RESUMEN
Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.
Asunto(s)
Citocinas/metabolismo , Inmunoterapia/tendencias , Animales , Citocinas/genética , Humanos , Inmunidad Humoral , Inmunomodulación , Multimerización de Proteína , Factores de Transcripción STAT/metabolismo , Transducción de Señal/inmunologíaRESUMEN
Hepatitis B virus (HBV)-specific CD8+ T cells play a dominant role during acute-resolving HBV infection but are functionally impaired during chronic HBV infection in humans. These functional deficits have been linked with metabolic and phenotypic heterogeneity, but it has remained unclear to what extent different subsets of HBV-specific CD8+ T cells still suppress viral replication. We addressed this issue by deep profiling, functional testing and perturbation of HBV-specific CD8+ T cells during different phases of chronic HBV infection. Our data revealed a mechanism of effector CD8+ T cell attenuation that emerges alongside classical CD8+ T cell exhaustion. Attenuated HBV-specific CD8+ T cells were characterized by cytotoxic properties and a dampened effector differentiation program, determined by antigen recognition and TGFß signaling, and were associated with viral control during chronic HBV infection. These observations identify a distinct subset of CD8+ T cells linked with immune efficacy in the context of a chronic human viral infection with immunotherapeutic potential.
Asunto(s)
Linfocitos T CD8-positivos , Virus de la Hepatitis B , Hepatitis B Crónica , Humanos , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Virus de la Hepatitis B/inmunología , Linfocitos T CD8-positivos/inmunología , Replicación Viral/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/inmunología , Masculino , Femenino , Diferenciación Celular/inmunología , Adulto , Persona de Mediana Edad , Transducción de Señal/inmunologíaRESUMEN
The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.
Asunto(s)
Linfocitos T CD8-positivos , Carcinoma Pulmonar de Lewis , Factor Nuclear 1-alfa del Hepatocito , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T , Animales , Linfocitos T CD8-positivos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Ratones , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Transducción de Señal/inmunología , Ratones Noqueados , Activación de Linfocitos/inmunología , Autorrenovación de las Células , Ratones Transgénicos , Proteína 2 de la Respuesta de Crecimiento PrecozRESUMEN
Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.
Asunto(s)
Proteínas de la Membrana , Neoplasias , Transducción de Señal , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Transducción de Señal/inmunología , Animales , Microambiente Tumoral/inmunologíaRESUMEN
Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.
Asunto(s)
Movimiento Celular , Células Dendríticas , Homeostasis , Ganglios Linfáticos , Ratones Endogámicos C57BL , Receptores CCR7 , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/citología , Receptores CCR7/metabolismo , Ratones , Movimiento Celular/inmunología , Forma de la Célula , FN-kappa B/metabolismo , Ratones Noqueados , Transducción de Señal/inmunología , Quinasa I-kappa B/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismoRESUMEN
The differentiation of naive and memory B cells into antibody-secreting cells (ASCs) is a key feature of adaptive immunity. The requirement for phosphoinositide 3-kinase-delta (PI3Kδ) to support B cell biology has been investigated intensively; however, specific functions of the related phosphoinositide 3-kinase-gamma (PI3Kγ) complex in B lineage cells have not. In the present study, we report that PI3Kγ promotes robust antibody responses induced by T cell-dependent antigens. The inborn error of immunity caused by human deficiency in PI3Kγ results in broad humoral defects, prompting our investigation of roles for this kinase in antibody responses. Using mouse immunization models, we found that PI3Kγ functions cell intrinsically within activated B cells in a kinase activity-dependent manner to transduce signals required for the transcriptional program supporting differentiation of ASCs. Furthermore, ASC fate choice coincides with upregulation of PIK3CG expression and is impaired in the context of PI3Kγ disruption in naive B cells on in vitro CD40-/cytokine-driven activation, in memory B cells on toll-like receptor activation, or in human tonsillar organoids. Taken together, our study uncovers a fundamental role for PI3Kγ in supporting humoral immunity by integrating signals instructing commitment to the ASC fate.
Asunto(s)
Formación de Anticuerpos , Linfocitos B , Diferenciación Celular , Fosfatidilinositol 3-Quinasa Clase Ib , Animales , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/inmunología , Ratones , Diferenciación Celular/inmunología , Humanos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Formación de Anticuerpos/inmunología , Ratones Noqueados , Células Productoras de Anticuerpos/inmunología , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Células B de Memoria/inmunología , Células B de Memoria/metabolismoRESUMEN
The evolution of T cell molecular signatures in the distal lung of patients with severe pneumonia is understudied. Here, we analyzed T cell subsets in longitudinal bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia, including unvaccinated patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or with respiratory failure not linked to pneumonia. In patients with SARS-CoV-2 pneumonia, activation of interferon signaling pathways, low activation of the NF-κB pathway and preferential targeting of spike and nucleocapsid proteins early after intubation were associated with favorable outcomes, whereas loss of interferon signaling, activation of NF-κB-driven programs and specificity for the ORF1ab complex late in disease were associated with mortality. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize individuals who recover, whereas responses against nonstructural proteins and activation of NF-κB are associated with poor outcomes.
Asunto(s)
COVID-19 , FN-kappa B , SARS-CoV-2 , Humanos , COVID-19/inmunología , SARS-CoV-2/inmunología , Masculino , Femenino , Persona de Mediana Edad , FN-kappa B/metabolismo , Anciano , Líquido del Lavado Bronquioalveolar/inmunología , Adulto , Transducción de Señal/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Interferones/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/patologíaRESUMEN
Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.
Asunto(s)
Antígenos CD , Apirasa , Cadenas alfa de Integrinas , Receptores de Antígenos de Linfocitos T , Transducción de Señal , Animales , Humanos , Ratones , Antígenos CD/metabolismo , Antígenos CD/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica , Cadenas alfa de Integrinas/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Linfocitos T Citotóxicos/inmunologíaRESUMEN
Viral infection makes us feel sick as the immune system alters systemic metabolism to better fight the pathogen. The extent of these changes is relative to the severity of disease. Whether blood glucose is subject to infection-induced modulation is mostly unknown. Here we show that strong, nonlethal infection restricts systemic glucose availability, which promotes the antiviral type I interferon (IFN-I) response. Following viral infection, we find that IFNγ produced by γδ T cells stimulates pancreatic ß cells to increase glucose-induced insulin release. Subsequently, hyperinsulinemia lessens hepatic glucose output. Glucose restriction enhances IFN-I production by curtailing lactate-mediated inhibition of IRF3 and NF-κB signaling. Induced hyperglycemia constrained IFN-I production and increased mortality upon infection. Our findings identify glucose restriction as a physiological mechanism to bring the body into a heightened state of responsiveness to viral pathogens. This immune-endocrine circuit is disrupted in hyperglycemia, possibly explaining why patients with diabetes are more susceptible to viral infection.
Asunto(s)
Glucemia , Inmunidad Innata , Interferón gamma , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones , Glucemia/metabolismo , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Insulina/metabolismo , Insulina/inmunología , Ratones Noqueados , Hiperglucemia/inmunología , Factor 3 Regulador del Interferón/metabolismo , FN-kappa B/metabolismo , Humanos , Hígado/inmunología , Hígado/virología , Hígado/metabolismo , MasculinoRESUMEN
The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αß heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αß+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αß+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αß+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αß+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.
Asunto(s)
Inmunidad Innata , Interferón gamma , Receptores de Antígenos de Linfocitos T gamma-delta , Receptores de Interleucina-7 , Factor de Transcripción STAT5 , Timo , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones , Humanos , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Timo/inmunología , Receptores de Interleucina-7/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/inmunología , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Ratones Noqueados , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Antígenos CD8/metabolismo , Femenino , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Interleucina-7/metabolismoRESUMEN
The mechanisms that guide T helper 2 (TH2) cell differentiation in barrier tissues are unclear. Here we describe the molecular pathways driving allergen-specific TH2 cells using temporal, spatial and single-cell transcriptomic tracking of house dust mite-specific T cells in mice. Differentiation and migration of lung allergen-specific TH2 cells requires early expression of the transcriptional repressor Blimp-1. Loss of Blimp-1 during priming in the lymph node ablated the formation of TH2 cells in the lung, indicating early Blimp-1 promotes TH2 cells with migratory capability. IL-2/STAT5 signals and autocrine/paracrine IL-10 from house dust mite-specific T cells were essential for Blimp-1 and subsequent GATA3 upregulation through repression of Bcl6 and Bach2. Spatial microniches of IL-2 in the lymph node supported the earliest Blimp-1+TH2 cells, demonstrating lymph node localization is a driver of TH2 initiation. Our findings identify an early requirement for IL-2-mediated spatial microniches that integrate with allergen-driven IL-10 from responding T cells to drive allergic asthma.
Asunto(s)
Alérgenos , Movimiento Celular , Factor de Transcripción GATA3 , Interleucina-10 , Interleucina-2 , Pulmón , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Pyroglyphidae , Células Th2 , Animales , Células Th2/inmunología , Interleucina-10/metabolismo , Interleucina-10/inmunología , Ratones , Pulmón/inmunología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Pyroglyphidae/inmunología , Alérgenos/inmunología , Factor de Transcripción GATA3/metabolismo , Interleucina-2/metabolismo , Interleucina-2/inmunología , Ratones Noqueados , Diferenciación Celular/inmunología , Ratones Endogámicos C57BL , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Factor de Transcripción STAT5/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Transducción de Señal/inmunología , Asma/inmunología , Asma/metabolismo , FemeninoRESUMEN
Approximately 25% of cancers are preceded by chronic inflammation that occurs at the site of tumor development. However, whether this multifactorial oncogenic process, which commonly occurs in the intestines, can be initiated by a specific immune cell population is unclear. Here, we show that an intestinal T cell subset, derived from interleukin-17 (IL-17)-producing helper T (TH17) cells, induces the spontaneous transformation of the intestinal epithelium. This subset produces inflammatory cytokines, and its tumorigenic potential is not dependent on IL-17 production but on the transcription factors KLF6 and T-BET and interferon-γ. The development of this cell type is inhibited by transforming growth factor-ß1 (TGFß1) produced by intestinal epithelial cells. TGFß signaling acts on the pretumorigenic TH17 cell subset, preventing its progression to the tumorigenic stage by inhibiting KLF6-dependent T-BET expression. This study therefore identifies an intestinal T cell subset initiating cancer.
Asunto(s)
Mucosa Intestinal , Factor 6 Similar a Kruppel , Proteínas de Dominio T Box , Células Th17 , Animales , Células Th17/inmunología , Ratones , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Factor 6 Similar a Kruppel/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Transducción de Señal/inmunología , Ratones Endogámicos C57BL , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Ratones Noqueados , Interferón gamma/metabolismo , Interferón gamma/inmunología , Interleucina-17/metabolismo , Interleucina-17/inmunología , Ratones Transgénicos , Proteínas Proto-Oncogénicas/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Neoplasias Intestinales/inmunología , Neoplasias Intestinales/patología , Neoplasias Intestinales/metabolismo , HumanosRESUMEN
Understanding how signals are integrated to control natural killer (NK) cell responsiveness in the absence of antigen-specific receptors has been a challenge, but recent work has revealed some underlying principles that govern NK cell responses. NK cells use an array of innate receptors to sense their environment and respond to alterations caused by infections, cellular stress, and transformation. No single activation receptor dominates; instead, synergistic signals from combinations of receptors are integrated to activate natural cytotoxicity and cytokine production. Inhibitory receptors for major histocompatibility complex class I (MHC-I) have a critical role in controlling NK cell responses and, paradoxically, in maintaining NK cells in a state of responsiveness to subsequent activation events, a process referred to as licensing. MHC-I-specific inhibitory receptors both block activation signals and trigger signals to phosphorylate and inactivate the small adaptor Crk. These different facets of inhibitory signaling are incorporated into a revocable license model for the reversible tuning of NK cell responsiveness.
Asunto(s)
Comunicación Celular/inmunología , Citotoxicidad Inmunológica , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Transducción de Señal/inmunología , Animales , Genes MHC Clase I/inmunología , Humanos , Células Asesinas Naturales/metabolismo , Receptores KIR/antagonistas & inhibidores , Receptores KIR/metabolismoRESUMEN
Phosphoinositide 3-kinases (PI3Ks) control many important aspects of immune cell development, differentiation, and function. Mammals have eight PI3K catalytic subunits that are divided into three classes based on similarities in structure and function. Specific roles for the class I PI3Ks have been broadly investigated and are relatively well understood, as is the function of their corresponding phosphatases. More recently, specific roles for the class II and class III PI3Ks have emerged. Through vertebrate evolution and in parallel with the evolution of adaptive immunity, there has been a dramatic increase not only in the genes for PI3K subunits but also in genes for phosphatases that act on 3-phosphoinositides and in 3-phosphoinositide-binding proteins. Our understanding of the PI3Ks in immunity is guided by fundamental discoveries made in simpler model organisms as well as by appreciating new adaptations of this signaling module in mammals in general and in immune cells in particular.
Asunto(s)
Familia de Multigenes/inmunología , Fosfatidilinositol 3-Quinasas/fisiología , Transducción de Señal/inmunología , Animales , Dominio Catalítico/inmunología , Endocitosis/inmunología , Humanos , Complejos Multiproteicos/inmunología , Fagocitosis/inmunología , Fosfatidilinositol 3-Quinasas/clasificación , Transporte de Proteínas/inmunologíaRESUMEN
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.
Asunto(s)
Diferenciación Celular/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Homeostasis/inmunología , Transducción de Señal/inmunología , Animales , Diferenciación Celular/genética , Células Dendríticas/metabolismo , Homeostasis/genética , Humanos , Lectinas Tipo C/fisiología , Glicoproteínas de Membrana/fisiología , Ratones , Receptores Inmunológicos/fisiología , Receptores de Reconocimiento de Patrones/fisiología , Transducción de Señal/genética , Receptores Toll-Like/fisiologíaRESUMEN
Severe combined immunodeficiency (SCID) comprises a group of disorders that are fatal owing to genetic defects that abrogate T cell development. Numerous related defects have recently been identified that allow T cell development but that compromise T cell function by affecting proximal or distal steps in intracellular signaling. These functional T cell immunodeficiencies are characterized by immune dysregulation and increased risk of malignancies, in addition to infections. The study of patients with these rare conditions, and of corresponding animal models, illustrates the importance of intracellular signaling to maintain T cell homeostasis.
Asunto(s)
Inmunodeficiencia Combinada Grave/inmunología , Inmunodeficiencia Combinada Grave/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/patología , Animales , Modelos Animales de Enfermedad , Homeostasis/genética , Homeostasis/inmunología , Humanos , Inmunofenotipificación , Inmunodeficiencia Combinada Grave/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.
Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Transducción de Señal/inmunología , Animales , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Tolerancia Inmunológica , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Péptidos/inmunología , Péptidos/metabolismo , Unión Proteica/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
Chloroplasts are crucial players in the activation of defensive hormonal responses during plant-pathogen interactions. Here, we show that a plant virus-encoded protein re-localizes from the plasma membrane to chloroplasts upon activation of plant defense, interfering with the chloroplast-dependent anti-viral salicylic acid (SA) biosynthesis. Strikingly, we have found that plant pathogens from different kingdoms seem to have convergently evolved to target chloroplasts and impair SA-dependent defenses following an association with membranes, which relies on the co-existence of two subcellular targeting signals, an N-myristoylation site and a chloroplast transit peptide. This pattern is also present in plant proteins, at least one of which conversely activates SA defenses from the chloroplast. Taken together, our results suggest that a pathway linking plasma membrane to chloroplasts and activating defense exists in plants and that such pathway has been co-opted by plant pathogens during host-pathogen co-evolution to promote virulence through suppression of SA responses.
Asunto(s)
Membrana Celular/inmunología , Cloroplastos/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Transducción de Señal/inmunología , Proteínas de Arabidopsis/inmunología , Interacciones Huésped-Patógeno/inmunología , Ácido Salicílico/inmunología , Virulencia/inmunologíaRESUMEN
The study of innate immunity and its link to inflammation and host defense encompasses diverse areas of biology, ranging from genetics and biophysics to signal transduction and physiology. Central to our understanding of these events are the Toll-like receptors (TLRs), an evolutionarily ancient family of pattern recognition receptors. Herein, we describe the mechanisms and consequences of TLR-mediated signal transduction with a focus on themes identified in the TLR pathways that also explain the operation of other immune signaling pathways. These themes include the detection of conserved microbial structures to identify infectious agents and the use of supramolecular organizing centers (SMOCs) as signaling organelles that ensure digital cellular responses. Further themes include mechanisms of inducible gene expression, the coordination of gene regulation and metabolism, and the influence of these activities on adaptive immunity. Studies in these areas have informed the development of next-generation therapeutics, thus ensuring a bright future for research in this area.
Asunto(s)
Inmunidad Innata/inmunología , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Inmunidad Adaptativa/inmunología , Animales , Humanos , Inmunidad Innata/fisiología , Inflamación/inmunología , Orgánulos/metabolismo , Transducción de Señal/inmunologíaRESUMEN
Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.