Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.914
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 24(1): 162-173, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36471170

RESUMEN

Amino acid metabolism is essential for cell survival, while the byproduct ammonia is toxic and can injure cellular longevity. Here we show that CD8+ memory T (TM) cells mobilize the carbamoyl phosphate (CP) metabolic pathway to clear ammonia, thus promoting memory development. CD8+ TM cells use ß-hydroxybutyrylation to upregulate CP synthetase 1 and trigger the CP metabolic cascade to form arginine in the cytosol. This cytosolic arginine is then translocated into the mitochondria where it is split by arginase 2 to urea and ornithine. Cytosolic arginine is also converted to nitric oxide and citrulline by nitric oxide synthases. Thus, both the urea and citrulline cycles are employed by CD8+ T cells to clear ammonia and enable memory development. This ammonia clearance machinery might be targeted to improve T cell-based cancer immunotherapies.


Asunto(s)
Amoníaco , Citrulina , Citrulina/metabolismo , Amoníaco/metabolismo , Urea/metabolismo , Linfocitos T CD8-positivos/metabolismo , Óxido Nítrico , Arginina/metabolismo , Arginasa/metabolismo
2.
Cell ; 174(6): 1559-1570.e22, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100185

RESUMEN

The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.


Asunto(s)
Genómica , Metabolómica , Neoplasias/patología , Urea/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animales , Aspartato Carbamoiltransferasa/genética , Aspartato Carbamoiltransferasa/metabolismo , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Línea Celular Tumoral , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Proteínas de Transporte de Membrana Mitocondrial , Neoplasias/metabolismo , Ornitina Carbamoiltransferasa/antagonistas & inhibidores , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , Fosforilación/efectos de los fármacos , Pirimidinas/biosíntesis , Pirimidinas/química , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
3.
Mol Cell ; 81(18): 3749-3759, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34469752

RESUMEN

The expression of the urea cycle (UC) proteins is dysregulated in multiple cancers, providing metabolic benefits to tumor survival, proliferation, and growth. Here, we review the main changes described in the expression of UC enzymes and metabolites in different cancers at various stages and suggest that these changes are dynamic and should hence be viewed in a context-specific manner. Understanding the evolvability in the activity of the UC pathway in cancer has implications for cancer-immune cell interactions and for cancer diagnosis and therapy.


Asunto(s)
Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Urea/metabolismo , Amoníaco/metabolismo , Línea Celular Tumoral , Proliferación Celular , Expresión Génica/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Trastornos Innatos del Ciclo de la Urea/metabolismo , Trastornos Innatos del Ciclo de la Urea/fisiopatología
4.
Immunity ; 51(6): 1074-1087.e9, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31784108

RESUMEN

Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Interferón Tipo I/inmunología , Hígado/metabolismo , Virus de la Coriomeningitis Linfocítica/inmunología , Receptor de Interferón alfa y beta/metabolismo , Animales , Arginina/sangre , Línea Celular , Chlorocebus aethiops , Cricetinae , Femenino , Hepatocitos/metabolismo , Hígado/inmunología , Hígado/virología , Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ornitina/sangre , Ornitina Carbamoiltransferasa/genética , Transducción de Señal/inmunología , Urea/metabolismo , Células Vero
5.
J Biol Chem ; 300(8): 107495, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925327

RESUMEN

Transthyretin (TTR) is an homotetrameric protein involved in the transport of thyroxine. More than 150 different mutations have been described in the TTR gene, several of them associated with familial amyloid cardiomyopathy. Recently, our group described a new variant of TTR in Brazil, namely A39D-TTR, which causes a severe cardiac condition. Position 39 is in the AB loop, a region of the protein that is located within the thyroxine-binding channels and is involved in tetramer formation. In the present study, we solved the structure and characterize the thermodynamic stability of this new variant of TTR using urea and high hydrostatic pressure. Interestingly, during the process of purification, A39D-TTR turned out to be a dimer and not a tetramer, a variation that might be explained by the close contact of the four aspartic acids at position 39, where they face each other inside the thyroxine channel. In the presence of subdenaturing concentrations of urea, bis-ANS binding and dynamic light scattering revealed A39D-TTR in the form of a molten-globule dimer. Co-expression of A39D and WT isoforms in the same bacterial cell did not produce heterodimers or heterotetramers, suggesting that somehow a negative charge at the AB loop precludes tetramer formation. A39D-TTR proved to be highly amyloidogenic, even at mildly acidic pH values where WT-TTR does not aggregate. Interestingly, despite being a dimer, aggregation of A39D-TTR was inhibited by diclofenac, which binds to the thyroxine channel in the tetramer, suggesting the existence of other pockets in A39D-TTR able to accommodate this molecule.


Asunto(s)
Cardiomiopatías , Prealbúmina , Multimerización de Proteína , Termodinámica , Prealbúmina/genética , Prealbúmina/química , Prealbúmina/metabolismo , Humanos , Cardiomiopatías/metabolismo , Cardiomiopatías/genética , Tiroxina/metabolismo , Tiroxina/química , Mutación Missense , Amiloide/metabolismo , Amiloide/química , Amiloide/genética , Sustitución de Aminoácidos , Urea/química , Urea/metabolismo
6.
Physiol Rev ; 98(2): 641-665, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29412048

RESUMEN

The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle provides protection against excess ammonia, while l-ornithine is needed for cell proliferation, collagen formation, and other physiological functions. In mammals, increases in arginase activity have been linked to dysfunction and pathologies of the cardiovascular system, kidney, and central nervous system and also to dysfunction of the immune system and cancer. Two important aspects of the excessive activity of arginase may be involved in diseases. First, overly active arginase can reduce the supply of l-arginine needed for the production of nitric oxide (NO) by NO synthase. Second, too much l-ornithine can lead to structural problems in the vasculature, neuronal toxicity, and abnormal growth of tumor cells. Seminal studies have demonstrated that increased formation of reactive oxygen species and key inflammatory mediators promote this pathological elevation of arginase activity. Here, we review the involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer and discuss the value of therapies targeting the elevated activity of arginase.


Asunto(s)
Arginasa/metabolismo , Endotelio Vascular/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Urea/metabolismo , Animales , Arginina/metabolismo , Endotelio Vascular/fisiopatología , Humanos
7.
Hum Mol Genet ; 32(11): 1922-1931, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36881658

RESUMEN

Citrin deficiency (CD) is an inborn error of metabolism caused by loss-of-function of the mitochondrial aspartate/glutamate transporter, CITRIN, which is involved in both the urea cycle and malate-aspartate shuttle. Patients with CD develop hepatosteatosis and hyperammonemia but there is no effective therapy for CD. Currently, there are no animal models that faithfully recapitulate the human CD phenotype. Accordingly, we generated a CITRIN knockout HepG2 cell line using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9 genome editing technology to study metabolic and cell signaling defects in CD. CITRIN KO cells showed increased ammonia accumulation, higher cytosolic ratio of reduced versus oxidized form of nicotinamide adenine dinucleotide (NAD) and reduced glycolysis. Surprisingly, these cells showed impaired fatty acid metabolism and mitochondrial activity. CITRIN KO cells also displayed increased cholesterol and bile acid metabolism resembling those observed in CD patients. Remarkably, normalizing cytosolic NADH:NAD+ ratio by nicotinamide riboside increased glycolysis and fatty acid oxidation but had no effect on the hyperammonemia suggesting the urea cycle defect was independent of the aspartate/malate shuttle defect of CD. The correction of glycolysis and fatty acid metabolism defects in CITRIN KO cells by reducing cytoplasmic NADH:NAD+ levels suggests this may be a novel strategy to treat some of the metabolic defects of CD and other mitochondrial diseases.


Asunto(s)
Citrulinemia , Hiperamonemia , Humanos , Citrulinemia/genética , Citrulinemia/metabolismo , NAD/metabolismo , Malatos , Ácido Aspártico/metabolismo , Hiperamonemia/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Hepatocitos/metabolismo , Glucólisis , Urea/metabolismo , Ácidos Grasos
8.
Nature ; 567(7747): 253-256, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842655

RESUMEN

Cancer cells exhibit altered and usually increased metabolic processes to meet their high biogenetic demands1,2. Under these conditions, ammonia is concomitantly produced by the increased metabolic processing. However, it is unclear how tumour cells dispose of excess ammonia and what outcomes might be caused by the accumulation of ammonia. Here we report that the tumour suppressor p53, the most frequently mutated gene in human tumours, regulates ammonia metabolism by repressing the urea cycle. Through transcriptional downregulation of CPS1, OTC and ARG1, p53 suppresses ureagenesis and elimination of ammonia in vitro and in vivo, leading to the inhibition of tumour growth. Conversely, downregulation of these genes reciprocally activates p53 by MDM2-mediated mechanism(s). Furthermore, the accumulation of ammonia causes a significant decline in mRNA translation of the polyamine biosynthetic rate-limiting enzyme ODC, thereby inhibiting the biosynthesis of polyamine and cell proliferation. Together, these findings link p53 to ureagenesis and ammonia metabolism, and further reveal a role for ammonia in controlling polyamine biosynthesis and cell proliferation.


Asunto(s)
Amoníaco/metabolismo , Regulación de la Expresión Génica/genética , Poliaminas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Urea/metabolismo , Arginasa/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Proliferación Celular , Humanos , Neoplasias/genética , Neoplasias/patología , Ornitina Carbamoiltransferasa/genética , Ornitina Descarboxilasa/biosíntesis , Ornitina Descarboxilasa/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/genética
9.
Mol Cell ; 68(1): 198-209.e6, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985504

RESUMEN

In addition to responding to environmental entrainment with diurnal variation, metabolism is also tightly controlled by cell-autonomous circadian clock. Extensive studies have revealed key roles of transcription in circadian control. Post-transcriptional regulation for the rhythmic gating of metabolic enzymes remains elusive. Here, we show that arginine biosynthesis and subsequent ureagenesis are collectively regulated by CLOCK (circadian locomotor output cycles kaput) in circadian rhythms. Facilitated by BMAL1 (brain and muscle Arnt-like protein), CLOCK directly acetylates K165 and K176 of argininosuccinate synthase (ASS1) to inactivate ASS1, which catalyzes the rate-limiting step of arginine biosynthesis. ASS1 acetylation by CLOCK exhibits circadian oscillation in human cells and mouse liver, possibly caused by rhythmic interaction between CLOCK and ASS1, leading to the circadian regulation of ASS1 and ureagenesis. Furthermore, we also identified NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 (NDUFA9) and inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) as acetylation substrates of CLOCK. Taken together, CLOCK modulates metabolic rhythmicity by acting as a rhythmic acetyl-transferase for metabolic enzymes.


Asunto(s)
Factores de Transcripción ARNTL/genética , Argininosuccinato Sintasa/genética , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Procesamiento Proteico-Postraduccional , Urea/metabolismo , Factores de Transcripción ARNTL/metabolismo , Acetilación , Animales , Arginina/biosíntesis , Argininosuccinato Sintasa/metabolismo , Proteínas CLOCK/metabolismo , Línea Celular Tumoral , Relojes Circadianos , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Células HEK293 , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoblastos/patología , Transducción de Señal
10.
J Bacteriol ; 206(4): e0003124, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38534115

RESUMEN

A hallmark of Proteus mirabilis infection of the urinary tract is the formation of stones. The ability to induce urinary stone formation requires urease, a nickel metalloenzyme that hydrolyzes urea. This reaction produces ammonia as a byproduct, which can serve as a nitrogen source and weak base that raises the local pH. The resulting alkalinity induces the precipitation of ions to form stones. Transcriptional regulator UreR activates expression of urease genes in a urea-dependent manner. Thus, urease genes are highly expressed in the urinary tract where urea is abundant. Production of mature urease also requires the import of nickel into the cytoplasm and its incorporation into the urease apoenzyme. Urease accessory proteins primarily acquire nickel from one of two nickel transporters and facilitate incorporation of nickel to form mature urease. In this study, we performed a comprehensive RNA-seq to define the P. mirabilis urea-induced transcriptome as well as the UreR regulon. We identified UreR as the first defined regulator of nickel transport in P. mirabilis. We also offer evidence for the direct regulation of the Ynt nickel transporter by UreR. Using bioinformatics, we identified UreR-regulated urease loci in 15 Morganellaceae family species across three genera. Additionally, we located two mobilized UreR-regulated urease loci that also encode the ynt transporter, implying that UreR regulation of nickel transport is a conserved regulatory relationship. Our study demonstrates that UreR specifically regulates genes required to produce mature urease, an essential virulence factor for P. mirabilis uropathogenesis. IMPORTANCE: Catheter-associated urinary tract infections (CAUTIs) account for over 40% of acute nosocomial infections in the USA and generate $340 million in healthcare costs annually. A major causative agent of CAUTIs is Proteus mirabilis, an understudied Gram-negative pathogen noted for its ability to form urinary stones via the activity of urease. Urease mutants cannot induce stones and are attenuated in a murine UTI model, indicating this enzyme is essential to P. mirabilis pathogenesis. Transcriptional regulation of urease genes by UreR is well established; here, we expand the UreR regulon to include regulation of nickel import, a function required to produce mature urease. Furthermore, we reflect on the role of urea catalysis in P. mirabilis metabolism and provide evidence for its importance.


Asunto(s)
Infecciones por Proteus , Infecciones Urinarias , Animales , Ratones , Proteus mirabilis/genética , Ureasa/metabolismo , Níquel/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Urea/metabolismo
11.
Physiol Genomics ; 56(7): 483-491, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738317

RESUMEN

Hypertonic dehydration is associated with muscle wasting and synthesis of organic osmolytes. We recently showed a metabolic shift to amino acid production and urea cycle activation in coronavirus-2019 (COVID-19), consistent with the aestivation response. The aim of the present investigation was to validate the metabolic shift and development of long-term physical outcomes in the non-COVID cohort of the Biobanque Québécoise de la COVID-19 (BQC19). We included 824 patients from BQC19, where 571 patients had data of dehydration in the form of estimated osmolality (eOSM = 2Na + 2K + glucose + urea), and 284 patients had metabolome data and long-term follow-up. We correlated the degree of dehydration to mortality, invasive mechanical ventilation, acute kidney injury, and long-term symptoms. As found in the COVID cohort, higher eOSM correlated with a higher proportion of urea and glucose of total eOSM, and an enrichment of amino acids compared with other metabolites. Sex-stratified analysis indicated that women may show a weaker aestivation response. More severe dehydration was associated with mortality, invasive mechanical ventilation, and acute kidney injury during the acute illness. Importantly, more severe dehydration was associated with physical long-term symptoms but not mental long-term symptoms after adjustment for age, sex, and disease severity. Patients with water deficit in the form of increased eOSM tend to have more severe disease and experience more physical symptoms after an acute episode of care. This is associated with amino acid and urea production, indicating dehydration-induced muscle wasting.NEW & NOTEWORTHY We have previously shown that humans exhibit an aestivation-like response where dehydration leads to a metabolic shift to urea synthesis, which is associated with long-term weakness indicating muscle wasting. In the present study, we validate this response in a new cohort and present a deeper metabolomic analysis and pathway analysis. Finally, we present a sex-stratified analysis suggesting weaker aestivation in women. However, women show less dehydration, so the association warrants further study.


Asunto(s)
COVID-19 , Deshidratación , Metaboloma , Humanos , Femenino , Masculino , Persona de Mediana Edad , Deshidratación/metabolismo , COVID-19/metabolismo , COVID-19/complicaciones , Anciano , Metabolómica/métodos , Respiración Artificial , Lesión Renal Aguda/metabolismo , Adulto , SARS-CoV-2 , Estudios de Cohortes , Aminoácidos/metabolismo , Aminoácidos/sangre , Urea/metabolismo , Urea/sangre , Concentración Osmolar
12.
J Biol Chem ; 299(8): 104958, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380083

RESUMEN

Nitrogen (N) is an essential element for microbial growth and metabolism. The growth and reproduction of microorganisms in more than 75% of areas of the ocean are limited by N. Prochlorococcus is numerically the most abundant photosynthetic organism on the planet. Urea is an important and efficient N source for Prochlorococcus. However, how Prochlorococcus recognizes and absorbs urea still remains unclear. Prochlorococcus marinus MIT 9313, a typical Cyanobacteria, contains an ABC-type transporter, UrtABCDE, which may account for the transport of urea. Here, we heterologously expressed and purified UrtA, the substrate-binding protein of UrtABCDE, detected its binding affinity toward urea, and further determined the crystal structure of the UrtA/urea complex. Molecular dynamics simulations indicated that UrtA can alternate between "open" and "closed" states for urea binding. Based on structural and biochemical analyses, the molecular mechanism for urea recognition and binding was proposed. When a urea molecule is bound, UrtA undergoes a state change from open to closed surrounding the urea molecule, and the urea molecule is further stabilized by the hydrogen bonds supported by the conserved residues around it. Moreover, bioinformatics analysis showed that ABC-type urea transporters are widespread in bacteria and probably share similar urea recognition and binding mechanisms as UrtA from P. marinus MIT 9313. Our study provides a better understanding of urea absorption and utilization in marine bacteria.


Asunto(s)
Prochlorococcus , Agua de Mar , Transportadoras de Casetes de Unión a ATP/metabolismo , Prochlorococcus/metabolismo , Urea/metabolismo , Agua de Mar/microbiología
13.
Int J Cancer ; 155(4): 742-755, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647131

RESUMEN

Alteration of cell metabolism is one of the essential characteristics of tumor growth. Cancer stem cells (CSCs) are the initiating cells of tumorigenesis, proliferation, recurrence, and other processes, and play an important role in therapeutic resistance and metastasis. Thus, identification of the metabolic profiles in prostate cancer stem cells (PCSCs) is critical to understanding prostate cancer progression. Using untargeted metabolomics and lipidomics methods, we show distinct metabolic differences between prostate cancer cells and PCSCs. Urea cycle is the most significantly altered metabolic pathway in PCSCs, the key metabolites arginine and proline are evidently elevated. Proline promotes cancer stem-like characteristics via the JAK2/STAT3 signaling pathway. Meanwhile, the enzyme pyrroline-5-carboxylate reductase 1 (PYCR1), which catalyzes the conversion of pyrroline-5-carboxylic acid to proline, is highly expressed in PCSCs, and the inhibition of PYCR1 suppresses the stem-like characteristics of prostate cancer cells and tumor growth. In addition, carnitine and free fatty acid levels are significantly increased, indicating reprogramming of fatty acid metabolism in PCSCs. Reduced sphingolipid levels and increased triglyceride levels are also observed. Collectively, our data illustrate the comprehensive landscape of the metabolic reprogramming of PCSCs and provide potential therapeutic strategies for prostate cancer.


Asunto(s)
Células Madre Neoplásicas , Neoplasias de la Próstata , Pirrolina Carboxilato Reductasas , Urea , delta-1-Pirrolina-5-Carboxilato Reductasa , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pirrolina Carboxilato Reductasas/metabolismo , Urea/metabolismo , Animales , Ratones , Línea Celular Tumoral , Transducción de Señal , Janus Quinasa 2/metabolismo , Metabolómica/métodos , Prolina/metabolismo , Factor de Transcripción STAT3/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Proliferación Celular , Lipidómica/métodos
14.
Biochem Biophys Res Commun ; 735: 150801, 2024 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-39437702

RESUMEN

Urea is present in all ecosystems, as a result of the metabolism of different organisms and also of human activity, being the world's most common form of nitrogen fertilizer. Fungi and plants can use urea as a nitrogen source, taking it up from the environment through specialized active transport proteins. These proteins belong to a subfamily of urea/H+ symporters included in the Solute:Sodium Symporter (SSS) family of transporters. In this review we summarize the current knowledge on this group of transporters, based on our previous studies on Aspergillus nidulans UreA. We delve into its transcriptional and post-translational regulation, structure-function relationships, transport mechanism, and certain aspects of its biogenesis. Recent findings suggest that this urea transporter subfamily is more expanded than originally thought, with representatives found in organisms as diverse as Archaea and mollusks, which raises questions on evolutionary aspects. A. nidulans ureA knockout strains provide a valuable platform for expressing urea transporters from diverse sources, facilitating their characterization and functional analysis. In this context, given the close relationship between plant and fungal active urea transporters, this knowledge could serve to develop strategies to improve the efficiency of applied urea as fertilizer.


Asunto(s)
Aspergillus nidulans , Proteínas de Transporte de Membrana , Urea , Aspergillus nidulans/metabolismo , Aspergillus nidulans/genética , Urea/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Transportadores de Urea , Plantas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Transporte Biológico Activo , Transporte Biológico
15.
BMC Plant Biol ; 24(1): 919, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354385

RESUMEN

In the rice-based system of mid-latitudes, mineral nitrogen (N) fertilizer serves as the largest source of the N cycle due to an insufficient supply of N from organic sources causing higher N losses due to varying soil and environmental factors. However, aiming to improve soil organic matter (OM) and nutrients availability using the best environmentally, socially, and economically sustainable cultural and agronomic management practices are necessary. This study aimed to enhance nitrogen use efficiency (NUE) and grain yield in rice-based systems of mid-latitudes by partially replacing inorganic N fertilizer with organic inputs. A randomized complete block design (RCBD) was employed to evaluate the effects of sole mineral N fertilizer (urea) and its combinations with organic sources-farmyard manure (FYM) and poultry compost-on different elite green super rice (GSR) genotypes and were named as NUYT-1, NUYT-2, NUYT-3, NUYT-4, NUYT-5, and NUYT-6. The study was conducted during the 2022 and 2023 rice growing seasons at the Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Islamabad, one of the mid-latitudes of Pakistan. The key objective was to determine the most effective N management strategy for optimizing plant growth, N content in soil and plants, and overall crop productivity. The results revealed that the combined application of poultry compost and mineral urea significantly enhanced soil and leaf N content (1.36 g kg- 1 and 3.06 mg cm- 2, respectively) and plant morphophysiological traits compared to sole urea application. Maximum shoot dry weight (SDW) and root dry weight (RDW) were observed in compost-applied treatment with the values of 77.62 g hill- 1 and 8.36 g hill- 1, respectively. The two-year mean data indicated that applying 150 kg N ha⁻1, with half provided by organic sources (10 tons ha⁻1 FYM or poultry compost) and the remainder by mineral urea, resulted in the highest N uptake, utilization, and plant productivity. Thus, integrated management of organic carbon sources and inorganic fertilizers may sustain the productivity of rice-based systems more eco-efficiently. Further research is recommended to explore root and shoot morphophysiological, molecular, and biochemical responses under varying N regimes, aiming to develop N-efficient rice varieties through advanced breeding programs.


Asunto(s)
Fertilizantes , Nitrógeno , Oryza , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Fertilizantes/análisis , Nitrógeno/metabolismo , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Suelo/química , Pakistán , Estiércol , Urea/metabolismo , Agricultura/métodos , Compostaje/métodos , Producción de Cultivos/métodos
16.
Mol Genet Metab ; 141(3): 108112, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301530

RESUMEN

OBJECTIVE: Liver transplantation (LTx) is an intervention when medical management is not sufficiently preventing individuals with urea cycle disorders (UCDs) from the occurrence of hyperammonemic events. Supplementation with L-citrulline/arginine is regularly performed prior to LTx to support ureagenesis and is often continued after the intervention. However, systematic studies assessing the impact of long-term L-citrulline/arginine supplementation in individuals who have undergone LTx is lacking to date. METHODS: Using longitudinal data collected systematically, a comparative analysis was carried out by studying the effects of long-term L-citrulline/arginine supplementation vs. no supplementation on health-related outcome parameters (i.e., anthropometric, neurological, and cognitive outcomes) in individuals with UCDs who have undergone LTx. Altogether, 52 individuals with male ornithine transcarbamylase deficiency, citrullinemia type 1 and argininosuccinic aciduria and a pre-transplant "severe" disease course who have undergone LTx were investigated by using recently established and validated genotype-specific in vitro enzyme activities. RESULTS: Long-term supplementation of individuals with L-citrulline/arginine who have undergone LTx (n = 16) does neither appear to alter anthropometric nor neurocognitive endpoints when compared to their severity-adjusted counterparts that were not supplemented (n = 36) after LTx with mean observation periods between four to five years. Moreover, supplementation with L-citrulline/arginine was not associated with an increase of disease-specific plasma arithmetic mean values for the respective amino acids when compared to the non-supplemented control cohort. CONCLUSION: Although supplementation with L-citrulline/arginine is often continued after LTx, this pilot study does neither identify altered long-term anthropometric or neurocognitive health-related outcomes nor does it find an adequate biochemical response as reflected by the unaltered plasma arithmetic mean values for L-citrulline or L-arginine. Further prospective analyses in larger samples and even longer observation periods will provide more insight into the usefulness of long-term supplementation with L-citrulline/arginine for individuals with UCDs who have undergone LTx.


Asunto(s)
Trasplante de Hígado , Trastornos Innatos del Ciclo de la Urea , Masculino , Humanos , Citrulina/uso terapéutico , Arginina/metabolismo , Proyectos Piloto , Trastornos Innatos del Ciclo de la Urea/tratamiento farmacológico , Trastornos Innatos del Ciclo de la Urea/cirugía , Suplementos Dietéticos , Urea/metabolismo
17.
Curr Opin Nephrol Hypertens ; 33(5): 512-517, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38934092

RESUMEN

PURPOSE OF REVIEW: Highlight the mechanisms through which vasopressin and hypertonic stress regulate protein metabolism. RECENT FINDINGS: Mammals have an 'aestivation-like' response in which hypertonic stress increases muscle catabolism and urea productionVasopressin can directly regulate ureagenesis in the liver and the kidneyIn humans chronic hypertonic stress is associated with premature aging, diabetes, cardiovascular disease, and premature mortality. SUMMARY: There is an evolutionarily conserved 'aestivation-like' response in humans in which hypertonic stress results in activation of the vasopressin system, muscle catabolism, and ureagenesis in order to promote water conservation.


Asunto(s)
Vasopresinas , Humanos , Animales , Vasopresinas/metabolismo , Urea/metabolismo , Riñón/metabolismo , Proteínas/metabolismo , Hígado/metabolismo
18.
Liver Int ; 44(10): 2651-2659, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39016195

RESUMEN

BACKGROUND & AIMS: Ammonia is metabolized into urea in the liver. In acute liver failure (ALF), ammonia has been associated with survival. However, urea variation has been poorly studied. METHODS: Observational cohort including ALF patients from Curry Cabral Hospital (Lisbon, Portugal) and Clinic Hospital (Barcelona, Spain) between 10/2010 and 01/2023. The United States ALF Study Group cohort was used for external validation. Primary exposures were serum ammonia and urea on ICU admission. Primary endpoint was 30-day transplant-free survival (TFS). Secondary endpoint was explanted liver weight. RESULTS: Among 191 ALF patients, median (IQR) age was 46 (32; 57) years and 85 (44.5%) were males. Overall, 86 (45.0%) patients were transplanted and 75 (39.3%) died. Among all ALF patients, following adjustment for age, sex, body weight, and aetiology, higher ammonia or lower urea was independently associated with higher INR on ICU admission (p < .009). Among all ALF patients, following adjustment for sex, aetiology, and lactate, higher ammonia was independently associated with lower TFS (adjusted odds ratio (95% confidence interval [CI]) = 0.991 (0.985; 0.997); p = .004). This model predicted TFS with good discrimination (area under receiver operating curve [95% CI] = 0.78 [0.75; 0.82]) and reasonable calibration (R2 of 0.43 and Brier score of 0.20) after external validation. Among transplanted patients, following adjustment for age, sex, actual body weight, and aetiology, higher ammonia (p = .024) or lower (p < .001) urea was independently associated with lower explanted liver weight. CONCLUSIONS: Among ALF patients, serum ammonia and urea were associated with ALF severity. A score incorporating serum ammonia predicted TFS reasonably well.


Asunto(s)
Amoníaco , Fallo Hepático Agudo , Urea , Humanos , Masculino , Femenino , Amoníaco/sangre , Persona de Mediana Edad , Fallo Hepático Agudo/sangre , Fallo Hepático Agudo/mortalidad , Urea/sangre , Urea/metabolismo , Adulto , Portugal , España , Trasplante de Hígado , Hígado/metabolismo , Curva ROC , Estudios de Cohortes
19.
PLoS Comput Biol ; 19(5): e1011099, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37200380

RESUMEN

The druggability of small-molecule binding sites can be significantly affected by protein motions and conformational changes. Ligand binding, protein dynamics and protein function have been shown to be closely interconnected in myosins. The breakthrough discovery of omecamtiv mecarbil (OM) has led to an increased interest in small molecules that can target myosin and modulate its function for therapeutic purposes (myosin modulators). In this work, we use a combination of computational methods, including steered molecular dynamics, umbrella sampling and binding pocket tracking tools, to follow the evolution of the OM binding site during the recovery stroke transition of human ß-cardiac myosin. We found that steering two internal coordinates of the motor domain can recapture the main features of the transition and in particular the rearrangements of the binding site, which shows significant changes in size, shape and composition. Possible intermediate conformations were also identified, in remarkable agreement with experimental findings. The differences in the binding site properties observed along the transition can be exploited for the future development of conformation-selective myosin modulators.


Asunto(s)
Miosinas Cardíacas , Miosinas Ventriculares , Humanos , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Miosinas Ventriculares/química , Miosinas Ventriculares/metabolismo , Corazón , Miocardio/metabolismo , Miosinas/química , Urea/metabolismo
20.
J Inherit Metab Dis ; 47(1): 50-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37026568

RESUMEN

Urea cycle defects (UCDs) are severe inherited metabolic diseases with high unmet needs which present a permanent risk of hyperammonaemic decompensation and subsequent acute death or neurological sequelae, when treated with conventional dietetic and medical therapies. Liver transplantation is currently the only curative option, but has the potential to be supplanted by highly effective gene therapy interventions without the attendant need for life-long immunosuppression or limitations imposed by donor liver supply. Over the last three decades, pioneering genetic technologies have been explored to circumvent the consequences of UCDs, improve quality of life and long-term outcomes: adenoviral vectors, adeno-associated viral vectors, gene editing, genome integration and non-viral technology with messenger RNA. In this review, we present a summarised view of this historical path, which includes some seminal milestones of the gene therapy's epic. We provide an update about the state of the art of gene therapy technologies for UCDs and the current advantages and pitfalls driving future directions for research and development.


Asunto(s)
Trasplante de Hígado , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Trastornos Innatos del Ciclo de la Urea , Humanos , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Calidad de Vida , Urea/metabolismo , Donadores Vivos , Terapia Genética , Trastornos Innatos del Ciclo de la Urea/genética , Trastornos Innatos del Ciclo de la Urea/terapia , Trastornos Innatos del Ciclo de la Urea/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA