Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.574
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 153-179, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36696570

RESUMEN

Modulation of the immune system is an important therapeutic strategy in a wide range of diseases, and is fundamental to the development of vaccines. However, optimally safe and effective immunotherapy requires precision in the delivery of stimulatory cues to the right cells at the right place and time, to avoid toxic overstimulation in healthy tissues or incorrect programming of the immune response. To this end, biomaterials are being developed to control the location, dose, and timing of vaccines and immunotherapies. Here we discuss fundamental concepts of how biomaterials are used to enhance immune modulation, and evidence from preclinical and clinical studies of how biomaterials-mediated immune engineering can impact the development of new therapeutics. We focus on immunological mechanisms of action and in vivo modulation of the immune system, and we also discuss challenges to be overcome to speed translation of these technologies to the clinic.


Asunto(s)
Neoplasias , Vacunas , Humanos , Animales , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Inmunoterapia , Sistema Inmunológico , Inmunidad
2.
Annu Rev Immunol ; 39: 667-693, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637018

RESUMEN

Traditionally, the innate and adaptive immune systems are differentiated by their specificity and memory capacity. In recent years, however, this paradigm has shifted: Cells of the innate immune system appear to be able to gain memory characteristics after transient stimulation, resulting in an enhanced response upon secondary challenge. This phenomenon has been called trained immunity. Trained immunity is characterized by nonspecific increased responsiveness, mediated via extensive metabolic and epigenetic reprogramming. Trained immunity explains the heterologous effects of vaccines, which result in increased protection against secondary infections. However, in chronic inflammatory conditions, trained immunity can induce maladaptive effects and contribute to hyperinflammation and progression of cardiovascular disease, autoinflammatory syndromes, and neuroinflammation. In this review we summarize the current state of the field of trained immunity, its mechanisms, and its roles in both health and disease.


Asunto(s)
Memoria Inmunológica , Vacunas , Animales , Diferenciación Celular , Humanos , Sistema Inmunológico , Inmunidad Innata
3.
Annu Rev Immunol ; 35: 255-284, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28142324

RESUMEN

We comprehensively review memory B cells (MBCs), covering the definition of MBCs and their identities and subsets, how MBCs are generated, where they are localized, how they are maintained, and how they are reactivated. Whereas naive B cells adopt multiple fates upon stimulation, MBCs are more restricted in their responses. Evolving work reveals that the MBC compartment in mice and humans consists of distinct subpopulations with differing effector functions. We discuss the various approaches to define subsets and subset-specific roles. A major theme is the need to both deliver faster effector function upon reexposure and readapt to antigenically variant pathogens while avoiding burnout, which would be the result if all MBCs generated only terminal effector function. We discuss cell-intrinsic differences in gene expression and signaling that underlie differences in function between MBCs and naive B cells and among MBC subsets and how this leads to memory responses.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Linfocitos B/inmunología , Memoria Inmunológica , Vacunas/inmunología , Animales , Humanos , Inmunidad Humoral , Activación de Linfocitos , Ratones , Transcriptoma
4.
Annu Rev Immunol ; 35: 403-439, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28226229

RESUMEN

This is an exciting time for immunology because the future promises to be replete with exciting new discoveries that can be translated to improve health and treat disease in novel ways. Immunologists are attempting to answer increasingly complex questions concerning phenomena that range from the genetic, molecular, and cellular scales to that of organs, whole animals or humans, and populations of humans and pathogens. An important goal is to understand how the many different components involved interact with each other within and across these scales for immune responses to emerge, and how aberrant regulation of these processes causes disease. To aid this quest, large amounts of data can be collected using high-throughput instrumentation. The nonlinear, cooperative, and stochastic character of the interactions between components of the immune system as well as the overwhelming amounts of data can make it difficult to intuit patterns in the data or a mechanistic understanding of the phenomena being studied. Computational models are increasingly important in confronting and overcoming these challenges. I first describe an iterative paradigm of research that integrates laboratory experiments, clinical data, computational inference, and mechanistic computational models. I then illustrate this paradigm with a few examples from the recent literature that make vivid the power of bringing together diverse types of computational models with experimental and clinical studies to fruitfully interrogate the immune system.


Asunto(s)
Biología Computacional , Simulación por Computador , Modelos Inmunológicos , Linfocitos T/inmunología , Vacunas/inmunología , Animales , Investigación Biomédica , Ensayos Analíticos de Alto Rendimiento , Humanos , Monitorización Inmunológica/métodos , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal
5.
Annu Rev Immunol ; 35: 1-30, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27912315

RESUMEN

Genome technologies have defined a complex genetic architecture in major infectious, inflammatory, and autoimmune disorders. High density marker arrays and Immunochips have powered genome-wide association studies (GWAS) that have mapped nearly 450 genetic risk loci in 22 major inflammatory diseases, including a core of common genes that play a central role in pathological inflammation. Whole-exome and whole-genome sequencing have identified more than 265 genes in which mutations cause primary immunodeficiencies and rare forms of severe inflammatory bowel disease. Combined analysis of inflammatory disease GWAS and primary immunodeficiencies point to shared proteins and pathways that are required for immune cell development and protection against infections and are also associated with pathological inflammation. Finally, sequencing of chromatin immunoprecipitates containing specific transcription factors, with parallel RNA sequencing, has charted epigenetic regulation of gene expression by proinflammatory transcription factors in immune cells, providing complementary information to characterize morbid genes at infectious and inflammatory disease loci.


Asunto(s)
Enfermedades Autoinmunes/genética , Síndromes de Inmunodeficiencia/genética , Infecciones/genética , Inflamación/genética , Vacunas/inmunología , Animales , Epigénesis Genética , Exoma/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunidad/genética , Infecciones/inmunología , Riesgo
6.
Annu Rev Immunol ; 34: 317-34, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27168241

RESUMEN

CD4(+) T helper (Th) cells play a central role in the adaptive immune response by providing help to B cells and cytotoxic T cells and by releasing different types of cytokines in tissues to mediate protection against a wide range of pathogenic microorganisms. These functions are performed by different types of Th cells endowed with distinct migratory capacities and effector functions. Here we discuss how studies of the human T cell response to microbes have advanced our understanding of Th cell functional heterogeneity, in particular with the discovery of a distinct Th1 subset involved in the response to Mycobacteria and the characterization of two types of Th17 cells specific for extracellular bacteria or fungi. We also review new approaches to dissect at the clonal level the human CD4(+) T cell response induced by pathogens or vaccines that have revealed an unexpected degree of intraclonal diversification and propose a progressive and selective model of CD4(+) T cell differentiation.


Asunto(s)
Inmunidad Adaptativa , Infecciones Bacterianas/inmunología , Biodiversidad , Micosis/inmunología , Células TH1/inmunología , Células Th17/inmunología , Vacunas/inmunología , Animales , Antígenos CD4/metabolismo , Diferenciación Celular , Selección Clonal Mediada por Antígenos , Células Clonales , Citotoxicidad Inmunológica , Humanos , Inmunidad Humoral , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
7.
Cell ; 185(15): 2770-2788, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35835100

RESUMEN

Cancer vaccines aim to direct the immune system to eradicate cancer cells. Here we review the essential immunologic concepts underpinning natural immunity and highlight the multiple unique challenges faced by vaccines targeting cancer. Recent technological advances in mass spectrometry, neoantigen prediction, genetically and pharmacologically engineered mouse models, and single-cell omics have revealed new biology, which can help to bridge this divide. We particularly focus on translationally relevant aspects, such as antigen selection and delivery and the monitoring of human post-vaccination responses, and encourage more aggressive exploration of novel approaches.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Vacunas , Animales , Humanos , Sistema Inmunológico , Inmunidad Innata , Ratones , Neoplasias/terapia , Vacunación
8.
Cell ; 185(3): 411-413, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065712

RESUMEN

In this issue of Cell, three studies confirm that SARS-CoV-2 Omicron strongly evades a key immune defense-neutralizing antibodies. However, while one- or two-dose vaccine regimens fail to induce anti-Omicron neutralizing antibodies, a homologous third-dose booster rescues neutralization function in a way that highlights the adaptability of immune memory, where recalled immunity extends antibody reach across SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Vacunas , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2
9.
Cell ; 185(13): 2265-2278.e14, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35568034

RESUMEN

Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.


Asunto(s)
COVID-19 , Vacunas , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , SARS-CoV-2/genética
10.
Nat Immunol ; 25(2): 307-315, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182667

RESUMEN

The global outbreak of the mpox virus (MPXV) in 2022 highlights the urgent need for safer and more accessible new-generation vaccines. Here, we used a structure-guided multi-antigen fusion strategy to design a 'two-in-one' immunogen based on the single-chain dimeric MPXV extracellular enveloped virus antigen A35 bivalently fused with the intracellular mature virus antigen M1, called DAM. DAM preserved the natural epitope configuration of both components and showed stronger A35-specific and M1-specific antibody responses and in vivo protective efficacy against vaccinia virus (VACV) compared to co-immunization strategies. The MPXV-specific neutralizing antibodies elicited by DAM were 28 times higher than those induced by live VACV vaccine. Aluminum-adjuvanted DAM vaccines protected mice from a lethal VACV challenge with a safety profile, and pilot-scale production confirmed the high yield and purity of DAM. Thus, our study provides innovative insights and an immunogen candidate for the development of alternative vaccines against MPXV and other orthopoxviruses.


Asunto(s)
Monkeypox virus , Vacunas , Animales , Ratones , Proteínas del Envoltorio Viral , Anticuerpos Antivirales , Virus Vaccinia , Antígenos Virales , Inmunidad
11.
Nat Immunol ; 25(4): 633-643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38486021

RESUMEN

Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.


Asunto(s)
COVID-19 , Vacunas , Humanos , Animales , Ratones , SARS-CoV-2 , Linfocitos T CD8-positivos , COVID-19/prevención & control , Anticuerpos , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
12.
Nat Immunol ; 25(3): 537-551, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38337035

RESUMEN

A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Vacunas , Cricetinae , Animales , Ratones , Linfocitos T CD8-positivos , SARS-CoV-2 , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Pan troglodytes
13.
Annu Rev Immunol ; 32: 547-77, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24655298

RESUMEN

Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology.


Asunto(s)
Inmunidad Innata/fisiología , Biología de Sistemas , Animales , Control de Enfermedades Transmisibles , Enfermedades Transmisibles/etiología , Humanos , Biología de Sistemas/métodos , Vacunas/inmunología
14.
Cell ; 184(4): 881-898, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571426

RESUMEN

Synthetic biology is a design-driven discipline centered on engineering novel biological functions through the discovery, characterization, and repurposing of molecular parts. Several synthetic biological solutions to critical biomedical problems are on the verge of widespread adoption and demonstrate the burgeoning maturation of the field. Here, we highlight applications of synthetic biology in vaccine development, molecular diagnostics, and cell-based therapeutics, emphasizing technologies approved for clinical use or in active clinical trials. We conclude by drawing attention to recent innovations in synthetic biology that are likely to have a significant impact on future applications in biomedicine.


Asunto(s)
Investigación Biomédica , Ingeniería Genética , Biología Sintética , Vacunas/inmunología , Animales , Sistemas CRISPR-Cas/genética , Humanos , ARN/genética
15.
Cell ; 184(26): 6222-6223, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34942096

RESUMEN

In this issue of Cell, Bushman et al. show how more transmissible variants, even if they do not escape immunity, can be strongly selected during the early pandemic. This explains the dynamics of past SARS-CoV-2 variants, but as immunity increases, it is difficult to predict what will emerge next.


Asunto(s)
COVID-19 , Vacunas , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2
16.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33852911

RESUMEN

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Sitios de Unión , COVID-19/terapia , COVID-19/virología , Línea Celular , Humanos , Evasión Inmune , Inmunización Pasiva , Mutación , Unión Proteica , Dominios Proteicos , SARS-CoV-2/genética , Eliminación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Vacunas/inmunología , Sueroterapia para COVID-19
17.
Cell ; 184(11): 2955-2972.e25, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34019795

RESUMEN

Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , VIH-1/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Polisacáridos/inmunología , SARS-CoV-2/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , Dimerización , Epítopos/inmunología , Glicosilación , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Macaca mulatta , Polisacáridos/química , Receptores de Antígenos de Linfocitos B/química , Virus de la Inmunodeficiencia de los Simios/genética , Vacunas/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
18.
Nat Immunol ; 24(7): 1124-1137, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37217705

RESUMEN

The magnitude and quality of the germinal center (GC) response decline with age, resulting in poor vaccine-induced immunity in older individuals. A functional GC requires the co-ordination of multiple cell types across time and space, in particular across its two functionally distinct compartments: the light and dark zones. In aged mice, there is CXCR4-mediated mislocalization of T follicular helper (TFH) cells to the dark zone and a compressed network of follicular dendritic cells (FDCs) in the light zone. Here we show that TFH cell localization is critical for the quality of the antibody response and for the expansion of the FDC network upon immunization. The smaller GC and compressed FDC network in aged mice were corrected by provision of TFH cells that colocalize with FDCs using CXCR5. This demonstrates that the age-dependent defects in the GC response are reversible and shows that TFH cells support stromal cell responses to vaccines.


Asunto(s)
Linfocitos T Colaboradores-Inductores , Vacunas , Animales , Ratones , Linfocitos B , Células T Auxiliares Foliculares , Centro Germinal , Envejecimiento
19.
Nat Immunol ; 24(7): 1161-1172, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37322179

RESUMEN

Despite the success of COVID-19 vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have emerged that can cause breakthrough infections. Although protection against severe disease has been largely preserved, the immunological mediators of protection in humans remain undefined. We performed a substudy on the ChAdOx1 nCoV-19 (AZD1222) vaccinees enrolled in a South African clinical trial. At peak immunogenicity, before infection, no differences were observed in immunoglobulin (Ig)G1-binding antibody titers; however, the vaccine induced different Fc-receptor-binding antibodies across groups. Vaccinees who resisted COVID-19 exclusively mounted FcγR3B-binding antibodies. In contrast, enhanced IgA and IgG3, linked to enriched FcγR2B binding, was observed in individuals who experienced breakthrough. Antibodies unable to bind to FcγR3B led to immune complex clearance and resulted in inflammatory cascades. Differential antibody binding to FcγR3B was linked to Fc-glycosylation differences in SARS-CoV-2-specific antibodies. These data potentially point to specific FcγR3B-mediated antibody functional profiles as critical markers of immunity against COVID-19.


Asunto(s)
COVID-19 , Vacunas , Humanos , ChAdOx1 nCoV-19 , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Antivirales , Inmunoglobulina G , Receptores Fc/genética , Anticuerpos Neutralizantes , Vacunación
20.
Cell ; 183(5): 1149-1150, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33242415

RESUMEN

All vaccines rely on the ability of B cells to remember pathogen infections and respond more vigorously upon reinfection. In this issue of Cell, Viant et al. address the real-world issue of protection against rapidly emerging pathogen variants and describe how memory B cells may anticipate infections by such variants.


Asunto(s)
Memoria Inmunológica , Vacunas , Afinidad de Anticuerpos , Linfocitos B , Centro Germinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA