Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.806
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(3): 521-535.e13, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033363

RESUMEN

Many human spinal cord injuries are anatomically incomplete but exhibit complete paralysis. It is unknown why spared axons fail to mediate functional recovery in these cases. To investigate this, we undertook a small-molecule screen in mice with staggered bilateral hemisections in which the lumbar spinal cord is deprived of all direct brain-derived innervation, but dormant relay circuits remain. We discovered that a KCC2 agonist restored stepping ability, which could be mimicked by selective expression of KCC2, or hyperpolarizing DREADDs, in the inhibitory interneurons between and around the staggered spinal lesions. Mechanistically, these treatments transformed this injury-induced dysfunctional spinal circuit to a functional state, facilitating the relay of brain-derived commands toward the lumbar spinal cord. Thus, our results identify spinal inhibitory interneurons as a roadblock limiting the integration of descending inputs into relay circuits after injury and suggest KCC2 agonists as promising treatments for promoting functional recovery after spinal cord injury.


Asunto(s)
Traumatismos de la Médula Espinal/tratamiento farmacológico , Simportadores/agonistas , Simportadores/metabolismo , Animales , Axones , Regulación de la Expresión Génica/genética , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/genética , Neuronas/metabolismo , Recuperación de la Función/genética , Recuperación de la Función/fisiología , Médula Espinal , Simportadores/uso terapéutico , Cotransportadores de K Cl
2.
Proc Natl Acad Sci U S A ; 121(34): e2405465121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145932

RESUMEN

Over half of spinal cord injury (SCI) patients develop opioid-resistant chronic neuropathic pain. Safer alternatives to opioids for treatment of neuropathic pain are gabapentinoids (e.g., pregabalin and gabapentin). Clinically, gabapentinoids appear to amplify opioid effects, increasing analgesia and overdose-related adverse outcomes, but in vitro proof of this amplification and its mechanism are lacking. We previously showed that after SCI, sensitivity to opioids is reduced by fourfold to sixfold in rat sensory neurons. Here, we demonstrate that after injury, gabapentinoids restore normal sensitivity of opioid inhibition of cyclic AMP (cAMP) generation, while reducing nociceptor hyperexcitability by inhibiting voltage-gated calcium channels (VGCCs). Increasing intracellular Ca2+ or activation of L-type VGCCs (L-VGCCs) suffices to mimic SCI effects on opioid sensitivity, in a manner dependent on the activity of the Raf1 proto-oncogene, serine/threonine-protein kinase C-Raf, but independent of neuronal depolarization. Together, our results provide a mechanism for potentiation of opioid effects by gabapentinoids after injury, via reduction of calcium influx through L-VGCCs, and suggest that other inhibitors targeting these channels may similarly enhance opioid treatment of neuropathic pain.


Asunto(s)
Analgésicos Opioides , AMP Cíclico , Gabapentina , Neuralgia , Transducción de Señal , Traumatismos de la Médula Espinal , Animales , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , AMP Cíclico/metabolismo , Ratas , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Analgésicos Opioides/farmacología , Gabapentina/farmacología , Transducción de Señal/efectos de los fármacos , Ratas Sprague-Dawley , Masculino , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Pregabalina/farmacología , Pregabalina/uso terapéutico , Sinergismo Farmacológico , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos
3.
Neurobiol Dis ; 199: 106611, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032797

RESUMEN

Ultrastructural studies of contusive spinal cord injury (SCI) in mammals have shown that the most prominent acute changes in white matter are periaxonal swelling and separation of myelin away from their axon, axonal swelling, and axonal spheroid formation. However, the underlying cellular and molecular mechanisms that cause periaxonal swelling and the functional consequences are poorly understood. We hypothesized that periaxonal swelling and loss of connectivity between the axo-myelinic interface impedes neurological recovery by disrupting conduction velocity, and glial to axonal trophic support resulting in axonal swelling and spheroid formation. Utilizing in vivo longitudinal imaging of Thy1YFP+ axons and myelin labeled with Nile red, we reveal that periaxonal swelling significantly increases acutely following a contusive SCI (T13, 30 kdyn, IH Impactor) versus baseline recordings (laminectomy only) and often precedes axonal spheroid formation. In addition, using longitudinal imaging to determine the fate of myelinated fibers acutely after SCI, we show that ∼73% of myelinated fibers present with periaxonal swelling at 1 h post SCI and âˆ¼ 51% of those fibers transition to axonal spheroids by 4 h post SCI. Next, we assessed whether cation-chloride cotransporters present within the internode contributed to periaxonal swelling and whether their modulation would increase white matter sparing and improve neurological recovery following a moderate contusive SCI (T9, 50 kdyn). Mechanistically, activation of the cation-chloride cotransporter KCC2 did not improve neurological recovery and acute axonal survival, but did improve chronic tissue sparing. In distinction, the NKKC1 antagonist bumetanide improved neurological recovery, tissue sparing, and axonal survival, in part through preventing periaxonal swelling and disruption of the axo-myelinic interface. Collectively, these data reveal a novel neuroprotective target to prevent periaxonal swelling and improve neurological recovery after SCI.


Asunto(s)
Axones , Recuperación de la Función , Miembro 2 de la Familia de Transportadores de Soluto 12 , Traumatismos de la Médula Espinal , Sustancia Blanca , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Axones/efectos de los fármacos , Axones/patología , Femenino , Vaina de Mielina/patología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Ratones , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Bumetanida/farmacología
4.
Small ; 20(16): e2304318, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38018305

RESUMEN

The long-term inflammatory microenvironment is one of the main obstacles to inhibit acute spinal cord injury (SCI) repair. The natural adipose tissue-derived extracellular matrix hydrogel shows effective anti-inflammatory regulation because of its unique protein components. However, the rapid degradation rate and removal of functional proteins during the decellularization process impair the lasting anti-inflammation function of the adipose tissue-derived hydrogel. To address this problem, adipose tissue lysate provides an effective way for SCI repair due to its abundance of anti-inflammatory and nerve regeneration-related proteins. Thereby, human adipose tissue lysate-based hydrogel (HATLH) with an appropriate degradation rate is developed, which aims to in situ long-term recruit and induce anti-inflammatory M2 macrophages through sustainedly released proteins. HATLH can recruit and polarize M2 macrophages while inhibiting pro-inflammatory M1 macrophages regardless of human or mouse-originated. The axonal growth of neuronal cells also can be effectively improved by HATLH and HATLH-induced M2 macrophages. In vivo experiments reveal that HATLH promotes endogenous M2 macrophages infiltration in large numbers (3.5 × 105/100 µL hydrogel) and maintains a long duration for over a month. In a mouse SCI model, HATLH significantly inhibits local inflammatory response, improves neuron and oligodendrocyte differentiation, enhances axonal growth and remyelination, as well as accelerates neurological function restoration.


Asunto(s)
Hidrogeles , Traumatismos de la Médula Espinal , Humanos , Ratones , Animales , Hidrogeles/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Neuronas/metabolismo , Macrófagos/metabolismo , Antiinflamatorios/uso terapéutico
5.
Small ; 20(26): e2310194, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279612

RESUMEN

Spinal cord injury (SCI) often leads to cell death, vascular disruption, axonal signal interruption, and permanent functional damage. Currently, there are no clearly effective therapeutic options available for SCI. Considering the inhospitable SCI milieu typified by ischemia, hypoxia, and restricted neural regeneration, a novel injectable hydrogel system containing conductive black phosphorus (BP) nanosheets within a lipoic acid-modified chitosan hydrogel matrix (LAMC) is explored. The incorporation of tannic acid (TA)-modified BP nanosheets (BP@TA) into the LAMC hydrogel matrix significantly improved its conductivity. Further, by embedding a bicyclodextrin-conjugated tazarotene drug, the hydrogel showcased amplified angiogenic potential in vitro. In a rat model of complete SCI, implantation of LAMC/BP@TA hydrogel markedly improved the recovery of motor function. Immunofluorescence evaluations confirmed that the composite hydrogel facilitated endogenous angiogenesis and neurogenesis at the injury site. Collectively, this work elucidates an innovative drug-incorporated hydrogel system enriched with BP, underscoring its potential to foster vascular and neural regeneration.


Asunto(s)
Hidrogeles , Regeneración Nerviosa , Fósforo , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Animales , Hidrogeles/química , Hidrogeles/farmacología , Regeneración Nerviosa/efectos de los fármacos , Fósforo/química , Ratas , Ratas Sprague-Dawley , Nanoestructuras/química , Neovascularización Fisiológica/efectos de los fármacos , Inyecciones
6.
J Transl Med ; 22(1): 304, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528569

RESUMEN

BACKGROUND: The treatment of spinal cord injury (SCI) has always been a significant research focus of clinical neuroscience, with inhibition of microglia-mediated neuro-inflammation as well as oxidative stress key to successful SCI patient treatment. Caffeic acid phenethyl ester (CAPE), a compound extracted from propolis, has both anti-inflammatory and anti-oxidative effects, but its SCI therapeutic effects have rarely been reported. METHODS: We constructed a mouse spinal cord contusion model and administered CAPE intraperitoneally for 7 consecutive days after injury, and methylprednisolone (MP) was used as a positive control. Hematoxylin-eosin, Nissl, and Luxol Fast Blue staining were used to assess the effect of CAPE on the structures of nervous tissue after SCI. Basso Mouse Scale scores and footprint analysis were used to explore the effect of CAPE on the recovery of motor function by SCI mice. Western blot analysis and immunofluorescence staining assessed levels of inflammatory mediators and oxidative stress-related proteins both in vivo and in vitro after CAPE treatment. Further, reactive oxygen species (ROS) within the cytoplasm were detected using an ROS kit. Changes in mitochondrial membrane potential after CAPE treatment were detected with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide. Mechanistically, western blot analysis and immunofluorescence staining were used to examine the effect of CAPE on the SIRT1/PGC1α/DRP1 signaling pathway. RESULTS: CAPE-treated SCI mice showed less neuronal tissue loss, more neuronal survival, and reduced demyelination. Interestingly, SCI mice treated with CAPE showed better recovery of motor function. CAPE treatment reduced the expression of inflammatory and oxidative mediators, including iNOS, COX-2, TNF-α, IL-1ß, 1L-6, NOX-2, and NOX-4, as well as the positive control MP both in vitro and in vivo. In addition, molecular docking experiments showed that CAPE had a high affinity for SIRT1, and that CAPE treatment significantly activated SIRT1 and PGC1α, with down-regulation of DRP1. Further, CAPE treatment significantly reduced the level of ROS in cellular cytoplasm and increased the mitochondrial membrane potential, which improved normal mitochondrial function. After administering the SIRT1 inhibitor nicotinamide, the effect of CAPE on neuro-inflammation and oxidative stress was reversed.On the contrary, SIRT1 agonist SRT2183 further enhanced the anti-inflammatory and antioxidant effects of CAPE, indicating that the anti-inflammatory and anti-oxidative stress effects of CAPE after SCI were dependent on SIRT1. CONCLUSION: CAPE inhibits microglia-mediated neuro-inflammation and oxidative stress and supports mitochondrial function by regulating the SIRT1/PGC1α/DRP1 signaling pathway after SCI. These effects demonstrate that CAPE reduces nerve tissue damage. Therefore, CAPE is a potential drug for the treatment of SCI through production of anti-inflammatory and anti-oxidative stress effects.


Asunto(s)
Ácidos Cafeicos , Enfermedades Mitocondriales , Alcohol Feniletílico , Traumatismos de la Médula Espinal , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Metilprednisolona/farmacología , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Alcohol Feniletílico/análogos & derivados , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Dinaminas/efectos de los fármacos
7.
J Transl Med ; 22(1): 723, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103875

RESUMEN

BACKGROUND: Inadequate nerve regeneration and an inhibitory local microenvironment are major obstacles to the repair of spinal cord injury (SCI). The activation and differentiation fate regulation of endogenous neural stem cells (NSCs) represent one of the most promising repair approaches. Metformin has been extensively studied for its antioxidative, anti-inflammatory, anti-aging, and autophagy-regulating properties in central nervous system diseases. However, the effects of metformin on endogenous NSCs remains to be elucidated. METHODS: The proliferation and differentiation abilities of NSCs were evaluated using CCK-8 assay, EdU/Ki67 staining and immunofluorescence staining. Changes in the expression of key proteins related to ferroptosis in NSCs were detected using Western Blot and immunofluorescence staining. The levels of reactive oxygen species, glutathione and tissue iron were measured using corresponding assay kits. Changes in mitochondrial morphology and membrane potential were observed using transmission electron microscopy and JC-1 fluorescence probe. Locomotor function recovery after SCI in rats was assessed through BBB score, LSS score, CatWalk gait analysis, and electrophysiological testing. The expression of the AMPK pathway was examined using Western Blot. RESULTS: Metformin promoted the proliferation and neuronal differentiation of NSCs both in vitro and in vivo. Furthermore, a ferroptosis model of NSCs using erastin treatment was established in vitro, and metformin treatment could reverse the changes in the expression of key ferroptosis-related proteins, increase glutathione synthesis, reduce reactive oxygen species production and improve mitochondrial membrane potential and morphology. Moreover, metformin administration improved locomotor function recovery and histological outcomes following SCI in rats. Notably, all the above beneficial effects of metformin were completely abolished upon addition of compound C, a specific inhibitor of AMP-activated protein kinase (AMPK). CONCLUSION: Metformin, driven by canonical AMPK-dependent regulation, promotes proliferation and neuronal differentiation of endogenous NSCs while inhibiting ferroptosis, thereby facilitating recovery of locomotor function following SCI. Our study further elucidates the protective mechanism of metformin in SCI, providing new mechanistic insights for its candidacy as a therapeutic agent for SCI.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diferenciación Celular , Proliferación Celular , Ferroptosis , Metformina , Células-Madre Neurales , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Metformina/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Animales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Recuperación de la Función/efectos de los fármacos
8.
Acta Neuropathol ; 147(1): 106, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907771

RESUMEN

We show that redox active iron can induce a regulated form of non-apoptotic cell death and tissue damage called ferroptosis that can contribute to secondary damage and functional loss in the acute and chronic periods after spinal cord injury (SCI) in young, adult, female mice. Phagocytosis of red blood cells at sites of hemorrhage is the main source of iron derived from hemoglobin after SCI. Expression of hemeoxygenase-1 that induces release of iron from heme, is increased in spinal cord macrophages 7 days after injury. While iron is stored safely in ferritin in the injured spinal cord, it can, however, be released by NCOA4-mediated shuttling of ferritin to autophagosomes for degradation (ferritinophagy). This leads to the release of redox active iron that can cause free radical damage. Expression of NCOA4 is increased after SCI, mainly in macrophages. Increase in the ratio of redox active ferrous (Fe2+) to ferric iron (Fe3+) is also detected after SCI by capillary electrophoresis inductively coupled mass spectrometry. These changes are accompanied by other hallmarks of ferroptosis, i.e., deficiency in various elements of the antioxidant glutathione (GSH) pathway. We also detect increases in enzymes that repair membrane lipids (ACSL4 and LPCAT3) and thus promote on-going ferroptosis. These changes are associated with increased levels of 4-hydroxynonenal (4-HNE), a toxic lipid peroxidation product. Mice with mild SCI (30 kdyne force) treated with the ferroptosis inhibitor (UAMC-3203-HCL) either early or delayed times after injury showed improvement in locomotor recovery and secondary damage. Cerebrospinal fluid and serum samples from human SCI cases show evidence of increased iron storage (ferritin), and other iron related molecules, and reduction in GSH. Collectively, these data suggest that ferroptosis contributes to secondary damage after SCI and highlights the possible use of ferroptosis inhibitors to treat SCI.


Asunto(s)
Ferroptosis , Traumatismos de la Médula Espinal , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Animales , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Ratones , Femenino , Ratones Endogámicos C57BL , Hierro/metabolismo , Retraso del Tratamiento
9.
Toxicol Appl Pharmacol ; 484: 116872, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428465

RESUMEN

Previous studies have demonstrated that tetramethylpyrazine (TMP) can enhance the recovery of motor function in spinal cord injury (SCI) rats. However, the underlying mechanism involved in this therapeutic effect remains to be elucidated. We conducted RNA sequencing with a network pharmacology strategy to predict the targets and mechanism of TMP for SCI. The modified Allen's weight-drop method was used to construct an SCI rat model. The results indicated that the nuclear transfer factor-κB (NF-κB) pathway was identified through the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and an inflammatory response was identified through the Gene Ontology (GO) enrichment analysis. Tumor necrosis factor (TNF) was identified as a crucial target. Western blotting revealed that TMP decreased the protein expression of TNF superfamily receptor 1 (TNFR1), inhibitor κB-α (IκB-α), and NF-κB p65 in spinal cord tissues. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) demonstrated that TMP inhibited TNF-α, interleukin-1ß (IL-1ß), reactive oxygen species (ROS), and malondialdehyde (MDA) expression and enhanced superoxide dismutase (SOD) expression. Histopathological observation and behavior assessments showed that TMP improved morphology and motor function. In conclusion, TMP inhibits inflammatory response and oxidative stress, thereby exerting a neuroprotective effect that may be related to the regulation of the TNFR1/IκB-α/NF-κB p65 signaling pathway.


Asunto(s)
FN-kappa B , Pirazinas , Traumatismos de la Médula Espinal , Animales , Ratas , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa , Pirazinas/farmacología , Ratas Sprague-Dawley , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/farmacología , Receptores Tipo I de Factores de Necrosis Tumoral/uso terapéutico , Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Factor de Necrosis Tumoral alfa/metabolismo
10.
FASEB J ; 37(6): e22939, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37130013

RESUMEN

Traumatic spinal cord injury (SCI) most often leads to permanent paralysis due to the inability of axons to regenerate in the adult mammalian central nervous system (CNS). In the past, we have shown that mast cells (MCs) improve the functional outcome after SCI by suppressing scar tissue formation at the lesion site via mouse mast cell protease 6 (mMCP6). In this study, we investigated whether recombinant mMCP6 can be used therapeutically to improve the functional outcome after SCI. Therefore, we applied mMCP6 locally via an intrathecal catheter in the subacute phase after a spinal cord hemisection injury in mice. Our findings showed that hind limb motor function was significantly improved in mice that received recombinant mMCP6 compared with the vehicle-treated group. In contrast to our previous findings in mMCP6 knockout mice, the lesion size and expression levels of the scar components fibronectin, laminin, and axon-growth-inhibitory chondroitin sulfate proteoglycans were not affected by the treatment with recombinant mMCP6. Surprisingly, no difference in infiltration of CD4+ T cells and reactivity of Iba-1+ microglia/macrophages at the lesion site was observed between the mMCP6-treated mice and control mice. Additionally, local protein levels of the pro- and anti-inflammatory mediators IL-1ß, IL-2, IL-4, IL-6, IL-10, TNF-α, IFNγ, and MCP-1 were comparable between the two treatment groups, indicating that locally applied mMCP6 did not affect inflammatory processes after injury. However, the increase in locomotor performance in mMCP6-treated mice was accompanied by reduced demyelination and astrogliosis in the perilesional area after SCI. Consistently, we found that TNF-α/IL-1ß-astrocyte activation was decreased and that oligodendrocyte precursor cell (OPC) differentiation was increased after recombinant mMCP6 treatment in vitro. Mechanistically, this suggests effects of mMCP6 on reducing astrogliosis and improving (re)myelination in the spinal cord after injury. In conclusion, these data show for the first time that recombinant mMCP6 is therapeutically active in enhancing recovery after SCI.


Asunto(s)
Remielinización , Traumatismos de la Médula Espinal , Ratones , Animales , Gliosis/tratamiento farmacológico , Gliosis/metabolismo , Cicatriz/tratamiento farmacológico , Cicatriz/prevención & control , Mastocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Ratones Noqueados , Recuperación de la Función , Modelos Animales de Enfermedad , Mamíferos
11.
Mol Cell Biochem ; 479(2): 351-362, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37076656

RESUMEN

Spinal cord injury (SCI) is a serious central nervous system disease. Traumatic SCI often causes persistent neurological deficits below the injury level. Epigenetic changes occur after SCI. Studies have shown DNA methylation to be a key player in nerve regeneration and remodeling, and in regulating some pathophysiological characteristics of SCI. Curcumin is a natural polyphenol from turmeric. It has anti-inflammatory, antioxidant, and neuroprotective effects, and can mitigate the cell and tissue damage caused by SCI. This report analyzed the specific functions of DNA methylation in central nervous system diseases, especially traumatic brain injury and SCI. DNA methylation can regulate the level of gene expressions in the central nervous system. Therefore, pharmacological interventions regulating DNA methylation may be promising for SCI.


Asunto(s)
Curcumina , Traumatismos de la Médula Espinal , Humanos , Metilación de ADN , Curcumina/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/genética , Epigénesis Genética , Antioxidantes , Médula Espinal
12.
Biomacromolecules ; 25(4): 2607-2620, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38530873

RESUMEN

Riluzole is commonly used as a neuroprotective agent for treating traumatic spinal cord injury (SCI), which works by blocking the influx of sodium and calcium ions and reducing glutamate activity. However, its clinical application is limited because of its poor solubility, short half-life, potential organ toxicity, and insufficient bioabilities toward upregulated inflammation and oxidative stress levels. To address this issue, epigallocatechin gallate (EGCG), a natural polyphenol, was employed to fabricate nanoparticles (NPs) with riluzole to enhance the neuroprotective effects. The resulting NPs demonstrated good biocompatibility, excellent antioxidative properties, and promising regulation effects from the M1 to M2 macrophages. Furthermore, an in vivo SCI model was successfully established, and NPs could be obviously aggregated at the SCI site. More interestingly, excellent neuroprotective properties of NPs through regulating the levels of oxidative stress, inflammation, and ion channels could be fully demonstrated in vivo by RNA sequencing and sophisticated biochemistry evaluations. Together, the work provided new opportunities toward the design and fabrication of robust and multifunctional NPs for oxidative stress and inflammation-related diseases via biological integration of natural polyphenols and small-molecule drugs.


Asunto(s)
Nanopartículas , Fármacos Neuroprotectores , Traumatismos de la Médula Espinal , Humanos , Riluzol/farmacología , Riluzol/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Ácido Glutámico , Inflamación/tratamiento farmacológico , Médula Espinal
13.
Biomacromolecules ; 25(3): 1592-1601, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38377534

RESUMEN

Spinal cord injuries (SCI) have devastating physical, psychological, and psychosocial consequences for patients. One challenge of nerve tissue repair is the lack of a natural extracellular matrix (ECM) that guides the regenerating axons. Hyaluronic acid (HA) is a major ECM component and plays a fundamental role in facilitating lesion healing. Herein, we developed HA-based adhesive hydrogels by modification of HA with dopamine, a mussel-inspired compound with excellent adhesive properties in an aqueous environment. The hydrogels were loaded with the anti-inflammatory drug ibuprofen and the response of neuronal cells (SH-SY5Y) was evaluated in terms of viability, morphology, and adhesion. The obtained results suggested that the developed materials can bridge lesion gaps, guide axonal growth, and simultaneously act as a vehicle for the delivery of bioactive compounds.


Asunto(s)
Neuroblastoma , Traumatismos de la Médula Espinal , Humanos , Ácido Hialurónico , Hidrogeles , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Neuronas/patología , Médula Espinal/patología
14.
Neurourol Urodyn ; 43(5): 1207-1216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38533637

RESUMEN

AIMS: Activation of the endocannabinoid system by monoacylglycerol lipase (MAGL) blockade may affect the lower urinary tract function. We investigated the effect of an MAGL inhibitor, MJN110, on neurogenic lower urinary tract dysfunction (LUTD) in the mouse model of spinal cord injury (SCI). METHODS: Female C57BL/6 mice that underwent spinal cord transection at T8-10 level were divided into three groups consisting of (1) vehicle-treated SCI mice, (2) 5 mg/kg, or (3) 10 mg/kg of MJN110-treated SCI mice. MJN110 and vehicle were administered intraperitoneally for 7 days from 4 weeks after spinal cord transection. We then conducted awake cystometrograms and compared urodynamic parameters between three groups. The expression of cannabinoid (CB) receptors, TRP receptors, and inflammatory cytokines in L6-S1 dorsal root ganglia (DRG) or the bladder mucosa were evaluated and compared among three groups. Changes in the level of serum 2-arachidonoylglycerol (2-AG) and bladder MAGL were also evaluated. RESULTS: In the cystometrogram, detrusor overactivity (DO) parameters, such as the number of nonvoiding contraction (NVC), a ratio of time to the 1st NVC to intercontraction interval (ICI), and NVC integrals were improved by MJN110 treatment, and some effects were dose dependent. Although MJN110 did not improve voiding efficiency, it decreased bladder capacity, ICI, and residual urine volume compared to vehicle injection. MJN110 treatment groups had lower CB2, TRPV1, TRPA1, and inflammatory cytokines mRNA levels in DRG and bladder mucosa. Serum 2-AG was increased, and bladder MAGL was decreased after MAGL inhibitor treatment. CONCLUSIONS: MAGL inhibition improved LUTD including attenuation of DO after SCI. Thus, MAGL can be a therapeutic target for neurogenic LUTD after SCI.


Asunto(s)
Ratones Endogámicos C57BL , Monoacilglicerol Lipasas , Traumatismos de la Médula Espinal , Vejiga Urinaria , Urodinámica , Animales , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Femenino , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/fisiopatología , Urodinámica/efectos de los fármacos , Ratones , Modelos Animales de Enfermedad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Receptores de Cannabinoides/metabolismo , Receptores de Cannabinoides/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Endocannabinoides/metabolismo , Citocinas/metabolismo , Vejiga Urinaria Neurogénica/tratamiento farmacológico , Vejiga Urinaria Neurogénica/fisiopatología , Vejiga Urinaria Neurogénica/etiología , Síntomas del Sistema Urinario Inferior/tratamiento farmacológico , Síntomas del Sistema Urinario Inferior/fisiopatología , Síntomas del Sistema Urinario Inferior/etiología , Carbamatos , Succinimidas
15.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 213-218, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38372091

RESUMEN

Neuroinflammation induced by microglia following spinal cord injury (SCI) leads to secondary neurologic injury. Androgens including testosterone and dihydrotestosterone (DHT) show as endogenous neuroprotective factors against multiple neurologic diseases, while their therapeutic role in SCI-induced neuroinflammation and underlying mechanism remains elusive. In the study, we aimed to investigate the role of DHT against microglia-induced neuroinflammation in SCI and evaluate its protective treatment. BV2 cells were activated by neuroinflammation via LPS in vitro. Adult male C57BL/6 mice were used to establish the SCI model. BV2 cells and SCI mice were administrated DHT. Microglia activation, pro-inflammatory factors, p38 and p65 phosphorylation, glial scar, fibrotic scar, histology, and locomotor function recovery were measured, respectively. We demonstrated that DHT administration attenuates neuroinflammation in microglia through inhibition of p38 and p65 pathways. Moreover, DHT reduces microglia and astrocyte accumulation, cord fibrosis and histologic damage. Besides, DHT ameliorates locomotor functional recovery after SCI. DHT is verified to play a neuroprotective role in SCI, which fights against neuroinflammation by inhibition of p38 and p65 pathways. Therefore, Mel is defined as a promising factor in protecting neural tissue after SCI.


Asunto(s)
FN-kappa B , Traumatismos de la Médula Espinal , Animales , Masculino , Ratones , Dihidrotestosterona/farmacología , Dihidrotestosterona/uso terapéutico , Inflamación/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico
16.
Bioorg Chem ; 148: 107458, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788362

RESUMEN

Ferroptosis is a novel style of cell death, and studies have shown that ferroptosis is strongly associated with spinal cord injury (SCI). A large number of ferroptosis inhibitors have been reported, but so far no ferroptosis inhibitor has been used clinically. Therefore there is an urgent need to discover a better inhibitor of ferroptosis. In this study, 24 novel sulfonamide phenothiazine ferroptosis inhibitors were designed and synthesized, followed by structure-activity relationship studies on these compounds. Among them, compound 23b exhibited the best activity in Erastin-induced PC12 cells (EC50 = 0.001 µM) and demonstrated a low hERG inhibition activity (IC50 > 30 µM). Additionally, compound 23b was identified as a ROS scavenger and showed promising therapeutic effects in an SD rat model of SCI. Importantly, 23b did not display significant toxicity in both in vivo and in vitro experiments and show good pharmacokinetic properties. These findings suggest that compound 23b, a novel ferroptosis inhibitor, holds potential as a therapeutic agent for spinal cord injury and warrants further investigation.


Asunto(s)
Diseño de Fármacos , Ferroptosis , Fenotiazinas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Sulfonamidas , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Ratas , Relación Estructura-Actividad , Ferroptosis/efectos de los fármacos , Fenotiazinas/farmacología , Fenotiazinas/síntesis química , Fenotiazinas/química , Fenotiazinas/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/química , Sulfonamidas/síntesis química , Células PC12 , Estructura Molecular , Relación Dosis-Respuesta a Droga , Humanos , Masculino
17.
Biotechnol Appl Biochem ; 71(4): 929-939, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38607990

RESUMEN

Excessive inflammatory response and oxidative stress (OS) play an important role in the pathogenesis of spinal cord injury (SCI). Balance of inflammation and prevention of OS have been considered an effective strategy for the treatment of SCI. Hyaluronan and proteoglycan link protein 1 (HAPLN1), also known as cartilage link protein, has displayed a wide range of biological and physiological functions in different types of tissues and cells. However, whether HAPLN1 regulates inflammation and OS during SCI is unknown. Therefore, we aimed to examine whether HAPLN1 can have a protective effect on SCI. In this study, both in vitro and in vivo SCI models were established. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays were used. Western blotting and enzyme-linked immunosorbent assay were employed to assess the expression of proteins. Our results demonstrate that the administration of HAPLN1 promoted the recovery of motor neurons after SCI by increasing the Basso mouse scale score, increasing the numbers of motor neurons, and preventing apoptosis of spinal cord cells. Additionally, HAPLN1 mitigated OS in spinal cord tissue after SCI by increasing the content of superoxide dismutase SOD and the activity of glutathione peroxidase but reducing the levels of malondialdehyde. Importantly, we found that HAPLN1 stimulated the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and stimulated the expression of heme oxygenase-1 and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase-1, which mediated the attenuation of HAPLN1 in activation of the NOD-like receptor protein 3 (NLRP3) inflammasome by reducing the levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and interleukin-1ß. Correspondingly, in vitro experiments show that the presence of HAPLN1 suppressed the NLRP3 inflammasome and prevented cell injury against H2O2 in PC12 cells. These effects were mediated by the Nrf2/ARE pathway, and inhibition of Nrf2 with ML385 abolished the beneficial effects of HAPLN1. Based on these findings, we conclude that HAPLN1 inhibits the NLRP3 inflammasome through the stimulation of the Nrf2/ARE pathway, thereby suppressing neuroinflammation, enhancing motor neuronal survival, and improving the recovery of nerve function after SCI.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Proteoglicanos , Traumatismos de la Médula Espinal , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Ratones , Proteoglicanos/metabolismo , Proteoglicanos/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Ratas , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL
18.
Int J Med Sci ; 21(4): 725-731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464830

RESUMEN

Spinal cord injury (SCI) leads to deficits of various normal functions and is difficult to return to a normal state. Histone and non-histone protein acetylation after SCI is well documented and regulates spinal cord plasticity, axonal growth, and sensory axon regeneration. However, our understanding of protein acetylation after SCI is still limited. In this review, we summarize current research on the role of acetylation of histone and non-histone proteins in regulating neuron growth and axonal regeneration in SCI. Furthermore, we discuss inhibitors and activators targeting acetylation-related enzymes, such as α-tubulin acetyltransferase 1 (αTAT1), histone deacetylase 6 (HDAC6), and sirtuin 2 (SIRT2), to provide promising opportunities for recovery from SCI. In conclusion, a comprehensive understanding of protein acetylation and deacetylation in SCI may contribute to the development of SCI treatment.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Humanos , Axones/metabolismo , Histonas/metabolismo , Acetilación , Regeneración Nerviosa , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/uso terapéutico
19.
J Nanobiotechnology ; 22(1): 351, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902789

RESUMEN

Spinal cord injury (SCI) often results in motor and sensory deficits, or even paralysis. Due to the role of the cascade reaction, the effect of excessive reactive oxygen species (ROS) in the early and middle stages of SCI severely damage neurons, and most antioxidants cannot consistently eliminate ROS at non-toxic doses, which leads to a huge compromise in antioxidant treatment of SCI. Selenium nanoparticles (SeNPs) have excellent ROS scavenging bioactivity, but the toxicity control problem limits the therapeutic window. Here, we propose a synergistic therapeutic strategy of SeNPs encapsulated by ZIF-8 (SeNPs@ZIF-8) to obtain synergistic ROS scavenging activity. Three different spatial structures of SeNPs@ZIF-8 were synthesized and coated with ferrostatin-1, a ferroptosis inhibitor (FSZ NPs), to achieve enhanced anti-oxidant and anti-ferroptosis activity without toxicity. FSZ NPs promoted the maintenance of mitochondrial homeostasis, thereby regulating the expression of inflammatory factors and promoting the polarization of macrophages into M2 phenotype. In addition, the FSZ NPs presented strong abilities to promote neuronal maturation and axon growth through activating the WNT4-dependent pathways, while prevented glial scar formation. The current study demonstrates the powerful and versatile bioactive functions of FSZ NPs for SCI treatment and offers inspiration for other neural injury diseases.


Asunto(s)
Antioxidantes , Nanopartículas , Especies Reactivas de Oxígeno , Selenio , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Ratones , Especies Reactivas de Oxígeno/metabolismo , Selenio/química , Selenio/farmacología , Neuronas/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ratas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Regeneración Nerviosa/efectos de los fármacos
20.
Cell Mol Biol Lett ; 29(1): 75, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755530

RESUMEN

BACKGROUND: Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS: Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS: The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS: Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.


Asunto(s)
Proteínas ADAM , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana , Microglía , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal , Animales , Ratones , Proteínas ADAM/metabolismo , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Antígenos CD , Movimiento Celular/efectos de los fármacos , Inflamación/patología , Inflamación/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA