RESUMEN
Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.
Asunto(s)
Encéfalo , Aprendizaje Automático , Imagen por Resonancia Magnética , Neuroimagen , Trastornos Psicóticos , Humanos , Trastornos Psicóticos/patología , Trastornos Psicóticos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Adulto , Adulto Joven , Adolescente , Síntomas ProdrómicosRESUMEN
INTRODUCTION: Regional gray matter (GM) alterations have been reported in early-onset psychosis (EOP, onset before age 18), but previous studies have yielded conflicting results, likely due to small sample sizes and the different brain regions examined. In this study, we conducted a whole brain voxel-based morphometry (VBM) analysis in a large sample of individuals with EOP, using the newly developed ENIGMA-VBM tool. METHODS: 15 independent cohorts from the ENIGMA-EOP working group participated in the study. The overall sample comprised T1-weighted MRI data from 482 individuals with EOP and 469 healthy controls. Each site performed the VBM analysis locally using the standardized ENIGMA-VBM tool. Statistical parametric T-maps were generated from each cohort and meta-analyzed to reveal voxel-wise differences between EOP and healthy controls as well as the individual-based association between GM volume and age of onset, chlorpromazine (CPZ) equivalent dose, and other clinical variables. RESULTS: Compared with healthy controls, individuals with EOP showed widespread lower GM volume encompassing most of the cortex, with the most marked effect in the left median cingulate (Hedges' g = 0.55, p = 0.001 corrected), as well as small clusters of lower white matter (WM), whereas no regional GM or WM volumes were higher in EOP. Lower GM volume in the cerebellum, thalamus and left inferior parietal gyrus was associated with older age of onset. Deficits in GM in the left inferior frontal gyrus, right insula, right precentral gyrus and right superior frontal gyrus were also associated with higher CPZ equivalent doses. CONCLUSION: EOP is associated with widespread reductions in cortical GM volume, while WM is affected to a smaller extent. GM volume alterations are associated with age of onset and CPZ equivalent dose but these effects are small compared to case-control differences. Mapping anatomical abnormalities in EOP may lead to a better understanding of the role of psychosis in brain development during childhood and adolescence.
Asunto(s)
Edad de Inicio , Encéfalo , Sustancia Gris , Imagen por Resonancia Magnética , Trastornos Psicóticos , Sustancia Blanca , Humanos , Sustancia Gris/patología , Trastornos Psicóticos/patología , Trastornos Psicóticos/diagnóstico por imagen , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Encéfalo/patología , Adulto Joven , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Estudios de CohortesRESUMEN
A growing understanding of the nature of brain function has led to increased interest in interpreting the properties of large-scale brain networks. Methodological advances in network neuroscience provide means to decompose these networks into smaller functional communities and measure how they reconfigure over time as an index of their dynamic and flexible properties. Recent evidence has identified associations between flexibility and a variety of traits pertaining to complex cognition including creativity and working memory. The present study used measures of dynamic resting-state functional connectivity in data from the Human Connectome Project (n = 994) to test associations with Openness/Intellect, general intelligence, and psychoticism, three traits that involve flexible cognition. Using a machine-learning cross-validation approach, we identified reliable associations of intelligence with cohesive flexibility of parcels in large communities across the cortex, of psychoticism with disjoint flexibility, and of Openness/Intellect with overall flexibility among parcels in smaller communities. These findings are reasonably consistent with previous theories of the neural correlates of these traits and help to expand on previous associations of behavior with dynamic functional connectivity, in the context of broad personality dimensions.
Asunto(s)
Encéfalo , Conectoma , Individualidad , Inteligencia , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Inteligencia/fisiología , Conectoma/métodos , Masculino , Femenino , Encéfalo/fisiología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Adulto , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/fisiopatología , Adulto Joven , Personalidad/fisiología , Trastornos Psicóticos/fisiopatología , Trastornos Psicóticos/diagnóstico por imagen , Aprendizaje AutomáticoRESUMEN
The temporal variability of the thalamus in functional networks may provide valuable insights into the pathophysiology of schizophrenia. To address the complexity of the role of the thalamic nuclei in psychosis, we introduced micro-co-activation patterns (µCAPs) and employed this method on the human genetic model of schizophrenia 22q11.2 deletion syndrome (22q11.2DS). Participants underwent resting-state functional MRI and a data-driven iterative process resulting in the identification of six whole-brain µCAPs with specific activity patterns within the thalamus. Unlike conventional methods, µCAPs extract dynamic spatial patterns that reveal partially overlapping and non-mutually exclusive functional subparts. Thus, the µCAPs method detects finer foci of activity within the initial seed region, retaining valuable and clinically relevant temporal and spatial information. We found that a µCAP showing co-activation of the mediodorsal thalamus with brain-wide cortical regions was expressed significantly less frequently in patients with 22q11.2DS, and its occurrence negatively correlated with the severity of positive psychotic symptoms. Additionally, activity within the auditory-visual cortex and their respective geniculate nuclei was expressed in two different µCAPs. One of these auditory-visual µCAPs co-activated with salience areas, while the other co-activated with the default mode network (DMN). A significant shift of occurrence from the salience+visuo-auditory-thalamus to the DMN + visuo-auditory-thalamus µCAP was observed in patients with 22q11.2DS. Thus, our findings support existing research on the gatekeeping role of the thalamus for sensory information in the pathophysiology of psychosis and revisit the evidence of geniculate nuclei hyperconnectivity with the audio-visual cortex in 22q11.2DS in the context of dynamic functional connectivity, seen here as the specific hyper-occurrence of these circuits with the task-negative brain networks.
Asunto(s)
Síndrome de DiGeorge , Trastornos Psicóticos , Esquizofrenia , Humanos , Imagen por Resonancia Magnética , Trastornos Psicóticos/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Tálamo/diagnóstico por imagenRESUMEN
Psychosis implicates changes across a broad range of cognitive functions. These functions are cortically organized in the form of a hierarchy ranging from primary sensorimotor (unimodal) to higher-order association cortices, which involve functions such as language (transmodal). Language has long been documented as undergoing structural changes in psychosis. We hypothesized that these changes as revealed in spontaneous speech patterns may act as readouts of alterations in the configuration of this unimodal-to-transmodal axis of cortical organization in psychosis. Results from 29 patients with first-episodic psychosis (FEP) and 29 controls scanned with 7 T resting-state fMRI confirmed a compression of the cortical hierarchy in FEP, which affected metrics of the hierarchical distance between the sensorimotor and default mode networks, and of the hierarchical organization within the semantic network. These organizational changes were predicted by graphs representing semantic and syntactic associations between meaningful units in speech produced during picture descriptions. These findings unite psychosis, language, and the cortical hierarchy in a single conceptual scheme, which helps to situate language within the neurocognition of psychosis and opens the clinical prospect for mental dysfunction to become computationally measurable in spontaneous speech.
Asunto(s)
Imagen por Resonancia Magnética , Trastornos Psicóticos , Habla , Humanos , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/fisiopatología , Trastornos Psicóticos/patología , Masculino , Adulto , Femenino , Habla/fisiología , Adulto Joven , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatologíaRESUMEN
BACKGROUND: Hippocampal hyperperfusion has been observed in people at Clinical High Risk for Psychosis (CHR), is associated with adverse longitudinal outcomes and represents a potential treatment target for novel pharmacotherapies. Whether cannabidiol (CBD) has ameliorative effects on hippocampal blood flow (rCBF) in CHR patients remains unknown. METHODS: Using a double-blind, parallel-group design, 33 CHR patients were randomized to a single oral 600 mg dose of CBD or placebo; 19 healthy controls did not receive any drug. Hippocampal rCBF was measured using Arterial Spin Labeling. We examined differences relating to CHR status (controls v. placebo), effects of CBD in CHR (placebo v. CBD) and linear between-group relationships, such that placebo > CBD > controls or controls > CBD > placebo, using a combination of hypothesis-driven and exploratory wholebrain analyses. RESULTS: Placebo-treated patients had significantly higher hippocampal rCBF bilaterally (all pFWE<0.01) compared to healthy controls. There were no suprathreshold effects in the CBD v. placebo contrast. However, we found a significant linear relationship in the right hippocampus (pFWE = 0.035) such that rCBF was highest in the placebo group, lowest in controls and intermediate in the CBD group. Exploratory wholebrain results replicated previous findings of hyperperfusion in the hippocampus, striatum and midbrain in CHR patients, and provided novel evidence of increased rCBF in inferior-temporal and lateral-occipital regions in patients under CBD compared to placebo. CONCLUSIONS: These findings suggest that hippocampal blood flow is elevated in the CHR state and may be partially normalized by a single dose of CBD. CBD therefore merits further investigation as a potential novel treatment for this population.
Asunto(s)
Cannabidiol , Trastornos Psicóticos , Humanos , Cannabidiol/farmacología , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/tratamiento farmacológico , Hipocampo/diagnóstico por imagen , Cuerpo Estriado , Método Doble CiegoRESUMEN
BACKGROUND: Schizophrenia is associated with hypoactivation of reward sensitive brain areas during reward anticipation. However, it is unclear whether these neural functions are similarly impaired in other disorders with psychotic symptomatology or individuals with genetic liability for psychosis. If abnormalities in reward sensitive brain areas are shared across individuals with psychotic psychopathology and people with heightened genetic liability for psychosis, there may be a common neural basis for symptoms of diminished pleasure and motivation. METHODS: We compared performance and neural activity in 123 people with a history of psychosis (PwP), 81 of their first-degree biological relatives, and 49 controls during a modified Monetary Incentive Delay task during fMRI. RESULTS: PwP exhibited hypoactivation of the striatum and anterior insula (AI) during cueing of potential future rewards with each diagnostic group showing hypoactivations during reward anticipation compared to controls. Despite normative task performance, relatives demonstrated caudate activation intermediate between controls and PwP, nucleus accumbens activation more similar to PwP than controls, but putamen activation on par with controls. Across diagnostic groups of PwP there was less functional connectivity between bilateral caudate and several regions of the salience network (medial frontal gyrus, anterior cingulate, AI) during reward anticipation. CONCLUSIONS: Findings implicate less activation and connectivity in reward processing brain regions across a spectrum of disorders involving psychotic psychopathology. Specifically, aberrations in striatal and insular activity during reward anticipation seen in schizophrenia are partially shared with other forms of psychotic psychopathology and associated with genetic liability for psychosis.
Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Adulto , Humanos , Recompensa , Encéfalo/diagnóstico por imagen , Trastornos Psicóticos/diagnóstico por imagen , Motivación , Esquizofrenia/diagnóstico por imagen , Imagen por Resonancia Magnética , Anticipación Psicológica/fisiologíaRESUMEN
BACKGROUND: Very-late-onset schizophrenia-like psychosis (VLOSLP) is associated with significant burden. Its clinical importance is increasing as the global population of older adults rises, yet owing to limited research in this population, the neurobiological underpinnings of VLOSP remain insufficiently clarified. Here we address this knowledge gap using novel morphometry techniques to investigate grey matter volume (GMV) differences between VLOSLP and healthy older adults, and their correlations with neuropsychological scores. METHODS: In this cross-sectional study, we investigated whole-brain GMV differences between 35 individuals with VLOSLP (mean age 76.7, 26 female) and 36 healthy controls (mean age 75.7, 27 female) using whole-brain voxel-based morphometry (VBM) and supplementary source-based morphometry (SBM) on high resolution 3D T1-weighted MRI images. Additionally, we investigated relationships between GMV differences and cognitive function assessed with an extensive neuropsychological battery. RESULTS: VBM showed lower GMV in the thalamus, left inferior frontal gyrus and left insula in patients with VLOSLP compared to healthy controls. SBM revealed lower thalamo-temporal GMV in patients with VLOSLP. Processing speed, selective attention, mental flexibility, working memory, verbal memory, semantic fluency and confrontation naming were impaired in patients with VLOSLP. Correlations between thalamic volumes and memory function were significant within the group of individuals with VLOSLP, whereas no significant associations remained in the healthy controls. CONCLUSIONS: Lower GMV in the thalamus and fronto-temporal regions may be part of the underlying neurobiology of VLOSLP, with lower thalamic GMV contributing to memory impairment in the disorder.
Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Femenino , Anciano , Sustancia Gris/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Estudios Transversales , Encéfalo/diagnóstico por imagen , Trastornos Psicóticos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodosRESUMEN
BACKGROUND: Enlarged pituitary gland volume could be a marker of psychotic disorders. However, previous studies report conflicting results. To better understand the role of the pituitary gland in psychosis, we examined a large transdiagnostic sample of individuals with psychotic disorders. METHODS: The study included 751 participants (174 with schizophrenia, 114 with schizoaffective disorder, 167 with psychotic bipolar disorder, and 296 healthy controls) across six sites in the Bipolar-Schizophrenia Network on Intermediate Phenotypes consortium. Structural magnetic resonance images were obtained, and pituitary gland volumes were measured using the MAGeT brain algorithm. Linear mixed models examined between-group differences with controls and among patient subgroups based on diagnosis, as well as how pituitary volumes were associated with symptom severity, cognitive function, antipsychotic dose, and illness duration. RESULTS: Mean pituitary gland volume did not significantly differ between patients and controls. No significant effect of diagnosis was observed. Larger pituitary gland volume was associated with greater symptom severity (F = 13.61, p = 0.0002), lower cognitive function (F = 4.76, p = 0.03), and higher antipsychotic dose (F = 5.20, p = 0.02). Illness duration was not significantly associated with pituitary gland volume. When all variables were considered, only symptom severity significantly predicted pituitary gland volume (F = 7.54, p = 0.006). CONCLUSIONS: Although pituitary volumes were not increased in psychotic disorders, larger size may be a marker associated with more severe symptoms in the progression of psychosis. This finding helps clarify previous inconsistent reports and highlights the need for further research into pituitary gland-related factors in individuals with psychosis.
Asunto(s)
Trastorno Bipolar , Imagen por Resonancia Magnética , Hipófisis , Trastornos Psicóticos , Esquizofrenia , Humanos , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Masculino , Femenino , Adulto , Hipófisis/patología , Hipófisis/diagnóstico por imagen , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Persona de Mediana Edad , Antipsicóticos/uso terapéutico , Antipsicóticos/farmacología , Tamaño de los Órganos , Estudios de Casos y Controles , BiomarcadoresRESUMEN
BACKGROUND: Choroid plexus (ChP) enlargement exists in first-episode and chronic psychosis, but whether enlargement occurs before psychosis onset is unknown. This study investigated whether ChP volume is enlarged in individuals with clinical high-risk (CHR) for psychosis and whether these changes are related to clinical, neuroanatomical, and plasma analytes. METHODS: Clinical and neuroimaging data from the North American Prodrome Longitudinal Study 2 (NAPLS2) was used for analysis. 509 participants (169 controls, 340 CHR) were recruited. Conversion status was determined after 2-years of follow-up, with 36 psychosis converters. The lateral ventricle ChP was manually segmented from baseline scans. A subsample of 31 controls and 53 CHR had plasma analyte and neuroimaging data. RESULTS: Compared to controls, CHR (d = 0.23, p = 0.017) and non-converters (d = 0.22, p = 0.03) demonstrated higher ChP volumes, but not in converters. In CHR, greater ChP volume correlated with lower cortical (r = -0.22, p < 0.001), subcortical gray matter (r = -0.21, p < 0.001), and total white matter volume (r = -0.28,p < 0.001), as well as larger lateral ventricle volume (r = 0.63,p < 0.001). Greater ChP volume correlated with makers functionally associated with the lateral ventricle ChP in CHR [CCL1 (r = -0.30, p = 0.035), ICAM1 (r = 0.33, p = 0.02)], converters [IL1ß (r = 0.66, p = 0.004)], and non-converters [BMP6 (r = -0.96, p < 0.001), CALB1 (r = -0.98, p < 0.001), ICAM1 (r = 0.80, p = 0.003), SELE (r = 0.59, p = 0.026), SHBG (r = 0.99, p < 0.001), TNFRSF10C (r = 0.78, p = 0.001)]. CONCLUSIONS: CHR and non-converters demonstrated significantly larger ChP volumes compared to controls. Enlarged ChP was associated with neuroanatomical alterations and analyte markers functionally associated with the ChP. These findings suggest that the ChP may be a key an important biomarker in CHR.
Asunto(s)
Plexo Coroideo , Trastornos Psicóticos , Humanos , Plexo Coroideo/diagnóstico por imagen , Estudios Longitudinales , Fenotipo , Trastornos Psicóticos/diagnóstico por imagen , NeuroimagenRESUMEN
BACKGROUND: Psychotic disorders are characterized by structural and functional abnormalities in brain networks. Neuroimaging techniques map and characterize such abnormalities using unique features (e.g., structural integrity, coactivation). However, it is unclear if a specific method, or a combination of modalities, is particularly effective in identifying differences in brain networks of someone with a psychotic disorder. METHODS: A systematic meta-analysis evaluated machine learning classification of schizophrenia spectrum disorders in comparison to healthy control participants using various neuroimaging modalities (i.e., T1-weighted imaging (T1), diffusion tensor imaging (DTI), resting state functional connectivity (rs-FC), or some combination (multimodal)). Criteria for manuscript inclusion included whole-brain analyses and cross-validation to provide a complete picture regarding the predictive ability of large-scale brain systems in psychosis. For this meta-analysis, we searched Ovid MEDLINE, PubMed, PsychInfo, Google Scholar, and Web of Science published between inception and March 13th 2023. Prediction results were averaged for studies using the same dataset, but parallel analyses were run that included studies with pooled sample across many datasets. We assessed bias through funnel plot asymmetry. A bivariate regression model determined whether differences in imaging modality, demographics, and preprocessing methods moderated classification. Separate models were run for studies with internal prediction (via cross-validation) and external prediction. RESULTS: 93 studies were identified for quantitative review (30 T1, 9 DTI, 40 rs-FC, and 14 multimodal). As a whole, all modalities reliably differentiated those with schizophrenia spectrum disorders from controls (OR = 2.64 (95%CI = 2.33 to 2.95)). However, classification was relatively similar across modalities: no differences were seen across modalities in the classification of independent internal data, and a small advantage was seen for rs-FC studies relative to T1 studies in classification in external datasets. We found large amounts of heterogeneity across results resulting in significant signs of bias in funnel plots and Egger's tests. Results remained similar, however, when studies were restricted to those with less heterogeneity, with continued small advantages for rs-FC relative to structural measures. Notably, in all cases, no significant differences were seen between multimodal and unimodal approaches, with rs-FC and unimodal studies reporting largely overlapping classification performance. Differences in demographics and analysis or denoising were not associated with changes in classification scores. CONCLUSIONS: The results of this study suggest that neuroimaging approaches have promise in the classification of psychosis. Interestingly, at present most modalities perform similarly in the classification of psychosis, with slight advantages for rs-FC relative to structural modalities in some specific cases. Notably, results differed substantially across studies, with suggestions of biased effect sizes, particularly highlighting the need for more studies using external prediction and large sample sizes. Adopting more rigorous and systematized standards will add significant value toward understanding and treating this critical population.
Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Imagen de Difusión Tensora/métodos , Neuroimagen , Trastornos Psicóticos/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Esquizofrenia/diagnóstico por imagen , Imagen por Resonancia Magnética/métodosRESUMEN
BACKGROUND: Alterations in brain connectivity may underlie neuropsychiatric conditions such as schizophrenia. We here assessed the degree of convergence of frontostriatal fiber projections in 56 young adult healthy controls (HCs) and 108 matched Early Psychosis-Non-Affective patients (EP-NAs) using our novel fiber cluster analysis of whole brain diffusion magnetic resonance imaging tractography. METHODS: Using whole brain tractography and our fiber clustering methodology on harmonized diffusion magnetic resonance imaging data from the Human Connectome Project for Early Psychosis we identified 17 white matter fiber clusters that connect frontal cortex (FCtx) and caudate (Cd) per hemisphere in each group. To quantify the degree of convergence and, hence, topographical relationship of these fiber clusters, we measured the inter-cluster mean distances between the endpoints of the fiber clusters at the level of the FCtx and of the Cd, respectively. RESULTS: We found (1) in both groups, bilaterally, a non-linear relationship, yielding convex curves, between FCtx and Cd distances for FCtx-Cd connecting fiber clusters, driven by a cluster projecting from inferior frontal gyrus; however, in the right hemisphere, the convex curve was more flattened in EP-NAs; (2) that cluster pairs in the right (p = 0.03), but not left (p = 0.13), hemisphere were significantly more convergent in HCs vs EP-NAs; (3) in both groups, bilaterally, similar clusters projected significantly convergently to the Cd; and, (4) a significant group by fiber cluster pair interaction for 2 right hemisphere fiber clusters (numbers 5, 11; p = .00023; p = .00023) originating in selective PFC subregions. CONCLUSIONS: In both groups, we found the FCtx-Cd wiring pattern deviated from a strictly topographic relationship and that similar clusters projected significantly more convergently to the Cd. Interestingly, we also found a significantly more convergent pattern of connectivity in HCs in the right hemisphere and that 2 clusters from PFC subregions in the right hemisphere significantly differed in their pattern of connectivity between groups.
Asunto(s)
Trastornos Psicóticos , Sustancia Blanca , Adulto Joven , Humanos , Voluntarios Sanos , Cadmio , Sustancia Blanca/patología , Encéfalo/patología , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patologíaRESUMEN
Dopaminergic dysregulation is one of the leading hypotheses for the pathoetiology underlying psychotic disorders such as schizophrenia. Molecular imaging studies have shown increased striatal dopamine synthesis capacity (DSC) in schizophrenia and people in the prodrome of psychosis. However, it is unclear if genetic risk for psychosis is associated with altered DSC. To investigate this, we recruited healthy controls and two antipsychotic naive groups of individuals with copy number variants, one with a genetic deletion at chromosome 22q11.2, and the other with a duplication at the same locus, who are at increased and decreased risk for psychosis, respectively. Fifty-nine individuals (21 with 22q11.2 deletion, 12 with the reciprocal duplication and 26 healthy controls) received clinical measures and [18F]-DOPA PET imaging to index striatal Kicer. There was an inverse linear effect of copy number variant number on striatal Kicer value (B = -1.2 × 10-3, SE = 2 × 10-4, p < 0.001), with controls showing levels intermediate between the two variant groups. Striatal Kicer was significantly higher in the 22q11.2 deletion group compared to the healthy control (p < 0.001, Cohen's d = 1.44) and 22q11.2 duplication (p < 0.001, Cohen's d = 2) groups. Moreover, Kicer was positively correlated with the severity of psychosis-risk symptoms (B = 730.5, SE = 310.2, p < 0.05) and increased over time in the subject who went on to develop psychosis, but was not associated with anxiety or depressive symptoms. Our findings suggest that genetic risk for psychosis is associated with dopaminergic dysfunction and identify dopamine synthesis as a potential target for treatment or prevention of psychosis in 22q11.2 deletion carriers.
Asunto(s)
Síndrome de DiGeorge , Trastornos Psicóticos , Humanos , Dopamina , Variaciones en el Número de Copia de ADN/genética , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/genética , Dihidroxifenilalanina , Síndrome de DiGeorge/diagnóstico por imagen , Síndrome de DiGeorge/genética , Tomografía de Emisión de Positrones/métodosRESUMEN
BACKGROUND: Psychosis involves a distortion of thought content, which is partly reflected in anomalous ways in which words are semantically connected into utterances in speech. We sought to explore how these linguistic anomalies are realized through putative circuit-level abnormalities in the brain's semantic network. METHODS: Using a computational large-language model, Bidirectional Encoder Representations from Transformers (BERT), we quantified the contextual expectedness of a given word sequence (perplexity) across 180 samples obtained from descriptions of 3 pictures by patients with first-episode schizophrenia (FES) and controls matched for age, parental social status, and sex, scanned with 7 T ultra-high field functional magnetic resonance imaging (fMRI). Subsequently, perplexity was used to parametrize a spectral dynamic causal model (DCM) of the effective connectivity within (intrinsic) and between (extrinsic) 4 key regions of the semantic network at rest, namely the anterior temporal lobe, the inferior frontal gyrus (IFG), the posterior middle temporal gyrus (MTG), and the angular gyrus. RESULTS: We included 60 participants, including 30 patients with FES and 30 controls. We observed higher perplexity in the FES group, indicating that speech was less predictable by the preceding context among patients. Results of Bayesian model comparisons showed that a DCM including the group by perplexity interaction best explained the underlying patterns of neural activity. We observed an increase of self-inhibitory effective connectivity within the IFG, as well as reduced self-inhibitory tone within the pMTG, in the FES group. An increase in self-inhibitory tone in the IFG correlated strongly and positively with inter-regional excitation between the IFG and posterior MTG, while self-inhibition of the posterior MTG was negatively correlated with this interregional excitation. LIMITATION: Our design did not address connectivity in the semantic network during tasks that selectively activated the semantic network, which could corroborate findings from this resting-state fMRI study. Furthermore, we do not present a replication study, which would ideally use speech in a different language. CONCLUSION: As an explanation for peculiar speech in psychosis, these results index a shift in the excitatory-inhibitory balance regulating information flow across the semantic network, confined to 2 regions that were previously linked specifically to the executive control of meaning. Based on our approach of combining a large language model with causal connectivity estimates, we propose loss in semantic control as a potential neurocognitive mechanism contributing to disorganization in psychosis.
Asunto(s)
Imagen por Resonancia Magnética , Trastornos Psicóticos , Esquizofrenia , Semántica , Humanos , Masculino , Femenino , Adulto , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Adulto Joven , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/fisiopatología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiopatología , Habla/fisiología , Teorema de Bayes , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatologíaRESUMEN
Negative symptoms, such as lack of motivation or social withdrawal, are highly prevalent and debilitating in patients with schizophrenia. Underlying mechanisms of negative symptoms are incompletely understood, thereby preventing the development of targeted treatments. We hypothesized that in patients with schizophrenia during psychotic remission, impaired influences of both model-based and model-free reward predictions on decision-making ('reward prediction influence', RPI) underlie negative symptoms. We focused on psychotic remission, because psychotic symptoms might confound reward-based decision-making. Moreover, we hypothesized that impaired model-based/model-free RPIs depend on alterations of both associative striatum dopamine synthesis and storage (DSS) and executive functioning. Both factors influence RPI in healthy subjects and are typically impaired in schizophrenia. Twenty-five patients with schizophrenia with pronounced negative symptoms during psychotic remission and 24 healthy controls were included in the study. Negative symptom severity was measured by the Positive and Negative Syndrome Scale negative subscale, model-based/model-free RPI by the two-stage decision task, associative striatum DSS by 18F-DOPA positron emission tomography and executive functioning by the symbol coding task. Model-free RPI was selectively reduced in patients and associated with negative symptom severity as well as with reduced associative striatum DSS (in patients only) and executive functions (both in patients and controls). In contrast, model-based RPI was not altered in patients. Results provide evidence for impaired model-free reward prediction influence as a mechanism for negative symptoms in schizophrenia as well as for reduced associative striatum dopamine and executive dysfunction as relevant factors. Data suggest potential treatment targets for patients with schizophrenia and pronounced negative symptoms.
Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Dopamina , Tomografía Computarizada por Rayos X , Trastornos Psicóticos/diagnóstico por imagen , RecompensaRESUMEN
Dysfunction of fronto-striato-thalamic (FST) circuits is thought to contribute to dopaminergic dysfunction and symptom onset in psychosis, but it remains unclear whether this dysfunction is driven by aberrant bottom-up subcortical signalling or impaired top-down cortical regulation. We used spectral dynamic causal modelling of resting-state functional MRI to characterize the effective connectivity of dorsal and ventral FST circuits in a sample of 46 antipsychotic-naïve first-episode psychosis patients and 23 controls and an independent sample of 36 patients with established schizophrenia and 100 controls. We also investigated the association between FST effective connectivity and striatal 18F-DOPA uptake in an independent healthy cohort of 33 individuals who underwent concurrent functional MRI and PET. Using a posterior probability threshold of 0.95, we found that midbrain and thalamic connectivity were implicated as dysfunctional across both patient groups. Dysconnectivity in first-episode psychosis patients was mainly restricted to the subcortex, with positive symptom severity being associated with midbrain connectivity. Dysconnectivity between the cortex and subcortical systems was only apparent in established schizophrenia patients. In the healthy 18F-DOPA cohort, we found that striatal dopamine synthesis capacity was associated with the effective connectivity of nigrostriatal and striatothalamic pathways, implicating similar circuits to those associated with psychotic symptom severity in patients. Overall, our findings indicate that subcortical dysconnectivity is evident in the early stages of psychosis, that cortical dysfunction may emerge later in the illness, and that nigrostriatal and striatothalamic signalling are closely related to striatal dopamine synthesis capacity, which is a robust marker for psychosis.
Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Dopamina/metabolismo , Trastornos Psicóticos/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/metabolismo , Dihidroxifenilalanina , Imagen por Resonancia Magnética , Vías Nerviosas/fisiologíaRESUMEN
Disrupted functional connectivity (FC) of the default mode network (DMN) may have a pathophysiological role in schizophrenia. However, functional magnetic resonance imaging (fMRI) of the DMN in schizophrenia patients has shown inconsistent results. It also remains unclear whether individuals with at-risk mental state (ARMS) have an altered DMN connectivity and whether it is related to clinical characteristics. This fMRI study examined resting-state FCs of the DMN and its relevance to clinical/cognitive variables in 41 schizophrenia patients, 31 ARMS individuals, and 65 healthy controls. Compared with controls, schizophrenia patients had significantly increased FCs within the DMN and between the DMN and diverse cortical areas, whereas ARMS patients had increased FCs only between the DMN and occipital cortex. FC of the lateral parietal cortex with superior temporal gyrus was positively correlated with negative symptoms in schizophrenia, whereas FC of that with interparietal sulcus was negatively correlated with general cognitive impairment in ARMS. Our findings suggest that increased FCs between the DMN and visual network commonly seen in schizophrenia and ARMS subjects may reflect a network-level disturbance representing a general vulnerability to psychosis. In addition, FC changes related to the lateral parietal cortex may underpin clinical characteristics of ARMS and schizophrenia subjects.
Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Red en Modo Predeterminado , Descanso , Trastornos Psicóticos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodosRESUMEN
BACKGROUND: Psychotic disorders have long been considered neurodevelopmental disorders where excessive synaptic pruning and cortical volume loss are central to disease pathology. We conducted a systematic review of the literature to identify neuroimaging studies specifically examining synaptic density across the psychosis spectrum. METHODS: PRISMA guidelines on reporting were followed. We systematically searched MEDLINE, Embase, APA PsycINFO, Web of Science and The Cochrane Library from inception to December 8, 2023, and included all original peer-reviewed articles or completed clinical neuroimaging studies of any modality measuring synaptic density in participants with a diagnosis of psychosis spectrum disorder as well as individuals with psychosis-risk states. The NIH quality assessment tool for observational cohort and cross-sectional studies was used for the risk of bias assessment. RESULTS: Five studies (k = 5) met inclusion criteria, comprising n = 128 adults (psychotic disorder; n = 61 and healthy volunteers; n = 67 and specifically measuring synaptic density via positron emission tomography (PET) imaging of the synaptic vesicle glycoprotein 2 A (SV2A). Three studies were included in our primary meta-analysis sharing the same outcome measure of SV2A binding, volume of distribution (VT). Regional SV2A VT was reduced in psychotic disorder participants in comparison to healthy volunteers, including the occipital lobe (Mean Difference (MD)= -2.17; 95% CI: -3.36 to -0.98; P < 0.001 ), temporal lobe (MD: -2.03; 95% CI: -3.19 to -0.88; P < 0.001 ), parietal lobe (MD:-1.61; 95% CI: -2.85 to -0.37; P = 0.01), anterior cingulate cortex (MD= -1.47; 95% CI: -2.45 to -0.49; P = 0.003), frontal cortex (MD: -1.16; 95% CI: -2.18 to -0.15; P = 0.02), amygdala (MD: -1.36; 95% CI: -2.20 to -0.52, p = 0.002), thalamus (MD:-1.46; 95% CI:-2.46 to -0.46, p = 0.004) and hippocampus (MD= -0.96; 95% CI: -1.59 to -0.33; P = 0.003). CONCLUSIONS: Preliminary studies provide in vivo evidence for reduced synaptic density in psychotic disorders. However, replication of findings in larger samples is required prior to definitive conclusions being drawn. PROSPERO: CRD42022359018.
Asunto(s)
Neuroimagen , Tomografía de Emisión de Positrones , Trastornos Psicóticos , Sinapsis , Humanos , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Trastornos Psicóticos/fisiopatología , Neuroimagen/métodos , Sinapsis/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Proteínas del Tejido Nervioso , Glicoproteínas de MembranaRESUMEN
BACKGROUND: Recent research has demonstrated that the dorsal striatum is directly associated with the integration of cognitive, sensory-motor, and motivational/emotional data. Disruptions in the corticostriatal circuit have been implicated in the pathophysiology of psychosis. The dorsal striatum was reported to show lateralized pathology in psychotic disorders. In this study, we aimed to analyze the laterality of the dorsal striatum with texture analysis of T2-weighted magnetic resonance imaging (MRI) images from schizoaffective disorder (SAD) patients. METHODS: Twenty SAD patients, met the inclusion criteria and had available cranial MRI data were assigned as the patient group. Twenty healthy individuals were determined as the control group. Texture analysis values were obtained from striatum region of interests (ROI) generated from T2-weighted MRI images. Data are presented as mean and standard deviation. The suitability of the data for normal distribution was analyzed with the Kolmogorov-Smirnov test. Analysis of variance (ANOVA) test (Post Hoc TUKEY) was employed to compare the group data based on test findings. RESULTS: There was no significant difference between the groups in terms of gender and age. There were differences in the values of texture analysis parameters of both caudate and putamen nuclei in comparison to controls. We identified differences in the left dorsal striatum nuclei in SAD. The differences in the putamen were more and more pronounced than in the caudate. CONCLUSIONS: Texture analyses suggest that the left dorsal striatum nuclei may be different in SAD patients. Further studies are needed to determine the pathophysiology of SAD and how it may affect disease treatment.
Asunto(s)
Cuerpo Estriado , Lateralidad Funcional , Imagen por Resonancia Magnética , Trastornos Psicóticos , Humanos , Masculino , Femenino , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/fisiopatología , Adulto , Cuerpo Estriado/diagnóstico por imagen , Lateralidad Funcional/fisiología , Persona de Mediana Edad , Estudios de Casos y ControlesRESUMEN
BACKGROUND: In the future, clinicians might use information about neurobiological processes, obtained through imaging techniques, to guide personalized prevention and intervention strategies for psychosis and related disorders. However, this requires more knowledge about these individuals’ brain function. AIM: To advance the current knowledge on neurobiological processes in patients with schizophrenia spectrum disorders (SSD) and individuals at increased risk of these disorders. METHOD: We conducted a systematic review to address dopaminergic alterations in individuals at increased risk of SSD. Additionally, we acquired PET and MRI scans in patients with SSD and controls to obtain information about neurotransmitters, such as dopamine. RESULTS: Striatal dopamine synthesis capacity was altered in individuals at increased risk of developing SSD compared to controls. In healthy volunteers, the concentration of neuromelanin, a breakdown product of dopamine, in the substantia nigra was negatively associated with striatal dopamine synthesis capacity. This was not the case for patients with SSD. CONCLUSION: We report differences in neurobiological processes and their interrelationships between patients with psychotic and related disorders and controls. This information may help predict psychosis susceptibility and treatment effectiveness in the future. Our findings can therefore contribute to the development of personalized treatments and better counselling of the patient.