions, and quantitative real-time PCR (qRT-PCR). Spontaneous Mcc1229-resistant mutants and targeted gene deletion revealed that CirA was the Mcc1229 receptor. TonB, which interacts with CirA in the periplasm, was also essential for Mcc1229 import. Subcloning of the Mcc1229 plasmid indicated that Mcc activity was neutralized by two open reading frames (ORFs), each predicted to encode a domain of unknown function (DUF)-containing protein. In a germfree mouse model of infection, colonization with 0.1229 suppressed subsequent colonization by EHEC. Although Mcc1229 was produced in vivo, it was dispensable for colonization suppression. The regulation, import, and immunity determinants identified here are consistent with features of other Mccs, suggesting that Mcc1229 should be included in this class of small molecules.


Asunto(s)
Bacteriocinas , Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Escherichia coli O157 , Animales , Escherichia coli Enterohemorrágica/genética , Escherichia coli O157/genética , Ratones , Toxina Shiga/genética , Toxina Shiga/metabolismo
7.
Nat Chem Biol ; 16(3): 327-336, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32080624

RESUMEN

The retrograde transport inhibitor Retro-2 has a protective effect on cells and in mice against Shiga-like toxins and ricin. Retro-2 causes toxin accumulation in early endosomes and relocalization of the Golgi SNARE protein syntaxin-5 to the endoplasmic reticulum. The molecular mechanisms by which this is achieved remain unknown. Here, we show that Retro-2 targets the endoplasmic reticulum exit site component Sec16A, affecting anterograde transport of syntaxin-5 from the endoplasmic reticulum to the Golgi. The formation of canonical SNARE complexes involving syntaxin-5 is not affected in Retro-2-treated cells. By contrast, the interaction of syntaxin-5 with a newly discovered binding partner, the retrograde trafficking chaperone GPP130, is abolished, and we show that GPP130 must indeed bind to syntaxin-5 to drive Shiga toxin transport from the endosomes to the Golgi. We therefore identify Sec16A as a druggable target and provide evidence for a non-SNARE function for syntaxin-5 in interaction with GPP130.


Asunto(s)
Benzamidas/metabolismo , Proteínas Qa-SNARE/metabolismo , Tiofenos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Benzamidas/farmacología , Transporte Biológico , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Ricina/metabolismo , Toxina Shiga/metabolismo , Toxinas Shiga/metabolismo , Tiofenos/farmacología , Proteínas de Transporte Vesicular/fisiología
8.
Pediatr Res ; 91(5): 1121-1129, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34155339

RESUMEN

BACKGROUND: Shiga toxin-producing Escherichia coli is responsible for post-diarrheal (D+) hemolytic uremic syndrome (HUS), which is a cause of acute renal failure in children. The glycolipid globotriaosylceramide (Gb3) is the main receptor for Shiga toxin (Stx) in kidney target cells. Eliglustat (EG) is a specific and potent inhibitor of glucosylceramide synthase, first step of glycosphingolipid biosynthesis, actually used for the treatment of Gaucher's disease. The aim of the present work was to evaluate the efficiency of EG in preventing the damage caused by Stx2 in human renal epithelial cells. METHODS: Human renal tubular epithelial cell (HRTEC) primary cultures were pre-treated with different dilutions of EG followed by co-incubation with EG and Stx2 at different times, and cell viability, proliferation, apoptosis, tubulogenesis, and Gb3 expression were assessed. RESULTS: In HRTEC, pre-treatments with 50 nmol/L EG for 24 h, or 500 nmol/L EG for 6 h, reduced Gb3 expression and totally prevented the effects of Stx2 on cell viability, proliferation, and apoptosis. EG treatment also allowed the development of tubulogenesis in 3D-HRTEC exposed to Stx2. CONCLUSIONS: EG could be a potential therapeutic drug for the prevention of acute kidney injury caused by Stx2. IMPACT: For the first time, we have demonstrated that Eliglustat prevents Shiga toxin 2 cytotoxic effects on human renal epithelia, by reducing the expression of the toxin receptor globotriaosylceramide. The present work also shows that Eliglustat prevents Shiga toxin 2 effects on tubulogenesis of renal epithelial cells. Eliglustat, actually used for the treatment of patients with Gaucher's disease, could be a therapeutic strategy to prevent the renal damage caused by Shiga toxin.


Asunto(s)
Enfermedad de Gaucher , Toxina Shiga II , Células Cultivadas , Niño , Células Epiteliales/metabolismo , Enfermedad de Gaucher/metabolismo , Humanos , Pirrolidinas , Toxina Shiga/metabolismo , Toxina Shiga II/metabolismo , Toxina Shiga II/toxicidad
9.
J Biol Chem ; 295(28): 9490-9501, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32409578

RESUMEN

Shiga toxin (STx) is a virulence factor produced by enterohemorrhagic Escherichia coli. STx is taken up by mammalian host cells by binding to the glycosphingolipid (GSL) globotriaosylceramide (Gb3; Galα1-4Galß1-4Glc-ceramide) and causes cell death after its retrograde membrane transport. However, the contribution of the hydrophobic portion of Gb3 (ceramide) to STx transport remains unclear. In pigeons, blood group P1 glycan antigens (Galα1-4Galß1-4GlcNAc-) are expressed on glycoproteins that are synthesized by α1,4-galactosyltransferase 2 (pA4GalT2). To examine whether these glycoproteins can also function as STx receptors, here we constructed glycan-remodeled HeLa cell variants lacking Gb3 expression but instead expressing pA4GalT2-synthesized P1 glycan antigens on glycoproteins. We compared STx binding and sensitivity of these variants with those of the parental, Gb3-expressing HeLa cells. The glycan-remodeled cells bound STx1 via N-glycans of glycoproteins and were sensitive to STx1 even without Gb3 expression, indicating that P1-containing glycoproteins also function as STx receptors. However, these variants were significantly less sensitive to STx than the parent cells. Fluorescence microscopy and correlative light EM revealed that the STx1 B subunit accumulates to lower levels in the Golgi apparatus after glycoprotein-mediated than after Gb3-mediated uptake but instead accumulates in vacuole-like structures probably derived from early endosomes. Furthermore, coexpression of Galα1-4Gal on both glycoproteins and GSLs reduced the sensitivity of cells to STx1 compared with those expressing Galα1-4Gal only on GSLs, probably because of competition for STx binding or internalization. We conclude that lipid-based receptors are much more effective in STx retrograde transport and mediate greater STx cytotoxicity than protein-based receptors.


Asunto(s)
Globósidos/metabolismo , Glucolípidos/metabolismo , Receptores de Superficie Celular/metabolismo , Toxina Shiga/metabolismo , Animales , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Globósidos/genética , Glucolípidos/genética , Células HeLa , Humanos , Ratones , Receptores de Superficie Celular/genética , Toxina Shiga/genética
10.
Cancer Metastasis Rev ; 39(2): 375-396, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32388640

RESUMEN

Changes in glycosylation on proteins or lipids are one of the hallmarks of tumorigenesis. In many cases, it is still not understood how glycan information is translated into biological function. In this review, we discuss at the example of specific cancer-related glycoproteins how their endocytic uptake into eukaryotic cells is tuned by carbohydrate modifications. For this, we not only focus on overall uptake rates, but also illustrate how different uptake processes-dependent or not on the conventional clathrin machinery-are used under given glycosylation conditions. Furthermore, we discuss the role of certain sugar-binding proteins, termed galectins, to tune glycoprotein uptake by inducing their crosslinking into lattices, or by co-clustering them with glycolipids into raft-type membrane nanodomains from which the so-called clathrin-independent carriers (CLICs) are formed for glycoprotein internalization into cells. The latter process has been termed glycolipid-lectin (GL-Lect) hypothesis, which operates in a complementary manner to the clathrin pathway and galectin lattices.


Asunto(s)
Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Neoplasias/metabolismo , Animales , Endocitosis , Galectinas/metabolismo , Glicosilación , Humanos , Microdominios de Membrana/metabolismo , Neoplasias/patología , Toxina Shiga/metabolismo
11.
Nature ; 517(7535): 493-6, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25517096

RESUMEN

During endocytosis, energy is invested to narrow the necks of cargo-containing plasma membrane invaginations to radii at which the opposing segments spontaneously coalesce, thereby leading to the detachment by scission of endocytic uptake carriers. In the clathrin pathway, dynamin uses mechanical energy from GTP hydrolysis to this effect, assisted by the BIN/amphiphysin/Rvs (BAR) domain-containing protein endophilin. Clathrin-independent endocytic events are often less reliant on dynamin, and whether in these cases BAR domain proteins such as endophilin contribute to scission has remained unexplored. Here we show, in human and other mammalian cell lines, that endophilin-A2 (endoA2) specifically and functionally associates with very early uptake structures that are induced by the bacterial Shiga and cholera toxins, which are both clathrin-independent endocytic cargoes. In controlled in vitro systems, endoA2 reshapes membranes before scission. Furthermore, we demonstrate that endoA2, dynamin and actin contribute in parallel to the scission of Shiga-toxin-induced tubules. Our results establish a novel function of endoA2 in clathrin-independent endocytosis. They document that distinct scission factors operate in an additive manner, and predict that specificity within a given uptake process arises from defined combinations of universal modules. Our findings highlight a previously unnoticed link between membrane scaffolding by endoA2 and pulling-force-driven dynamic scission.


Asunto(s)
Aciltransferasas/metabolismo , Membrana Celular/metabolismo , Endocitosis , Actinas/metabolismo , Animales , Línea Celular , Toxina del Cólera/metabolismo , Clatrina , Dinaminas/metabolismo , Humanos , Ratas , Toxina Shiga/metabolismo
12.
Int J Mol Sci ; 22(18)2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576167

RESUMEN

Shiga toxin (Stx) is released by enterohemorrhagic Escherichia coli (EHEC) into the human intestinal lumen and transferred across the colon epithelium to the circulation. Stx-mediated damage of human kidney and brain endothelial cells and renal epithelial cells is a renowned feature, while the sensitivity of the human colon epithelium towards Stx and the decoration with the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galß1-4Glcß1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer) is a matter of debate. Structural analysis of the globo-series GSLs of serum-free cultivated primary human colon epithelial cells (pHCoEpiCs) revealed Gb4Cer as the major neutral GSL with Cer (d18:1, C16:0), Cer (d18:1, C22:1/C22:0) and Cer (d18:1, C24:2/C24:1) accompanied by minor Gb3Cer with Cer (d18:1, C16:0) and Cer (d18:1, C24:1) as the dominant lipoforms. Gb3Cer and Gb4Cer co-distributed with cholesterol and sphingomyelin to detergent-resistant membranes (DRMs) used as microdomain analogs. Exposure to increasing Stx concentrations indicated only a slight cell-damaging effect at the highest toxin concentration of 1 µg/mL for Stx1a and Stx2a, whereas a significant effect was detected for Stx2e. Considerable Stx refractiveness of pHCoEpiCs that correlated with the rather low cellular content of the high-affinity Stx-receptor Gb3Cer renders the human colon epithelium questionable as a major target of Stx1a and Stx2a.


Asunto(s)
Colon/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Globósidos/metabolismo , Toxina Shiga/metabolismo , Trihexosilceramidas/metabolismo , Línea Celular , Células Cultivadas , Cromatografía en Capa Delgada , Glicoesfingolípidos/metabolismo , Humanos , Espectrometría de Masas , Sintaxina 1/metabolismo
13.
Angew Chem Int Ed Engl ; 60(27): 14824-14830, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33904231

RESUMEN

Macromolecular drugs inefficiently cross membranes to reach their cytosolic targets. They require drug delivery vectors to facilitate their translocation across the plasma membrane or escape from endosomes. Optimization of these vectors has however been hindered by the difficulty to accurately measure cytosolic arrival. We have developed an exceptionally sensitive and robust assay for the relative or absolute quantification of this step. The assay is based on benzylguanine and biotin modifications on a drug delivery vector of interest, which allow, respectively, for selective covalent capture in the cytosol with a SNAP-tag fusion protein and for quantification at picomolar sensitivity. The assay was validated by determining the absolute numbers of cytosolic molecules for two drug delivery vectors: the B-subunit of Shiga toxin and the cell-penetrating peptide TAT. We expect this assay to favor delivery vector optimization and the understanding of the enigmatic translocation process.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Citosol/metabolismo , Sistemas de Liberación de Medicamentos , Toxina Shiga/metabolismo , Péptidos de Penetración Celular/química , Citosol/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Humanos , Toxina Shiga/química
14.
Clin Chem ; 66(2): 302-315, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32040589

RESUMEN

BACKGROUND: Rapid detection of Shiga toxin-producing Escherichia coli (STEC) enables appropriate monitoring and treatment. We synthesized available evidence to compare the performance of enzyme immunoassay (EIA) and PCR tests for the detection of STEC. METHODS: We searched published and gray literature for studies of STEC EIA and/or PCR diagnostic test accuracy relative to reference standards including at least one nucleic acid amplification test. Two reviewers independently screened studies, extracted data, and assessed quality with the second version of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Bivariate random effects models were used to meta-analyze the clinical sensitivity and specificity of commercial EIA and PCR STEC diagnostic tests, and summary receiver operator characteristic curves were constructed. We evaluated the certainty of evidence with the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS: We identified 43 articles reflecting 25 260 specimens. Meta-analysis of EIA and PCR accuracy included 25 and 22 articles, respectively. STEC EIA pooled sensitivity and specificity were 0.681 (95% CI, 0.571-0.773; very low certainty of evidence) and 1.00 (95% CI, 0.998-1.00; moderate certainty of evidence), respectively. STEC PCR pooled sensitivity and specificity were 1.00 (95% CI, 0.904-1.00; low certainty of evidence) and 0.999 (95% CI, 0.997-0.999; low certainty of evidence), respectively. Certainty of evidence was downgraded because of high risk of bias. CONCLUSIONS: PCR tests to identify the presence of STEC are more sensitive than EIA tests, with no meaningful loss of specificity. However, given the low certainty of evidence, our results may overestimate the difference in performance.


Asunto(s)
Infecciones por Escherichia coli/diagnóstico , Toxina Shiga/análisis , Escherichia coli Shiga-Toxigénica/patogenicidad , Pruebas Diagnósticas de Rutina/métodos , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Técnicas para Inmunoenzimas/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad , Toxina Shiga/metabolismo , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/metabolismo
15.
Food Microbiol ; 86: 103352, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31703865

RESUMEN

Shiga toxin-producing Escherichia (E.) coli (STEC) pathogens are responsible for the outbreaks of serious diseases in humans, including haemolytic uraemic syndrome (HUS), bloody diarrhoea (BD) and diarrhoea (D), and they pose a significant public health concern. Wild ruminants are an important environmental reservoir of foodborne pathogens that can cause serious illnesses in humans and contaminate fresh products. There is a general scarcity of published data about wildlife as a reservoir of foodborne pathogens in Poland, which is why the potential epidemiological risk associated with red deer, roe deer and fallow deer as reservoirs of STEC/AE-STEC strains was evaluated in this study. The aim of the study was to investigate the prevalence of STEC strains in red deer (Cervus elaphus), roe deer (Capreolus capreolus) and fallow deer (Dama dama) populations in north-eastern Poland, and to evaluate the potential health risk associated with wild ruminants carrying STEC/AE-STEC strains. We examined 252 rectal swabs obtained from 134 roe deer (Capreolus capreolus), 97 red deer (Cervus elaphus) and 21 fallow deer (Dama dama) in north-eastern Poland. The samples were enriched in modified buffered peptone water. Polymerase chain reaction (PCR) assays were conducted to determine the virulence profile of stx1, stx2 and eae or aggR genes, to identify the subtypes of stx1 and stx2 genes, and to perform O and H serotyping. E. coli O157:H7 isolates were detected in the rectal swabs collected from 1/134 roe deer (0.75%) and 4/97 red deer (4.1%), and they were not detected in fallow deer (Dama dama). The remaining E. coli serogroups, namely O26, O103, O111 and O145 that belong to the "top five" non-O157 serogroups, were detected in 15/134 roe deer (11.19%), 18/97 red deer (18.56%) and 2/21 fallow deer (9.52%). STEC/AE-STEC strains were detected in 33 roe deer isolates (24.63%), 21 red deer isolates (21.65%) and 2 fallow deer isolates (9.52%). According to the most recent FAO/WHO report, stx2a and eae genes are the primary virulence traits associated with HUS, and these genes were identified in one roe deer isolate and one red deer isolate. Stx2 was the predominant stx gene, and it was detected in 78.79% of roe deer and in 71.43% of red deer isolates. The results of this study confirmed that red deer and roe deer in north-eastern Poland are carriers of STEC/AE-STEC strains that are potentially pathogenic for humans. This is the first report documenting the virulence of STEC/AE-STEC strains from wild ruminants in Poland.


Asunto(s)
Ciervos/microbiología , Reservorios de Enfermedades/microbiología , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Animales , Animales Salvajes/clasificación , Animales Salvajes/microbiología , Ciervos/clasificación , Reservorios de Enfermedades/clasificación , Polonia , Toxina Shiga/metabolismo , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
Food Microbiol ; 86: 103332, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31703888

RESUMEN

Drying processes do not eliminate pathogenic Escherichia coli in foods but induce sublethal injury, which may also induce the Shiga toxin (Stx) prophage. This study investigated the effect of drying on membrane lipid oxidation and stx expression in E. coli. Lipid peroxidation was probed with C11-BODIPY581/591; and stx expression was assayed by quantification of GFP in E. coli O104:H4 Δstx2a:gfp:ampr. Treatment of E. coli with H2O2 oxidized the probe; probe oxidation was also observed after drying and rehydration. Lipid oxidation and the lethality of drying were reduced when cells were dried with trehalose under anaerobic condition; in addition, viability and probe oxidation differed between E. coli AW1.7 and E. coli AW1.7Δcfa. Desiccation tolerance thus relates to membrane lipid oxidation. Drying also resulted in expression of GFP in 5% of the population. Overexpression of gfp and recA after drying and rehydration suggested that the expression of Stx prophage was regulated by the SOS response. Overall, C11-BODIPY581/591 allowed investigation of lipid peroxidation in bacteria. Drying causes lipid oxidation, DNA damage and induction of genes encoded by the Stx prophage in E. coli.


Asunto(s)
Lípidos de la Membrana/química , Profagos/fisiología , Escherichia coli Shiga-Toxigénica/química , Desecación , Manipulación de Alimentos , Microbiología de Alimentos , Peróxido de Hidrógeno/farmacología , Lípidos de la Membrana/metabolismo , Oxidación-Reducción , Toxina Shiga/metabolismo , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/metabolismo , Escherichia coli Shiga-Toxigénica/virología
17.
Food Microbiol ; 86: 103303, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31703885

RESUMEN

Escherichia coli O157:H7 and Salmonella enterica are foodborne pathogens with major public health concern in the U.S. These pathogens utilize several virulence factors to initiate infections in humans. The antimicrobial effect of seven glucosinolate hydrolysis compounds against Salmonella and E. coli O157:H7 was investigated by the disc diffusion assay. Among the tested compounds, benzyl isothiocyanate (BIT), which exerted the highest antimicrobial activity, was evaluated for its anti-virulence properties against these pathogens. The effect of BIT on motility of Salmonella and E. coli O157:H7 and Shiga toxin production by E. coli O157:H7 was determined by the motility assay and ELISA procedure, respectively. Confocal and transmission electron microscopy (TEM) procedures were used to determine bacterial damage at the cellular level. Results revealed that sub-inhibitory concentrations (SICs) of BIT significantly inhibited the motility of both bacteria (P < 0.05). Shiga toxin production by E. coli O157:H7 was decreased by ~32% in the presence of BIT at SICs. TEM results showed the disruption of outer membrane, release of cytoplasmic contents, and cell lysis following BIT treatment. Results suggest that BIT could be potentially used to attenuate Salmonella and E. coli O157:H7 infections by reducing the virulence factors including bacterial motility and Shiga toxin production.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli O157/efectos de los fármacos , Isotiocianatos/farmacología , Salmonella enterica/efectos de los fármacos , Factores de Virulencia/metabolismo , Escherichia coli O157/citología , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Salmonella enterica/citología , Salmonella enterica/genética , Salmonella enterica/metabolismo , Toxina Shiga/metabolismo , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/genética
18.
Acta Microbiol Immunol Hung ; 67(2): 100-106, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32223306

RESUMEN

This study aimed to evaluate the routine identification tools available in Lebanon for differentiation of Escherichia coli and Shigella spp. The identification of 43 isolates defined as Shigella spp. by Api 20E was accessed using MALDI-TOF, serological testing, duplex PCR targeting ipaH (present in Shigella spp. and enteroinvasive E. coli "EIEC") and lacY (found in E. coli including EIEC but not Shigella spp.) as well as gyrB gene sequencing. Antibiotic susceptibility was investigated as well as Shiga-toxin production. All isolates were identified as E. coli by MALDI-TOF while the PCR showed a disparate group of 26 EIEC, 11 Shigella spp., 5 E. coli and 1 inactive E. coli. However, the sequencing of gyrB gene, which was recently described as a suitable marker for distinguishing E. coli and Shigella spp., identified all isolates as E. coli. Antibiotic resistance was noticeable against ß-lactams, rifampicin, trimethoprim-sulfamethoxazole, gentamicin, and ciprofloxacin. The most common variants of beta-lactamase genes were blaTEM-1, blaCTX-M-15, and blaCTX-M-3. A great discordance between the used methods in identification was revealed herein. An accurate identification technique able to distinguish E. coli from Shigella spp. in routine laboratories is a pressing need in order to select the appropriate treatment and assess the epidemiology of these bacteria.


Asunto(s)
Disentería Bacilar/diagnóstico , Escherichia coli Enteropatógena/aislamiento & purificación , Tipificación Molecular/métodos , Shigella/aislamiento & purificación , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Girasa de ADN/genética , Farmacorresistencia Bacteriana Múltiple/genética , Disentería Bacilar/microbiología , Escherichia coli Enteropatógena/clasificación , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Humanos , Líbano , Pruebas de Sensibilidad Microbiana , Proteínas de Transporte de Monosacáridos/genética , Toxina Shiga/metabolismo , Shigella/clasificación , Shigella/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Simportadores/genética
19.
Nano Lett ; 19(10): 7365-7369, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31538793

RESUMEN

Biomembranes are hard to compress laterally, and membrane area compressibility has not been associated with biological processes. Using X-ray surface scattering, we observed that bacterial Shiga toxin compresses lipid packing in a gel phase monolayer upon binding to its cellular receptor, the glycolipid Gb3. This toxin-induced reorganization of lipid packing reached beyond the immediate membrane patch that the protein was bound to, and linkers separating the Gb3 carbohydrate and ceramide moieties modulated the toxin's capacity to compress the membrane. Within a natural membrane, asymmetric compression of the toxin-bound leaflet could provide a mechanism to initiate narrow membrane bending, as observed upon toxin entry into cells. Such lipid compression and long-range membrane reorganization by glycolipid-binding proteins represent novel concepts in membrane biology that have direct implications for the construction of endocytic pits in clathrin-independent endocytosis.


Asunto(s)
Membrana Celular/metabolismo , Fosfatidiletanolaminas/metabolismo , Toxina Shiga/metabolismo , Shigella dysenteriae/metabolismo , Trihexosilceramidas/metabolismo , Disentería Bacilar/metabolismo , Endocitosis , Humanos , Modelos Moleculares
20.
J Bacteriol ; 201(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31235511

RESUMEN

Enteroaggregative Escherichia coli (EAEC) from the O104:H4 specific serotype caused a large outbreak of bloody diarrhea with some complicated cases of hemolytic-uremic syndrome (HUS) in Europe in 2011. The outbreak strain consisted in an EAEC capable to produce the Shiga toxin (Stx) subtype 2a, a characteristic from enterohemorrhagic E. coli QseBC two-component system detects AI-3/Epi/NE and mediates the chemical signaling between pathogen and mammalian host. This system coordinates a cascade of virulence genes expression in important human enteropathogens. The blocking of QseC of EAEC C227-11 (Stx+) strain by N-phenyl-4-{[(phenylamino) thioxomethyl]amino}-benzenesulfonamide (also known as LED209) in vivo demonstrated a lower efficiency of colonization. The periplasmic protein VisP, which is related to survival mechanisms in a colitis model of infection, bacterial membrane maintenance, and stress resistance, here presented high levels of expression during the initial infection within the host. Under acid stress conditions, visP expression levels were differentiated in an Stx-dependent way. Together, these results emphasize the important role of VisP and the histidine kinase sensor QseC in the C227-11 (Stx+) outbreak strain for the establishment of the infectious niche process in the C57BL/6 mouse model and of LED209 as a promising antivirulence drug strategy against these enteric pathogens.IMPORTANCE EAEC is a remarkable etiologic agent of acute and persistent diarrhea worldwide. The isolates harbor specific subsets of virulence genes and their pathogenesis needs to be better understood. Chemical signaling via histidine kinase sensor QseC has been shown as a potential target to elucidate the orchestration of the regulatory cascade of virulence factors.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli O104/metabolismo , Proteínas de Escherichia coli/metabolismo , Animales , Adhesión Bacteriana , Comunicación Celular , Brotes de Enfermedades , Escherichia coli O104/genética , Proteínas de Escherichia coli/genética , Europa (Continente)/epidemiología , Fimbrias Bacterianas , Microbioma Gastrointestinal , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Mutación , Toxina Shiga/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA