Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 565(7741): 650-653, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651637

RESUMEN

Fungi-induced plant diseases affect global food security and plant ecology. The biotrophic fungus Ustilago maydis causes smut disease in maize (Zea mays) plants by secreting numerous virulence effectors that reprogram plant metabolism and immune responses1,2. The secreted fungal chorismate mutase Cmu1 presumably affects biosynthesis of the plant immune signal salicylic acid by channelling chorismate into the phenylpropanoid pathway3. Here we show that one of the 20 maize-encoded kiwellins (ZmKWL1) specifically blocks the catalytic activity of Cmu1. ZmKWL1 hinders substrate access to the active site of Cmu1 through intimate interactions involving structural features that are specific to fungal Cmu1 orthologues. Phylogenetic analysis suggests that plant kiwellins have a versatile scaffold that can specifically counteract pathogen effectors such as Cmu1. We reveal the biological activity of a member of the kiwellin family, a widely conserved group of proteins that have previously been recognized only as important human allergens.


Asunto(s)
Antígenos de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Ustilago/metabolismo , Ustilago/patogenicidad , Factores de Virulencia/metabolismo , Zea mays/metabolismo , Zea mays/microbiología , Corismato Mutasa/antagonistas & inhibidores , Corismato Mutasa/química , Corismato Mutasa/metabolismo , Ácido Corísmico/metabolismo , Modelos Moleculares , Filogenia , Enfermedades de las Plantas/inmunología , Ácido Salicílico/inmunología , Ustilago/enzimología , Zea mays/inmunología
2.
New Phytol ; 241(4): 1747-1762, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037456

RESUMEN

Ustilago maydis is a biotrophic fungus that causes tumor formation on all aerial parts of maize. U. maydis secretes effector proteins during penetration and colonization to successfully overcome the plant immune response and reprogram host physiology to promote infection. In this study, we functionally characterized the U. maydis effector protein Topless (TPL) interacting protein 6 (Tip6). We found that Tip6 interacts with the N-terminus of RELK2 through its two Ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. We show that the EAR motifs are essential for the virulence function of Tip6 and critical for altering the nuclear distribution pattern of RELK2. We propose that Tip6 mimics the recruitment of RELK2 by plant repressor proteins, thus disrupting host transcriptional regulation. We show that a large group of AP2/ERF B1 subfamily transcription factors are misregulated in the presence of Tip6. Our study suggests a regulatory mechanism where the U. maydis effector Tip6 utilizes repressive domains to recruit the corepressor RELK2 to disrupt the transcriptional networks of the host plant.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Ustilago , Enfermedades de las Plantas/microbiología , Zea mays/microbiología , Ustilago/metabolismo , Proteínas Co-Represoras/metabolismo , Carcinogénesis , Proteínas Fúngicas/metabolismo
3.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-39038994

RESUMEN

Ustilago maydis and Ustilago cynodontis are natural producers of a broad range of valuable molecules including itaconate, malate, glycolipids, and triacylglycerols. Both Ustilago species are insensitive toward medium impurities, and have previously been engineered for efficient itaconate production and stabilized yeast-like growth. Due to these features, these strains were already successfully used for the production of itaconate from different alternative feedstocks such as molasses, thick juice, and crude glycerol. Here, we analyzed the amylolytic capabilities of Ustilago species for metabolization of starch, a highly abundant and low-cost polymeric carbohydrate widely utilized as a substrate in several biotechnological processes. Ustilago cynodontis was found to utilize gelatinized potato starch for both growth and itaconate production, confirming the presence of extracellular amylolytic enzymes in Ustilago species. Starch was rapidly degraded by U. cynodontis, even though no α-amylase was detected. Further experiments indicate that starch hydrolysis is caused by the synergistic action of glucoamylase and α-glucosidase enzymes. The enzymes showed a maximum activity of around 0.5 U ml-1 at the fifth day after inoculation, and also released glucose from additional substrates, highlighting potential broader applications. In contrast to U. cynodontis, U. maydis showed no growth on starch accompanied with no detectable amylolytic activity.


Asunto(s)
Almidón , Succinatos , Ustilago , Ustilago/metabolismo , Ustilago/genética , Ustilago/enzimología , Ustilago/crecimiento & desarrollo , Almidón/metabolismo , Succinatos/metabolismo , Glucano 1,4-alfa-Glucosidasa/metabolismo , Hidrólisis
4.
Biotechnol Bioeng ; 121(6): 1846-1858, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494797

RESUMEN

Itaconic acid is a platform chemical with a range of applications in polymer synthesis and is also discussed for biofuel production. While produced in industry from glucose or sucrose, co-feeding of glucose and acetate was recently discussed to increase itaconic acid production by the smut fungus Ustilago maydis. In this study, we investigate the optimal co-feeding conditions by interlocking experimental and computational methods. Flux balance analysis indicates that acetate improves the itaconic acid yield up to a share of 40% acetate on a carbon molar basis. A design of experiment results in the maximum yield of 0.14 itaconic acid per carbon source from 100 g L - 1 $\,\text{g L}{}^{-1}$ glucose and 12 g L - 1 $\,\text{g L}{}^{-1}$ acetate. The yield is improved by around 22% when compared to feeding of glucose as sole carbon source. To further improve the yield, gene deletion targets are discussed that were identified using the metabolic optimization tool OptKnock. The study contributes ideas to reduce land use for biotechnology by incorporating acetate as co-substrate, a C2-carbon source that is potentially derived from carbon dioxide.


Asunto(s)
Glucosa , Modelos Biológicos , Succinatos , Glucosa/metabolismo , Succinatos/metabolismo , Ustilago/metabolismo , Ustilago/genética , Basidiomycota
5.
Microb Cell Fact ; 23(1): 204, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033104

RESUMEN

The global demand for plant oil has reached unprecedented levels and is relevant in all industrial sectors. Driven by the growing awareness for environmental issues of traditional plant oils and the need for eco-friendly alternatives, microbial oil emerges as a promising product with significant potential. Harnessing the capabilities of oleaginous microorganisms is an innovative approach for achieving sustainable oil production. To increase economic feasibility, it is crucial to explore feedstocks such as agricultural waste streams as renewable resource for microbial bioprocesses. The fungal model Ustilago maydis is one promising organism in the field of microbial triglyceride production. It has the ability to metabolize a wide variety of carbon sources for cell growth and accumulates high amounts of triglycerides intracellularly. In this study we asked whether this large variety of usable carbon sources can also be utilized for triglyceride production, using corn stover saccharides as a showcase.Our experiments revealed metabolization of the major saccharide building blocks present in corn stover, demonstrating the remarkable potential of U. maydis. The microorganism exhibited the capacity to synthesize triglycerides using the saccharides glucose, fructose, sucrose, xylose, arabinose, and galactose as carbon source. Notably, while galactose has been formerly considered as toxic to U. maydis, we found that the fungus can metabolize this saccharide, albeit with an extended lag phase of around 100 hours. We identified two distinct methods to significantly reduce or even prevent this lag phase, challenging previous assumptions and expanding the understanding of U. maydis metabolism.Our findings suggest that the two tested methods can prevent long lag phases on feedstocks with high galactose content and that U. maydis can produce microbial triglycerides very efficiently on many different carbon sources. Looking forward, exploring the metabolic capabilities of U. maydis on additional polymeric components of corn stover and beyond holds promise for innovative applications, marking a significant step toward environmentally sustainable bioprocessing technologies.


Asunto(s)
Galactosa , Triglicéridos , Zea mays , Zea mays/metabolismo , Triglicéridos/metabolismo , Galactosa/metabolismo , Carbono/metabolismo , Ustilago/metabolismo , Basidiomycota
6.
Mol Microbiol ; 117(2): 334-352, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34817894

RESUMEN

Early endosomes (EEs) are part of the endocytic transport pathway and resemble the earliest class of transport vesicles between the internalization of extracellular material, their cellular distribution or vacuolar degradation. In filamentous fungi, EEs fulfill important functions in long distance transport of cargoes as mRNAs, ribosomes, and peroxisomes. Formation and maturation of early endosomes is controlled by the specific membrane-bound Rab-GTPase Rab5 and tethering complexes as CORVET (class C core vacuole/endosome tethering). In the basidiomycete Ustilago maydis, Rab5a is the prominent GTPase to recruit CORVET to EEs; in rab5a deletion strains, this function is maintained by the second EE-associated GTPase Rab5b. The tethering- and core-subunits of CORVET are essential, buttressing a central role for EE transport in U. maydis. The function of EEs in long distance transport is supported by the Nma1 protein that interacts with the Vps3 subunit of CORVET. The interaction stabilizes the binding of Vps3 to the CORVET core complex that is recruited to Rab5a via Vps8. Deletion of nma1 leads to a significantly reduced number of EEs, and an increased conversion rate of EEs to late endosomes. Thus, Nma1 modulates the lifespan of EEs to ensure their availability for the various long distance transport processes.


Asunto(s)
Basidiomycota , Proteínas de Saccharomyces cerevisiae , Ustilago , Basidiomycota/metabolismo , Endosomas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ustilago/genética , Ustilago/metabolismo , Proteínas de Transporte Vesicular/metabolismo
7.
Yeast ; 40(2): 102-116, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36562128

RESUMEN

Ustilago maydis expresses a number of proteases during its pathogenic lifecycle. Some of the proteases including both intracellular and extracellular ones have previously been shown to influence the virulence of the pathogen. However, any role of secreted proteases in the sporulation process of U. maydis have not been explored earlier. In this study we have investigated the biological function of one such secreted protease, Ger1 belonging to aspartic protease A1 family. An assessment of the real time expression of ger1 revealed an infection specific expression of the protein especially during late phases of infection. We also evaluated any contribution of the protein in the pathogenicity of the fungus. Our data revealed an involvement of Ger1 in the sporulation and spore germination processes of U. maydis. Ger1 also showed positive influence on the pathogenicity of the fungus and accordingly the ger1 deletion mutant exhibited reduced pathogenicity. The study also demonstrated the protease activity associated with Ger1 to be essential for its biological function. Fluorescence microscopy of maize plants infected with U. maydis cells expressing Ger1-mcherry-HA also revealed that Ger1 is efficiently secreted within maize apoplast.


Asunto(s)
Proteasas de Ácido Aspártico , Basidiomycota , Ustilago , Proteasas de Ácido Aspártico/genética , Proteasas de Ácido Aspártico/metabolismo , Ustilago/genética , Ustilago/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporas/metabolismo
8.
J Exp Bot ; 74(15): 4736-4750, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37225161

RESUMEN

Plant pathogens secrete effectors, which target host proteins to facilitate infection. The Ustilago maydis effector UmSee1 is required for tumor formation in the leaf during infection of maize. UmSee1 interacts with maize SGT1 (suppressor of G2 allele of skp1) and blocks its phosphorylation in vivo. In the absence of UmSee1, U. maydis cannot trigger tumor formation in the bundle sheath. However, it remains unclear which host processes are manipulated by UmSee1 and the UmSee1-SGT1 interaction to cause the observed phenotype. Proximity-dependent protein labeling involving the turbo biotin ligase tag (TurboID) for proximal labeling of proteins is a powerful tool for identifying the protein interactome. We have generated transgenic U. maydis that secretes biotin ligase-fused See1 effector (UmSee1-TurboID-3HA) directly into maize cells. This approach, in combination with conventional co-immunoprecipitation, allowed the identification of additional UmSee1 interactors in maize cells. Collectively, our data identified three ubiquitin-proteasome pathway-related proteins (ZmSIP1, ZmSIP2, and ZmSIP3) that either interact with or are close to UmSee1 during host infection of maize with U. maydis. ZmSIP3 represents a cell cycle regulator whose degradation appears to be promoted in the presence of UmSee1. Our data provide a possible explanation of the requirement for UmSee1 in tumor formation during U. maydis-Zea mays interaction.


Asunto(s)
Neoplasias , Ustilago , Enfermedades de las Plantas/microbiología , Zea mays/metabolismo , Ustilago/genética , Ustilago/metabolismo , Biotina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ligasas/metabolismo
9.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834187

RESUMEN

Common smut caused by Ustilago maydis is one of the dominant fungal diseases in plants. The resistance mechanism to U. maydis infection involving alterations in the cell wall is poorly studied. In this study, the resistant single segment substitution line (SSSL) R445 and its susceptible recurrent parent line Ye478 of maize were infected with U. maydis, and the changes in cell wall components and structure were studied at 0, 2, 4, 8, and 12 days postinfection. In R445 and Ye478, the contents of cellulose, hemicellulose, pectin, and lignin increased by varying degrees, and pectin methylesterase (PME) activity increased. The changes in hemicellulose and pectin in the cell wall after U. maydis infection were analyzed via immunolabeling using monoclonal antibodies against hemicellulsic xylans and high/low-methylated pectin. U. maydis infection altered methyl esterification of pectin, and the degree of methyl esterification was correlated with the resistance of maize to U. maydis. Furthermore, the relationship between methyl esterification of pectin and host resistance was validated using 15 maize inbred lines with different resistance levels. The results revealed that cell wall components, particularly pectin, were important factors affecting the colonization and propagation of U. maydis in maize, and methyl esterification of pectin played a role in the resistance of maize to U. maydis infection.


Asunto(s)
Enfermedades de las Plantas , Ustilago , Enfermedades de las Plantas/microbiología , Esterificación , Zea mays/metabolismo , Pectinas/metabolismo , Ustilago/metabolismo , Pared Celular/metabolismo
10.
Fungal Genet Biol ; 152: 103565, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33991665

RESUMEN

Fungal dimorphism is a phenomenon by which a fungus can grow both as a yeast form and a hyphal form. It is frequently related to pathogenicity as different growth forms are more suitable for different functions during a life cycle. Among dimorphic plant pathogens, the corn smut fungus Ustilago maydis serves as a model organism to understand fungal dimorphism and its effect on pathogenicity. However, there is a lack of data on whether mechanisms elucidated from model species are broadly applicable to other fungi. In this study, two non-model plant-associated species in the smut fungus subphylum (Ustilaginomycotina), Tilletiopsis washingtonensis and Meira miltonrushii, were selected to compare dimorphic mechanisms in these to those in U. maydis. We sequenced transcriptomic profiles during both yeast and hyphal growth in these two species using Tween40, a lipid mimic, as a trigger for hyphal growth. We then compared our data with previously published data from U. maydis and a fourth but unrelated dimorphic phytopathogen, Ophiostoma novo-ulmi. Comparative transcriptomics was performed to identify common genes upregulated during hyphal growth in all four dimorphic species. Intriguingly, T. washingtonensis shares the least similarities of transcriptomic alteration (hyphal growth versus yeast growth) with the others, although it is closely related to M. miltonrushii and U. maydis. This suggests that phylogenetic relatedness is not correlated with transcriptomic similarity under the same biological phenomenon. Among commonly expressed genes in the four species, genes in cell energy production and conversion, amino acid transport and metabolism and cytoskeleton are significantly enriched. Considering dimorphism genes characterized in U. maydis, as well as hyphal tip-associated genes from the literature, we found only genes encoding the cell end marker Tea4/TeaC and the kinesin motor protein Kin3 concordantly expressed in all four species. This suggests a divergence in species-specific mechanisms for dimorphic transition and hyphal growth.


Asunto(s)
Hongos/genética , Hongos/metabolismo , Hifa/crecimiento & desarrollo , Hifa/genética , Hifa/metabolismo , Plantas/microbiología , Transcriptoma , Basidiomycota/genética , Hongos/clasificación , Hongos/crecimiento & desarrollo , Ophiostoma , Filogenia , Ustilaginales , Ustilago/genética , Ustilago/crecimiento & desarrollo , Ustilago/metabolismo , Levaduras , Zea mays/microbiología
11.
Fungal Genet Biol ; 152: 103570, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34004340

RESUMEN

Ustilago maydis encodes ten predicted light-sensing proteins. The biological functions of only a few of them are elucidated. Among the characterized ones are two DNA-photolyases and two rhodopsins that act as DNA-repair enzymes or green light-driven proton pumps, respectively. Here we report on the role of two other photoreceptors in U. maydis, namely White collar 1 (Wco1) and Phytochrome 1 (Phy1). We show that they bind flavins or biliverdin as chromophores, respectively. Both photoreceptors undergo a photocycle in vitro. Wco1 is the dominant blue light receptor in the saprophytic phase, controlling all of the 324 differentially expressed genes in blue light. U. maydis also responds to red and far-red light. However, the number of red or far-red light-controlled genes is less compared to blue light-regulated ones. Moreover, most of the red and far-red light-controlled genes not only depend on Phy1 but also on Wco1, indicating partial coregulation of gene expression by both photoreceptors. GFP-fused Wco1 is preferentially located in the nucleus, Phy1 in the cytosol, thus providing no hint that these photoreceptors directly interact or operate within the same complex. This is the first report on a functional characterization and coaction of White collar 1 and phytochrome orthologs in basidiomycetes.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Fitocromo/genética , Fitocromo/metabolismo , Ustilago/genética , Ustilago/metabolismo , Basidiomycota , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Genes Fúngicos/genética , Luz , Fitocromo/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Ustilago/efectos de los fármacos , Ustilago/efectos de la radiación
12.
PLoS Biol ; 16(4): e2005129, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29684023

RESUMEN

Large-scale insertional mutagenesis screens can be powerful genome-wide tools if they are streamlined with efficient downstream analysis, which is a serious bottleneck in complex biological systems. A major impediment to the success of next-generation sequencing (NGS)-based screens for virulence factors is that the genetic material of pathogens is often underrepresented within the eukaryotic host, making detection extremely challenging. We therefore established insertion Pool-Sequencing (iPool-Seq) on maize infected with the biotrophic fungus U. maydis. iPool-Seq features tagmentation, unique molecular barcodes, and affinity purification of pathogen insertion mutant DNA from in vivo-infected tissues. In a proof of concept using iPool-Seq, we identified 28 virulence factors, including 23 that were previously uncharacterized, from an initial pool of 195 candidate effector mutants. Because of its sensitivity and quantitative nature, iPool-Seq can be applied to any insertional mutagenesis library and is especially suitable for genetically complex setups like pooled infections of eukaryotic hosts.


Asunto(s)
Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutagénesis Insercional/métodos , Ustilago/genética , Factores de Virulencia/genética , Zea mays/microbiología , Elementos Transponibles de ADN , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Interacciones Huésped-Patógeno , Mutación , Enfermedades de las Plantas/microbiología , Ustilago/metabolismo , Ustilago/patogenicidad , Virulencia , Factores de Virulencia/metabolismo
13.
EMBO Rep ; 20(9): e47381, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31338952

RESUMEN

mRNA transport determines spatiotemporal protein expression. Transport units are higher-order ribonucleoprotein complexes containing cargo mRNAs, RNA-binding proteins and accessory proteins. Endosomal mRNA transport in fungal hyphae belongs to the best-studied translocation mechanisms. Although several factors are known, additional core components are missing. Here, we describe the 232 kDa protein Upa2 containing multiple PAM2 motifs (poly[A]-binding protein [Pab1]-associated motif 2) as a novel core component. Loss of Upa2 disturbs transport of cargo mRNAs and associated Pab1. Upa2 is present on almost all transport endosomes in an mRNA-dependent manner. Surprisingly, all four PAM2 motifs are dispensable for function during unipolar hyphal growth. Instead, Upa2 harbours a novel N-terminal effector domain as important functional determinant as well as a C-terminal GWW motif for specific endosomal localisation. In essence, Upa2 meets all the criteria of a novel core component of endosomal mRNA transport and appears to carry out crucial scaffolding functions.


Asunto(s)
Endosomas/metabolismo , Proteínas Fúngicas/metabolismo , ARN Mensajero/metabolismo , Ustilago/metabolismo , Transporte Biológico/fisiología , Western Blotting , Biología Computacional , Proteínas Fúngicas/genética , Microscopía Fluorescente , Filogenia , Técnicas del Sistema de Dos Híbridos , Ustilago/genética
14.
Plant Physiol ; 179(4): 1373-1385, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30593452

RESUMEN

The basidiomycete Ustilago maydis causes smut disease in maize (Zea mays) by infecting all plant aerial tissues. The infection causes leaf chlorosis and stimulates the plant to produce nutrient-rich niches (i.e. tumors), where the fungus can proliferate and complete its life cycle. Previous studies have recorded high accumulation of soluble sugars and starch within these tumors. Using interdisciplinary approaches, we found that the sugar accumulation within tumors coincided with the differential expression of plant sugars will eventually be exported transporters and the proton/sucrose symporter Sucrose Transporter1 To accumulate plant sugars, the fungus deploys its own set of sugar transporters, generating a sugar gradient within the fungal cytosol, recorded by expressing a cytosolic glucose (Glc) Förster resonance energy transfer sensor. Our measurements indicated likely elevated Glc levels in hyphal tips during infection. Growing infected plants under dark conditions led to decreased plant sugar levels and loss of the fungal tip Glc gradient, supporting a tight link between fungal sugar acquisition and host supplies. Finally, the fungal infection causes a strong imbalance in plant sugar distribution, ultimately impacting seed set and yield.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Interacciones Huésped-Patógeno , Proteínas de Transporte de Monosacáridos/metabolismo , Ustilago/metabolismo , Zea mays/microbiología , Transferencia Resonante de Energía de Fluorescencia , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
15.
Arch Microbiol ; 202(8): 2221-2232, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32529509

RESUMEN

We report the characterization of the gene UMAG_00031 from Ustilago maydis, previously identified as upregulated at alkaline pH. This gene is located on chromosome 1 and contains an ORF of 1539 bp that encodes a putative protein of 512 amino acids with an MW of 54.8 kDa. The protein is predicted to contain seven transmembrane domains (TMDs) and a signal peptide suggesting that is located in the cell membrane. Null ΔUMAG_00031 mutants were constructed, and their phenotype was analyzed. The mutant displayed a pleiotropic phenotype suggesting its participation in processes of alkaline pH adaptation independent of the Pal/Rim pathway. Also, it was involved in the dimorphic process induced by fatty acids. These results indicate that the protein encoded by the UMAG_00031 gene possibly functions as a receptor of different signals in the cell membrane of the fungus.


Asunto(s)
Genes Fúngicos/genética , Proteínas de la Membrana/genética , Morfogénesis/genética , Ustilago/genética , Ustilago/metabolismo , Adaptación Fisiológica/genética , Proteínas Fúngicas/genética , Concentración de Iones de Hidrógeno , Fenotipo , Regulación hacia Arriba
16.
Mol Membr Biol ; 35(1): 39-50, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31617434

RESUMEN

At present, the planet faces a change in the composition and bioavailability of nutrients. Zinc deficiency is a widespread problem throughout the world. It is imperative to understand the mechanisms that organisms use to adapt to the deficiency of this micronutrient. In the Ascomycetes fungi, the ZIP family of proteins is one of the most important for zinc transport and includes high affinity Zrt1p and low zinc affinity Zrt2p transporters. After identification and characterization of ZRT1/ZRT2-like genes in Ustilago maydis we conclude that they encode for high and low zinc affinity transporters, with no apparent iron transport activity. These conclusions were supported by the gene deletion in Ustilago and the functional characterization of ZRT1/ZRT2-like genes by measuring the intracellular zinc content over a range of zinc availability. The functional complementation of the S. cerevisiae ZRT1Δ ZRT2Δ mutant with U. maydis genes supports this as well. U. maydis ZRT2 gene, was found to be regulated by pH through Rim101 pathway, thus providing novel insights into how this Basidiomycota fungus can adapt to different levels of Zn availability.


Asunto(s)
Proteínas Portadoras , Proteínas Fúngicas , Transducción de Señal , Ustilago , Zinc/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ustilago/genética , Ustilago/metabolismo
17.
J Struct Biol ; 207(3): 312-316, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31288039

RESUMEN

In many eukaryotes, kinesin-5 motors are essential for mitosis, and small molecules that inhibit human kinesin-5 disrupt cell division. To investigate whether fungal kinesin-5s could be targets for novel fungicides, we studied kinesin-5 from the pathogenic fungus Ustilago maydis. We used cryo-electron microscopy to determine the microtubule-bound structure of its motor domain with and without the N-terminal extension. The ATP-like conformations of the motor in the presence or absence of this N-terminus are very similar, suggesting this region is structurally disordered and does not directly influence the motor ATPase. The Ustilago maydis kinesin-5 motor domain adopts a canonical ATP-like conformation, thereby allowing the neck linker to bind along the motor domain towards the microtubule plus end. However, several insertions within this motor domain are structurally distinct. Loop2 forms a non-canonical interaction with α-tubulin, while loop8 may bridge between two adjacent protofilaments. Furthermore, loop5 - which in human kinesin-5 is involved in binding allosteric inhibitors - protrudes above the nucleotide binding site, revealing a distinct binding pocket for potential inhibitors. This work highlights fungal-specific elaborations of the kinesin-5 motor domain and provides the structural basis for future investigations of kinesins as targets for novel fungicides.


Asunto(s)
Microscopía por Crioelectrón/métodos , Proteínas Fúngicas/química , Cinesinas/química , Microtúbulos/química , Dominios Proteicos , Ustilago/ultraestructura , Proteínas Fúngicas/ultraestructura , Cinesinas/metabolismo , Cinesinas/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Moleculares , Unión Proteica , Ustilago/metabolismo
18.
Mol Microbiol ; 107(1): 81-93, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29052918

RESUMEN

Homologous recombination and repair factors are known to promote both telomere replication and recombination-based telomere extension. Herein, we address the diverse contributions of several recombination/repair proteins to telomere maintenance in Ustilago maydis, a fungus that bears strong resemblance to mammals with respect to telomere regulation and recombination mechanisms. In telomerase-positive U. maydis, deletion of rad51 and blm separately caused shortened but stably maintained telomeres, whereas deletion of both engendered similar telomere loss, suggesting that the repair proteins help to resolve similar problems in telomere replication. In telomerase-negative cells, the loss of Rad51 or Brh2 caused accelerated senescence and failure to generate survivors on semi-solid medium. However, slow growing survivors can be isolated through continuous liquid culturing, and these survivors exhibit type II-like as well as ALT-like telomere features. In contrast, the trt1Δ blmΔ double mutant gives rise to survivors as readily as the trt1Δ single mutant, and like the single mutant survivors, exhibit almost exclusively type I-like telomere features. In addition, we observed direct physical interactions between Blm and two telomere-binding proteins, which may thus recruit or regulate Blm at telomeres. Our findings provide the basis for further analyzing the interplays between telomerase, telomere replication, and telomere recombination.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Telómero/fisiología , Ustilago/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Reordenamiento Génico/fisiología , Recombinasa Rad51/genética , RecQ Helicasas/genética , Recombinación Genética/genética , Recombinación Genética/fisiología , Telomerasa/metabolismo , Telómero/metabolismo , Ustilago/metabolismo
19.
Fungal Genet Biol ; 125: 45-52, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30703558

RESUMEN

Besides enzymatic conversions, many eukaryotic metabolic pathways also involve transport proteins that shuttle molecules between subcellular compartments, or into the extracellular space. Fungal itaconate production involves two such transport steps, involving an itaconate transport protein (Itp), and a mitochondrial tricarboxylate transporter (Mtt). The filamentous ascomycete Aspergillus terreus and the unicellular basidiomycete Ustilago maydis both produce itaconate, but do so via very different molecular pathways, and under very different cultivation conditions. In contrast, the transport proteins of these two strains are assumed to have a similar function. This study aims to investigate the roles of both the extracellular and mitochondrial transporters from these two organisms by expressing them in the corresponding U. maydis knockouts and monitoring the extracellular product concentrations. Both transporters from A. terreus complemented their corresponding U. maydis knockouts in mediating itaconate production. Surprisingly, complementation with At_MfsA from A. terreus led to a partial switch from itaconate to (S)-2-hydroxyparaconate secretion. Apparently, the export protein from A. terreus has a higher affinity for (S)-2-hydroxyparaconate than for itaconate, even though this species is classically regarded as an itaconate producer. Complementation with At_MttA increased itaconate production by 2.3-fold compared to complementation with Um_Mtt1, indicating that the mitochondrial carrier from A. terreus supports a higher metabolic flux of itaconic acid precursors than its U. maydis counterpart. The biochemical implications of these differences are discussed in the context of the biotechnological application in U. maydis and A. terreus for the production of itaconate and (S)-2-hydroxyparaconate.


Asunto(s)
Aspergillus/genética , Proteínas Portadoras/genética , Proteínas Fúngicas/genética , Ustilago/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/biosíntesis , 4-Butirolactona/genética , Aspergillus/metabolismo , Proteínas Portadoras/metabolismo , Clonación Molecular , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Redes y Vías Metabólicas/genética , Mitocondrias/genética , Succinatos/metabolismo , Ustilago/metabolismo
20.
Metab Eng ; 54: 293-300, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31091468

RESUMEN

Besides Aspergillus terreus and Ustilago maydis, Ustilago cynodontis is also known as a natural itaconate producer. U. cynodontis was reported as one of the best itaconate producing species in the family of the Ustilaginaceae, featuring a relatively high pH tolerance in comparison to other smut fungi. However, in contrast to U. maydis, it readily displays filamentous growth under sub-optimal growth conditions. In this study, U. cynodontis is established as efficient pH-tolerant itaconic acid producer through a combination of morphological and metabolic engineering. Deletions of the genes ras2, fuz7, and ubc3 abolished the filamentous growth of U. cynodontis, leading to a stable yeast-like growth under a range of stress-inducing conditions. The yeast-like morphology was also maintained in a pulsed fed batch production of 21 g L-1 itaconic acid and 9.3 g L-1 (S)-2-hydroxyparaconate at a pH of 3.8. The genetic and metabolic basis of itaconic acid production in U. cynodontis was characterized through comparative genomics and gene deletion studies. A hyper-producer strain was metabolically engineered using this knowledge resulting in a 6.5-fold improvement of titer.


Asunto(s)
Proteínas Fúngicas , Ingeniería Metabólica , Succinatos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentración de Iones de Hidrógeno , Ustilago/genética , Ustilago/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA