Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Mol Biol ; 102(1-2): 159-169, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31820286

RESUMEN

KEY MESSAGE: A plant-based multiepitopic protein (LTBentero) containing epitopes from ETEC, S. typhimurium, and V. parahaemolyticus was produced in plants cells and triggered systemic and intestinal humoral responses in immunized mice. Around 200 million people suffer gastroenteritis daily and more than 2 million people die annually in developing countries due to such pathologies. Vaccination is an alternative to control this global health issue, however new low-cost vaccines are needed to ensure proper vaccine coverage. In this context, plants are attractive hosts for the synthesis and delivery of subunit vaccines. Therefore, in this study a plant-made multiepitopic protein named LTBentero containing epitopes from antigens of enterotoxigenic E. coli, S. typhimurium, and V. parahaemolyticus was produced and found immunogenic in mice. The LTBentero protein was expressed in tobacco plants at up to 5.29 µg g-1 fresh leaf tissue and was deemed immunogenic when administered to BALB/c mice either orally or subcutaneously. The plant-made LTBentero antigen induced specific IgG (systemic) and IgA (mucosal) responses against LTB, ST, and LptD epitopes. In conclusion, multiepitopic LTBentero was functionally produced in plant cells, being capable to trigger systemic and intestinal humoral responses and thus it constitutes a promising oral immunogen candidate in the fight against enteric diseases.


Asunto(s)
Toxinas Bacterianas/inmunología , Epítopos/inmunología , Inmunización , Proteínas de Plantas/inmunología , Proteínas Recombinantes/inmunología , Vacunas Comestibles/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Toxinas Bacterianas/genética , Vacunas Bacterianas/inmunología , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/inmunología , Epítopos/genética , Femenino , Regulación de la Expresión Génica de las Plantas , Inmunoglobulina A , Inmunoglobulina G , Ratones , Ratones Endogámicos BALB C , Membrana Mucosa/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Vacunación , Vacunas Comestibles/genética
2.
Mol Biol Rep ; 45(6): 2237-2246, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30244396

RESUMEN

Shigella dysenteriae causing shigellosis is one of the diseases that threaten the health of human society in the developing countries. In Shigella, IpaD gene is one of the key pathogenic genes causing strong mucosal immune system reactions. Anthrax disease is caused by Bacillus anthracis. PA protective antigen is one of the subunits in anthrax toxin complex responsible for the transfer of other subunits into the cytosol of host cells. The 20 kDa subunit of PA (PA20) has the property of immunogenicity. CTxB or B subunit of Vibrio cholerae toxin (CT) is a non-toxic protein and has the function to transfer toxic subunit into cytosol of the host cells by binding to GM1 receptor. The aim of this study was to fuse PA20, ipaD and CTxB and transform tomato plants by this cassette in order to produce an oral vaccine against shigellosis, anthrax and cholera. CTxB was used for these two antigens as an immune adjuvant. IpaD and PA20 genes were cloned in pBI121 containing the CTxB gene and Extensin signal peptide. In order to evaluate the transient expression of Shigellosis, Anthrax and Cholera antigens, agro-infiltrated tomato tissues were inoculated with Agrobacterium tumefaciens containing the gene cassette. Cloning was confirmed by PCR, enzymatic digestion and sequencing techniques. Expression of the antigens was examined by SDS-PAGE, dot blot and ELISA. Maturate green fruits demonstrated the highest expression of the recombinant proteins. The first phase of this study was carried out for cloning and expressing of CtxB, ipaD and PA20 antigens in tomato. In the next phase, we aim to analyze the immunogenicity of this vaccine candidate in laboratory animals.


Asunto(s)
Solanum lycopersicum/genética , Vacunas Comestibles/biosíntesis , Vacunas Comestibles/genética , Agrobacterium tumefaciens/genética , Animales , Carbunco , Antígenos Bacterianos/genética , Bacillus anthracis/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas , Cólera , Disentería Bacilar , Ingeniería Genética/métodos , Vectores Genéticos , Humanos , Proteínas Recombinantes/genética , Vacunas/genética
3.
Appl Microbiol Biotechnol ; 102(21): 9267-9278, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30159589

RESUMEN

The planktonic blue-green microalga Spirulina (Arthrospira) platensis possesses important features (e.g., high protein and vital lipids contents as well as essential vitamins) and can be consumed by humans and animals. Accordingly, this microalga gained growing attention as a new platform for producing edible-based pharmaceutical proteins. However, there are limited successful strategies for the transformation of S. platensis, in part because of an efficient expression of strong endonucleases in its cytoplasm. In the current work, as a pilot step for the expression of therapeutic proteins, an Agrobacterium-based system was established to transfer gfp:gus and hygromycin resistance (hygr) genes into the genome of S. platensis. The presence of acetosyringone in the transfection medium significantly reduced the transformation efficiency. The PCR and real-time RT-PCR data confirmed the successful integration and transcription of the genes. Flow cytometry and ß-glucuronidase (GUS) activity experiments confirmed the successful production of GFP and the enzyme. Moreover, the western blot analysis showed a ~ 90 kDa band in the transformed cells, indicating the successful production of the GFP:GUS protein. Three months after the transformation, the gene expression stability was validated by histochemical, flow cytometry, and hygromycin B resistance analyses.


Asunto(s)
Microalgas/genética , Spirulina/genética , Transformación Genética/genética , Vacunas Comestibles/genética , Agrobacterium/genética , Citoplasma/genética , Endonucleasas/genética , Expresión Génica/genética , Técnicas de Transferencia de Gen , Glucuronidasa/genética , Higromicina B/metabolismo , Transcripción Genética/genética
4.
Int J Mol Sci ; 17(10)2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27754367

RESUMEN

Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO)-recommended vaccines including hepatitis B (HepB). HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV), however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/inmunología , Vacunas contra Hepatitis B/inmunología , Vacunas contra Hepatitis B/uso terapéutico , Virus de la Hepatitis B/inmunología , Hepatitis B/prevención & control , Plantas Modificadas Genéticamente/genética , Animales , Biotecnología/métodos , Expresión Génica , Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/genética , Vacunas contra Hepatitis B/genética , Virus de la Hepatitis B/genética , Humanos , Vacunas Comestibles/genética , Vacunas Comestibles/inmunología , Vacunas Comestibles/uso terapéutico , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico
5.
Arch Biochem Biophys ; 588: 41-9, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26519888

RESUMEN

Although a vaccine against hepatitis B virus (HBV) has been available since 1982, it is estimated that 600,000 people die every year due to HBV. An affordable oral vaccine could help alleviate the disease burden and to this end the hepatitis B surface antigen (HBsAg) was expressed in maize. Orally delivered maize material induced the strongest immune response in mice when lipid was extracted by CO2 supercritical fluid extraction (SFE), compared to full fat and hexane-extracted material. The present study provides a biochemical and biophysical basis for these immunological differences by comparing the active ingredient in the differently treated maize material. Purified maize-derived HBsAg underwent biophysical characterization by gel filtration, transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-CD, and fluorescence. Gel filtration showed that HBsAg forms higher-order oligomers and TEM demonstrated virus-like particle (VLP) formation. The VLPs obtained from SFE were more regular in shape and size compared to hexane or full fat material. In addition, SFE-derived HBsAg showed the greatest extent of α-helical structure by far UV-CD spectrum. Fluorescence experiments also revealed differences in protein conformation. This work establishes SFE-treated maize material as a viable oral vaccine candidate and advances the development of the first oral subunit vaccine.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/química , Vacunas contra Hepatitis B/química , Zea mays/genética , Administración Oral , Secuencia de Aminoácidos , Animales , Cromatografía con Fluido Supercrítico , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/aislamiento & purificación , Vacunas contra Hepatitis B/administración & dosificación , Vacunas contra Hepatitis B/genética , Humanos , Ratones , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Plantas Modificadas Genéticamente , Conformación Proteica , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia , Vacunas Comestibles/administración & dosificación , Vacunas Comestibles/química , Vacunas Comestibles/genética , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/genética
6.
Appl Microbiol Biotechnol ; 98(5): 1983-90, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24413920

RESUMEN

Malaria is a parasitic, mosquito-borne, infectious disease that threatens nearly half of the global population. The last decade has seen a dramatic drop in the number of malaria-related deaths because of vector control methods and anti-malarial drugs. Unfortunately, this strategy is not sustainable because of the emergence of insecticide-resistant mosquitoes and drug-resistant Plasmodium parasites. Eradication of malaria will ultimately require low-cost easily administered vaccines that work in concert with current control methods. Low cost and ease of administration will be essential components of any vaccine, because malaria endemic regions are poor and often lack an adequate healthcare infrastructure. Recently, several groups have begun addressing these issues using inexpensive photosynthetic organisms for producing vaccine antigens and exploring oral delivery strategies. Immune responses from plant-based injectable malaria vaccines are promising, but attempts to adapt these for oral delivery suggest we are far from a feasible strategy. Here, we review examples of these technologies and discuss the progress and potential of this research, as well as the obstacles ahead.


Asunto(s)
Biotecnología/métodos , Vacunas contra la Malaria/aislamiento & purificación , Organismos Modificados Genéticamente , Tecnología Farmacéutica/métodos , Chlorophyta , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Plantas , Vacunas Comestibles/administración & dosificación , Vacunas Comestibles/genética , Vacunas Comestibles/inmunología , Vacunas Comestibles/aislamiento & purificación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/aislamiento & purificación
7.
Vet Res Commun ; 48(3): 1435-1447, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38319502

RESUMEN

Vaccines can reduce the use of antibiotics by preventing specific infective diseases in pigs. Plant-based edible vaccines are particularly attractive because, upon oral ingestion via feed, they can elicit the local immune system against a foreign disease-causing organism. The aim of this study was to engineer two different independent lines of tobacco plants for the seed-specific expression of immunogenic proteins of VTEC as a model of an edible vaccine. For each antigen, fifty Nicotiana tabacum L. cv Xanthi leaf disks were transformed by agroinfection for the seed-specific expression of the structural parts of the fimbrial subunit FedF of F18 and the B-subunit of Vt2e genes. The synthetic genes, optimized by the codon adaptation index for their expression in tobacco, were inserted into expression cassettes under the control of ß-conglycinin promoter. Regenerated tobacco plants (T0) were characterized by molecular and immunoenzymatic techniques. Our results showed that both FedF and Vt2eB genes were integrated into tobacco genome efficiently (> 80%) and they are also maintained in the second generation (T1). Western blotting analyses carried out on the positive producing lines, showed the tissue-specific expression in seeds and the temporal protein accumulation in the mid-late maturation phases. The enzyme-linked immunosorbent assay showed seed expression levels of 0.09 to 0.29% (from 138 to 444 µg/g of seeds) and 0.21 to 0.43% (from 321 to 658 µg/g of seeds) of total soluble protein for the FedF and Vt2eB antigens, respectively. This study confirmed the seed-specific expression of the selected antigens in plant seeds. The expression level is suitable for seed-based edible vaccination systems, which could represent a cost-effective way to prevent VTEC infection. Our findings encourage further in vivo studies focused on the activation of the local immune response.


Asunto(s)
Antígenos Bacterianos , Nicotiana , Semillas , Vacunas Comestibles , Nicotiana/genética , Semillas/inmunología , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Vacunas Comestibles/genética , Vacunas Comestibles/inmunología , Animales , Porcinos , Plantas Modificadas Genéticamente , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Escherichia coli/genética
8.
Appl Microbiol Biotechnol ; 97(7): 2817-40, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23447052

RESUMEN

Transgenic plant-derived vaccines comprise a new type of bioreactor that combines plant genetic engineering technology with an organism's immunological response. This combination can be considered as a bioreactor that is produced by introducing foreign genes into plants that elicit special immunogenicity when introduced into animals or human beings. In comparison with traditional vaccines, plant vaccines have some significant advantages, such as low cost, greater safety, and greater effectiveness. In a number of recent studies, antigen-specific proteins have been successfully expressed in various plant tissues and have even been tested in animals and human beings. Therefore, edible vaccines of transgenic plants have a bright future. This review begins with a discussion of the immune mechanism and expression systems for transgenic plant vaccines. Then, current advances in different transgenic plant vaccines will be analyzed, including vaccines against pathogenic viruses, bacteria, and eukaryotic parasites. In view of the low expression levels for antigens in plants, high-level expression strategies of foreign protein in transgenic plants are recommended. Finally, the existing safety problems in transgenic plant vaccines were put forward will be discussed along with a number of appropriate solutions that will hopefully lead to future clinical application of edible plant vaccines.


Asunto(s)
Biotecnología/métodos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tecnología Farmacéutica/métodos , Vacunas Comestibles/efectos adversos , Vacunas Comestibles/genética , Animales , Humanos
9.
Transgenic Res ; 21(4): 715-24, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22057506

RESUMEN

Based on its high protein content and excellent storage capacity, pea (Pisum sativum), as well as other plants, is considered to be a suitable production platform for protein-based pharmaceuticals. Its capacity to produce high proportions of active recombinant proteins (up to 2% total soluble protein corresponding to approximately 8 mg/g fresh weight) has been proven using pea-derived strong seed-specific promoters. The active antigens produced were also stable for more than 4 years. Pea can be used as a feed additive, up to a proportion of 30% to total feed, despite the presence of lectins. Thus, a low dosage of recombinant pea-based pharmaceuticals is non-hazardous. In addition, it is independent of N-fertilisation, has excellent biosafety characteristics and is accessible to gene transfer. Growth systems with a capacity for high yield are available for the greenhouse (5 t/ha) and, to a limited extent, also in the field (2.3 t/ha). The practicable establishment of pea seed banks allows a continuous production process. Although the use of a pea system is limited by complex transformation procedures, these advantages render pea a promising plant for the production of pharmaceuticals.


Asunto(s)
Agricultura Molecular , Pisum sativum/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/biosíntesis , Expresión Génica , Humanos , Proteínas Recombinantes/genética , Semillas/genética , Vacunas Comestibles/biosíntesis , Vacunas Comestibles/genética
10.
Plant Cell Rep ; 31(10): 1933-42, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22736145

RESUMEN

To increase immune responses of plant-based vaccines in intestine mucosal immune systems, a synthetic neutralizing epitope (sCOE) gene of porcine epidemic diarrhea virus (PEDV) was fused with M cell-targeting ligand (Co1) and introduced into a plant expression vector under the control of rice amylase 3D promoter. The sCOE-Co1 fusion gene was introduced into rice calli via the particle bombardment-mediated transformation method. The stable integration and transcriptional expression of the sCOE-Co1 fusion gene was confirmed by genomic DNA PCR amplification and Northern blot analysis, respectively. The expression of the COE-Co1 fusion protein was confirmed by immunoblot analysis. The highest expression level of the COE-Co1 fusion protein reached 0.083 % of the total soluble protein according to quantitative densitometry of Western blot analysis. Mice immunized with transgenic rice calli protein extracts induced significant serum IgG and fecal IgA antibody levels against purified bacterial COE. The systemic and mucosal immune responses were confirmed by measuring COE-specific IgG and IgA antibody-secreting cells in the lymphocytes extracted from the spleen and COE-specific IgA antibody-secreting cells in the Peyer's patches from immunized mice. These results indicated that oral immunization of plant-produced COE-Co1 fusion protein could elicit efficient systemic and mucosal immune responses against the COE antigen. Key message Neutralizing epitope from porcine epidemic diarrhea virus-M cell targeting ligand fusion protein was produced in transgenic rice calli and elicited systemic and mucosal immune responses by oral administration in mice.


Asunto(s)
Epítopos/inmunología , Oryza/inmunología , Plantas Modificadas Genéticamente/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Administración Oral , Amilasas/genética , Amilasas/metabolismo , Animales , Células Productoras de Anticuerpos/inmunología , Ensayo de Immunospot Ligado a Enzimas , Femenino , Genes Sintéticos , Vectores Genéticos , Inmunidad Mucosa , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Ligandos , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Oryza/enzimología , Oryza/genética , Ganglios Linfáticos Agregados/inmunología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/inmunología , Transcripción Genética , Transformación Genética , Vacunas Comestibles/administración & dosificación , Vacunas Comestibles/genética , Vacunas Comestibles/inmunología
11.
BioDrugs ; 36(5): 573-589, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35821564

RESUMEN

The idea of producing vaccines in plants originated in the late 1980s. Initially, it was contemplated that this notion could facilitate the concept of edible vaccines, making them more cost effective and easily accessible. Initial studies on edible vaccines focussed on the use of a variety of different transgenic plant host species for the production of vaccine antigens. However, adequate expression levels of antigens, the difficulties predicted with administration of consistent doses, and regulatory rules required for growth of transgenic plants gave way to the development of vaccine candidates that could be purified and administered parenterally. The field has subsequently advanced with improved expression techniques including a shift from using transgenic to transient expression of antigens, refinement of purification protocols, a deeper understanding of the biological processes and a wealth of evidence of immunogenicity and efficacy of plant-produced vaccine candidates, all contributing to the successful practice of what is now known as biopharming or plant molecular farming. The establishment of this technology has resulted in the development of many different types of vaccine candidates including subunit vaccines and various different types of nanoparticle vaccines targeting a wide variety of bacterial and viral diseases. This has brought further acceptance of plants as a suitable platform for vaccine production and in this review, we discuss the most recent advances in the production of vaccines in plants for human use.


Asunto(s)
Vacunación , Vacunas Comestibles , Antígenos , Humanos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Vacunas Comestibles/genética , Vacunas de Subunidad/metabolismo
12.
Transgenic Res ; 20(4): 735-48, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20972886

RESUMEN

Pig edema disease is a bacterial disease caused by enterohemorrhagic Escherichia coli. E. coli produces Shiga toxin 2e (Stx2e), which is composed of one A subunit (Stx2eA) and five B subunits (Stx2eB). We previously reported production of Stx2eB in lettuce plants as a potential edible vaccine (Matsui et al. in Biosci Biotechnol Biochem 73:1628-1634, 2009). However, the accumulation level was very low, and it was necessary to improve expression of Stx2eB for potential use of this plant-based vaccine. Therefore, in this study, we optimized the Stx2eB expression cassette and found that a double repeated Stx2eB (2× Stx2eB) accumulates to higher levels than a single Stx2eB in cultured tobacco cells. Furthermore, a linker peptide between the two Stx2eB moieties played an important role in maximizing the effects of the double repeat. Finally, we generated transgenic lettuce plants expressing 2× Stx2eB with a suitable linker peptide that accumulate as much as 80 mg per 100 g fresh weight, a level that will allow us to use these transgenic lettuce plants practically to generate vaccine material.


Asunto(s)
Vacunas Bacterianas/genética , Edematosis Porcina/terapia , Escherichia coli Enterohemorrágica , Toxina Shiga II/biosíntesis , Toxina Shiga II/uso terapéutico , Animales , Vacunas Bacterianas/uso terapéutico , Vectores Genéticos , Lactuca/genética , Lactuca/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Subunidades de Proteína/genética , Toxina Shiga II/genética , Porcinos , Vacunas Comestibles/genética , Vacunas Comestibles/uso terapéutico
13.
Biosci Biotechnol Biochem ; 75(2): 396-400, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21307566

RESUMEN

The main signs of Alzheimer's disease (AD) are cognitive impairment and senile plaques composed of amyloid beta (Aß) observed in patients' brains. Therefore, therapy for AD focuses on the removal of Aß. We developed an "edible vaccine" that employs intestinal immunity with little to no side effects. Rice was utilized as an edible vaccine. It expressed GFP-Aß42. Aß rice was administered orally to wild-type (WT) mice causing production of anti-Aß antibodies. Since Aß rice was mixed with the cholera toxin B subunit (CTB), antibody against the rice seed protein was also produced. Then, mice were caused to develop immune tolerance against the rice seed protein by oral administration of Aß rice mixed with CTB. The results indicated that only anti-Aß antibodies were produced.


Asunto(s)
Péptidos beta-Amiloides/administración & dosificación , Péptidos beta-Amiloides/inmunología , Anticuerpos/inmunología , Oryza/genética , Vacunas Comestibles/inmunología , Administración Oral , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Animales , Especificidad de Anticuerpos/inmunología , Mapeo Epitopo , Femenino , Expresión Génica , Masculino , Ratones , Plantas Modificadas Genéticamente/genética , Células Th2/inmunología , Vacunas Comestibles/administración & dosificación , Vacunas Comestibles/química , Vacunas Comestibles/genética
14.
Curr Microbiol ; 63(4): 387-91, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21833666

RESUMEN

Helicobacter pylori (H. pylori) has been identified as the main pathogenic factors of chronic gastritis and peptic ulcer, and the Class I carcinogen of gastric cancer by WHO. Vaccine has become the most effective measure to prevent and cure H. pylori infection. The UreB is the most effective and common immunogen of all strains of H. pylori and may stimulate the immunoresponse protecting the human body against the challenge of H. pylori. UreB antigen gene was cloned into the binary vector pBI121 which contains a seed-specific promoter Oleosin of peanut and a kanamycin resistance gene, and then UreB gene was transformed into peanut embryo leaflets by Agrobacter-mediated method. The putative transgenic plants were examined for the presence of UreB in the nuclear genome of peanut plants by PCR analysis. Expression of UreB gene in plants was identified by RT-PCR and Western blot analysis. These results suggest that the UreB transgenic peanut can be potentially used as an edible vaccine for controlling H. pylori.


Asunto(s)
Arachis/genética , Proteínas Bacterianas/genética , Vacunas Bacterianas/genética , Expresión Génica , Helicobacter pylori/enzimología , Plantas Modificadas Genéticamente/genética , Ureasa/genética , Arachis/metabolismo , Proteínas Bacterianas/metabolismo , Vacunas Bacterianas/metabolismo , Infecciones por Helicobacter/prevención & control , Helicobacter pylori/genética , Humanos , Plantas Modificadas Genéticamente/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ureasa/metabolismo , Vacunas Comestibles/genética , Vacunas Comestibles/metabolismo
15.
Biotechnol Prog ; 37(3): e3141, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33666366

RESUMEN

Gastrointestinal infections caused by Clostridium difficile lead to significant impact in terms of morbidity and mortality, causing from mild symptoms, such as a low-grade fever, watery stools, and minor abdominal cramping as well as more severe symptoms such as bloody diarrhea, pseudomembrane colitis, and toxic megacolon. Vaccination is a viable approach to fight against C. difficile and several efforts in this direction are ongoing. Plants are promising vaccine biofactories offering low cost, enhanced safety, and allow for the formulation of oral vaccines. Herein, the CdeM protein, which is a spore antigen associated with immunoprotection against C. difficile, was selected to begin the development of plant-based vaccine candidates. The vaccine antigen is based in a fusion protein (LTB-CdeM), carrying the CdeM antigen, fused to the carboxi-terminus of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) as a mucosal immunogenic carrier. LTB-CdeM was produced in plants using a synthetic optimized gene according codon usage and mRNA stability criteria. The obtained transformed tobacco lines produced the LTB-CdeM antigen in the range of 52-90 µg/g dry weight leaf tissues. The antigenicity of the plant-made LTB-CdeM antigen was evidenced by GM1-ELISA and immunogenicity assessment performed in test mice revealed that the LTB-CdeM antigen is orally immunogenic inducing humoral responses against CdeM epitopes. This report constitutes the first step in the development of plant-based vaccines against C. difficile infection.


Asunto(s)
Antígenos Bacterianos , Clostridioides difficile/genética , Plantas Modificadas Genéticamente , Esporas Bacterianas/genética , Vacunas Comestibles , Administración Oral , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Agricultura Molecular , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Vacunas Comestibles/genética , Vacunas Comestibles/inmunología , Vacunas Comestibles/metabolismo
16.
Plant Biotechnol J ; 8(5): 620-37, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20233333

RESUMEN

The concept of using plants to produce high-value pharmaceuticals such as vaccines is 20 years old this year and is only now on the brink of realisation as an established technology. The original reliance on transgenic plants has largely given way to transient expression; proofs of concept for human and animal vaccines and of efficacy for animal vaccines have been established; several plant-produced vaccines have been through Phase I clinical trials in humans and more are scheduled; regulatory requirements are more clear than ever, and more facilities exist for manufacture of clinic-grade materials. The original concept of cheap edible vaccines has given way to a realisation that formulated products are required, which may well be injectable. The technology has proven its worth as a means of cheap, easily scalable production of materials: it now needs to find its niche in competition with established technologies. The realised achievements in the field as well as promising new developments will be reviewed, such as rapid-response vaccines for emerging viruses with pandemic potential and bioterror agents.


Asunto(s)
Plantas Modificadas Genéticamente/inmunología , Vacunas/biosíntesis , Animales , Biotecnología/tendencias , Cloroplastos/inmunología , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos , Humanos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tecnología Farmacéutica/tendencias , Vacunas/genética , Vacunas Comestibles/biosíntesis , Vacunas Comestibles/genética
17.
Biosci Biotechnol Biochem ; 73(7): 1628-34, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19584542

RESUMEN

Pig edema disease is a bacterial disease caused by Shiga toxin 2e-producing Escherichia coli belonging mainly to serotypes O138, O139, and O141. The B subunit of Shiga toxin 2e (Stx2eB) is a candidate protein for use in a vaccine against edema disease. We produced this protein in transgenic lettuce (Lactuca sativa), an edible plant that can be cultivated in a factory setting. In a transient expression system, we found that NtADH 5'-untranslated region (5'-UTR) functions as a translational enhancer in lettuce cells, and that Stx2eB accumulates most efficiently in the endoplasmic reticulum (ER) of lettuce cells. Stx2eB was produced in stable transgenic lettuce plants expressing a modified Stx2eB gene fused with the NtADH 5'-UTR and sequence encoding ER localization signals.


Asunto(s)
Vacunas Bacterianas/metabolismo , Edema/inmunología , Lactuca/genética , Lactuca/metabolismo , Ingeniería de Proteínas/métodos , Toxina Shiga II/biosíntesis , Toxina Shiga II/inmunología , Regiones no Traducidas 5'/genética , Alcohol Deshidrogenasa/genética , Animales , Vacunas Bacterianas/biosíntesis , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Edema/prevención & control , Retículo Endoplásmico/metabolismo , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Plantas Modificadas Genéticamente , Biosíntesis de Proteínas , Transporte de Proteínas , Reproducibilidad de los Resultados , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Sus scrofa/inmunología , Sus scrofa/microbiología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Nicotiana/enzimología , Vacunas Comestibles/biosíntesis , Vacunas Comestibles/genética , Vacunas Comestibles/inmunología , Vacunas Comestibles/metabolismo
18.
Hum Vaccin ; 5(11): 738-44, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19829054

RESUMEN

The worldwide need to produce safe and affordable vaccines with a minimum requirement of manufacture and processing, together with the advancements achieved in biotechnology, have promoted the development of efficient alternatives to traditional ones. One of the available options is the use of transgenic plants, not only as a protein production system but as an antigen transportation system as well, being capable of delivering antigens to the mucosal immune targets, becoming what is known as edible vaccines. The versatility of the plant production system allows for instance, to express and to accumulate foreign antigens in edible plant tissues. Thus, the hypothesis for the choice of plant-based vaccines is that once a plant-based vaccine is eaten, the susceptible host mounts a mucosal immune response against the antigen that is expressed in the plant, becoming protected against the pathogen from which the antigen was selected. This idea is still under study. Here, we described the basis of the system, the promising future and the possible drawbacks.


Asunto(s)
Biotecnología/métodos , Plantas Modificadas Genéticamente/metabolismo , Vacunas Comestibles/inmunología , Antígenos/genética , Antígenos/inmunología , Antígenos/metabolismo , Humanos , Plantas Modificadas Genéticamente/genética , Vacunas Comestibles/genética , Vacunas Comestibles/metabolismo
19.
J Biotechnol ; 135(2): 224-31, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18440084

RESUMEN

The GS60 antigen is one of the protective antigens of Mannheimia haemolytica A1. GS60 contains conserved domains belonging to the LppC family of bacterial outer membrane lipoproteins. A high antibody titer to GS60 has been shown to be significantly correlated with resistance to pneumonic pasteurellosis. Calves vaccinated with a commercial vaccine (Presponse) and demonstrating protection against M. haemolytica A1 produced antibodies directed against GS60. Alfalfa was chosen as the platform for an edible vaccine. Agrobacterium tumefaciens was used to mediate the transformation of alfalfa with sequences encoding a slightly shortened derivative of the GS60 antigen (GS60(54)). Stable transgenic alfalfa lines were recovered and production of GS60(54) was examined by Western immunoblot analysis. The antigen is stable in dried transgenic plant material stored at ambient temperature for more than a year. The plant-produced GS60(54) protein was shown to be immunogenic when injected into rabbits. Feeding of the dried transgenic alfalfa expressing the GS60(54) to rabbits is capable of inducing seroconversion, suggesting that GS60(54) could be an effective oral antigen for stimulating mucosal immune responses.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Vacunas Bacterianas/inmunología , Mannheimia haemolytica/metabolismo , Medicago sativa/metabolismo , Pasteurelosis Neumónica/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/genética , Vacunas Bacterianas/metabolismo , Western Blotting , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/microbiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mannheimia haemolytica/genética , Mannheimia haemolytica/inmunología , Medicago sativa/genética , Microscopía Fluorescente , Pasteurelosis Neumónica/sangre , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Conejos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vacunación/métodos , Vacunas Comestibles/genética , Vacunas Comestibles/inmunología , Vacunas Comestibles/metabolismo
20.
Trans Am Clin Climatol Assoc ; 118: 79-87, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18528491

RESUMEN

Every year 1.6 million deaths occur due to diarrhea related to unsafe water and inadequate sanitation-the vast majority in children under 5 years old. Safe and effective vaccines against enteric infections could contribute to control of these diseases. However, purification of protective antigens for inclusion in vaccines using traditional expression systems is expensive and unattractive to vaccine manufacturers who see the vaccine market as economically uninviting. Cost is one of the persistent barriers to deployment of new vaccines to populations that need them most urgently. Transgenic plant-derived vaccines offer a new strategy for development of safe, inexpensive vaccines against diarrheal diseases. In phase 1 clinical studies, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. This paper describes early clinical studies evaluating oral transgenic plant vaccines against enteric infections such as enterotoxigenic E. coli infection and norovirus.


Asunto(s)
Diarrea/prevención & control , Vacunas Comestibles/farmacología , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/prevención & control , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Ensayos Clínicos Fase I como Asunto , Diarrea/inmunología , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/inmunología , Enterotoxinas/genética , Enterotoxinas/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Enfermedades Gastrointestinales/inmunología , Enfermedades Gastrointestinales/prevención & control , Humanos , Inmunidad Mucosa , Norovirus/genética , Norovirus/inmunología , Plantas Modificadas Genéticamente , Seguridad , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Vacunas Comestibles/genética , Vacunas Comestibles/inmunología , Zea mays/genética , Zea mays/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA