Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(39): e2408459121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39298480

RESUMEN

We report a neutron spin echo (NSE) study of the nanoscale dynamics of the cell-cell adhesion cadherin-catenin complex bound to vinculin. Our measurements and theoretical physics analyses of the NSE data reveal that the dynamics of full-length α-catenin, ß-catenin, and vinculin residing in the cadherin-catenin-vinculin complex become activated, involving nanoscale motions in this complex. The cadherin-catenin complex is the central component of the cell-cell adherens junction (AJ) and is fundamental to embryogenesis, tissue wound healing, neuronal plasticity, cancer metastasis, and cardiovascular health and disease. A highly dynamic cadherin-catenin-vinculin complex provides the molecular dynamics basis for the flexibility and elasticity that are necessary for the AJs to function as force transducers. Our theoretical physics analysis provides a way to elucidate these driving nanoscale motions within the complex without requiring large-scale numerical simulations, providing insights not accessible by other techniques. We propose a three-way "motorman" entropic spring model for the dynamic cadherin-catenin-vinculin complex, which allows the complex to function as a flexible and elastic force transducer.


Asunto(s)
Cadherinas , Vinculina , Vinculina/metabolismo , Vinculina/química , Cadherinas/metabolismo , Cadherinas/química , alfa Catenina/metabolismo , alfa Catenina/química , Humanos , beta Catenina/metabolismo , beta Catenina/química , Unión Proteica , Uniones Adherentes/metabolismo , Neutrones , Simulación de Dinámica Molecular , Análisis Espectral/métodos , Animales , Cateninas/metabolismo , Adhesión Celular/fisiología
2.
PLoS Comput Biol ; 20(8): e1012341, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39110765

RESUMEN

Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell's exterior to its force generation machinery. Force-dependent vinculin-talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin domains respectively using magnetic tweezers. However, the structural mechanism underlying vinculin recognition of unfolded vinculin binding sites (VBSs) in talin remains unknown. Using molecular dynamics simulations, we demonstrate that a VBS dynamically refolds under force, and that vinculin can recognize and bind to partially unfolded VBS states. Vinculin binding enables refolding of the mechanically strained VBS and stabilizes its folded α-helical conformation, providing resistance against mechanical stress. Together, these results provide an understanding of a recognition mechanism of proteins unfolded by force and insight into the initial moments of how vinculin binds unfolded talin rod domains during the assembly of this mechanosensing meshwork.


Asunto(s)
Simulación de Dinámica Molecular , Unión Proteica , Talina , Vinculina , Vinculina/metabolismo , Vinculina/química , Talina/metabolismo , Talina/química , Sitios de Unión , Desplegamiento Proteico , Pliegue de Proteína , Estrés Mecánico , Humanos
3.
J Mol Recognit ; 36(6): e3012, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36987702

RESUMEN

Vinculin is an integral component of integrin adhesions, where it functions as a molecular clutch coupling intracellular contraction to the extracellular matrix. Quantitating its contribution to the reinforcement of newly forming adhesions, however, requires ultrasensitive cell force assays covering short time and low force ranges. Here, we have combined atomic force microscopy-based single-cell force spectroscopy (SCFS) and optical tweezers force spectroscopy to investigate the role of vinculin in reinforcement of individual nascent adhesions during the first 5 min of cell contact with fibronectin or vitronectin. At minimal adhesion times (5-10 s), mouse embryonic fibroblast (MEF) wildtype (wt) and vinculin knock-out (vin(-/-) ) cells develop comparable adhesion forces on the scale of several individual integrin-ligand bonds, confirming that vinculin is dispensable for adhesion initiation. In contrast, after 60 to 120 s, adhesion strength and traction reinforce quickly in wt cells, while remaining low in vin(-/-) cells. Re-expression of full-length vinculin or a constitutively active vinculin mutant (vinT12) in MEF vin(-/-) cells restored adhesion and traction with the same efficiency, while vinculin with a mutated talin-binding head region (vinA50I) or missing the actin-binding tail-domain (vin880) was ineffective. Integrating total internal reflection fluorescence imaging into the SCFS setup furthermore enabled us to correlate vinculin-green fluorescent protein (GFP) recruitment to nascent adhesion sites with the built-up of vinculin-dependent adhesion forces directly. Vinculin recruitment and cell adhesion reinforcement followed synchronous biphasic patterns, suggesting vinculin recruitment, but not activation, as the rate-limiting step for adhesion reinforcement. Combining sensitive SCFS with fluorescence microscopy thus provides insight into the temporal sequence of vinculin-dependent mechanical reinforcement in nascent integrin adhesions.


Asunto(s)
Fibroblastos , Adhesiones Focales , Animales , Ratones , Adhesión Celular/fisiología , Fibroblastos/metabolismo , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Talina/genética , Talina/química , Talina/metabolismo , Vinculina/genética , Vinculina/química , Vinculina/metabolismo
4.
J Cell Sci ; 132(2)2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30578314

RESUMEN

Extracellular matrix (ECM) stiffness regulates various cell behaviors, including cell differentiation, proliferation and migration. Vinculin and vinexin α (an isoform encoded by the SORBS3 gene), both of which localize to focal adhesions, cooperatively function as mechanosensors of ECM stiffness. On a rigid ECM, vinexin α interacts with vinculin and induces a conformational change in vinculin to give an 'open' form, which promotes nuclear localization of Yes-associated protein (YAP, also known as YAP1) and transcriptional coactivator with a PDZ-binding motif (TAZ, also known as WWTR1) (hereafter YAP/TAZ). However, the detailed mechanism by which vinexin α induces the conformational change in vinculin has not been revealed. Here, we identify an amphipathic helix named H2 as a novel vinculin-binding site in vinexin α. The H2 helix interacts with the vinculin D1b subdomain and promotes the formation of a talin-vinculin-vinexin α ternary complex. Mutations in the H2 region not only impair the ability of vinexin α to induce the ECM stiffness-dependent conformational change in vinculin but also to promote nuclear localization of YAP/TAZ on rigid ECM. Taken together, these results demonstrate that the H2 helix in vinexin α plays a critical role in ECM stiffness-dependent regulation of vinculin and cell behaviors.


Asunto(s)
Matriz Extracelular/metabolismo , Proteínas Musculares/metabolismo , Vinculina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Matriz Extracelular/química , Matriz Extracelular/genética , Ratones , Proteínas Musculares/química , Proteínas Musculares/genética , Estructura Secundaria de Proteína , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo , Vinculina/química , Vinculina/genética , Proteínas Señalizadoras YAP
5.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440717

RESUMEN

Vinculin and its heart-specific splice variant metavinculin are key regulators of cell adhesion processes. These membrane-bound cytoskeletal proteins regulate the cell shape by binding to several other proteins at cell-cell and cell-matrix junctions. Vinculin and metavinculin link integrin adhesion molecules to the filamentous actin network. Loss of both proteins prevents cell adhesion and cell spreading and reduces the formation of stress fibers, focal adhesions, or lamellipodia extensions. The binding of talin at cell-matrix junctions or of α-catenin at cell-cell junctions activates vinculin and metavinculin by releasing their autoinhibitory head-tail interaction. Once activated, vinculin and metavinculin bind F-actin via their five-helix bundle tail domains. Unlike vinculin, metavinculin has a 68-amino-acid insertion before the second α-helix of this five-helix F-actin-binding domain. Here, we present the full-length cryogenic electron microscopy structure of metavinculin that captures the dynamics of its individual domains and unveiled a hallmark structural feature, namely a kinked isoform-specific α-helix in its F-actin-binding domain. Our identified conformational landscape of metavinculin suggests a structural priming mechanism that is consistent with the cell adhesion functions of metavinculin in response to mechanical and cellular cues. Our findings expand our understanding of metavinculin function in the heart with implications for the etiologies of cardiomyopathies.


Asunto(s)
Microscopía por Crioelectrón , Citoesqueleto/química , Dominios y Motivos de Interacción de Proteínas , Vinculina/química , Actinas/química , Actinas/metabolismo , Adhesión Celular , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografía por Rayos X , Citoesqueleto/metabolismo , Humanos , Modelos Moleculares , Péptidos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Vinculina/metabolismo
6.
Lab Invest ; 100(8): 1030-1041, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32238906

RESUMEN

Talin and vinculin, both actin-cytoskeleton-related proteins, have been documented to participate in establishing bacterial infections, respectively, as the adapter protein to mediate cytoskeleton-driven dynamics of the plasma membrane. However, little is known regarding the potential role of the talin-vinculin complex during spotted fever group rickettsial and Ebola virus infections, two dreadful infectious diseases in humans. Many functional properties of proteins are determined by their participation in protein-protein complexes, in a temporal and/or spatial manner. To resolve the limitation of application in using mouse primary antibodies on archival, multiple formalin-fixed mouse tissue samples, which were collected from experiments requiring high biocontainment, we developed a practical strategic proximity ligation assay (PLA) capable of employing one primary antibody raised in mouse to probe talin-vinculin spatial proximal complex in mouse tissue. We observed an increase of talin-vinculin spatial proximities in the livers of spotted fever Rickettsia australis or Ebola virus-infected mice when compared with mock mice. Furthermore, using EPAC1-knockout mice, we found that deletion of EPAC1 could suppress the formation of spatial proximal complex of talin-vinculin in rickettsial infections. In addition, we observed increased colocalization between spatial proximity of talin-vinculin and filamentous actin-specific phalloidin staining in single survival mouse from an ordinarily lethal dose of rickettsial or Ebola virus infection. These findings may help to delineate a fresh insight into the mechanisms underlying liver specific pathogenesis during infection with spotted fever rickettsia or Ebola virus in the mouse model.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Fiebre Hemorrágica Ebola/metabolismo , Hígado/metabolismo , Talina/metabolismo , Vinculina/metabolismo , Animales , Células Cultivadas , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Hígado/microbiología , Hígado/virología , Ratones Noqueados , Unión Proteica , Rickettsia/fisiología , Rickettsiosis Exantemáticas/metabolismo , Rickettsiosis Exantemáticas/microbiología , Talina/química , Vinculina/química
7.
J Cell Sci ; 131(6)2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29487179

RESUMEN

This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Cadherinas/metabolismo , Receptores ErbB/metabolismo , Integrinas/metabolismo , Uniones Intercelulares/metabolismo , Vinculina/química , Vinculina/metabolismo , Cadherinas/genética , Línea Celular Tumoral , Receptores ErbB/genética , Humanos , Integrinas/genética , Uniones Intercelulares/genética , Mecanotransducción Celular , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Vinculina/genética
8.
Genes Cells ; 23(5): 370-385, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29542234

RESUMEN

Mechanotransduction by α-catenin facilitates the force-dependent development of adherens junctions (AJs) by recruiting vinculin to reinforce actin anchoring of AJs. The α-catenin mechanotransducing action is facilitated by its force-sensing device region that autoinhibits the vinculin-binding site 1 (VBS1). Here, we report the high-resolution structure of the force-sensing device region of α-catenin, which shows the autoinhibited form comprised of helix bundles E, F and G. The cryptic VBS1 is embedded into helix bundle E stabilized by direct interactions with the autoinhibitory region forming helix bundles F and G. Our molecular dissection study showed that helix bundles F and G are stable in solution in each isolated form, whereas helix bundle E that contains VBS1 is unstable and intrinsically disordered in solution in the isolated form. We successfully identified key residues mediating the autoinhibition and produced mutated α-catenins that display variable force sensitivity and autoinhibition. Using these mutants, we demonstrate both in vitro and in vivo that, in the absence of this stabilization, the helix bundle containing VBS1 would adopt an unfolded form, thus exposing VBS for vinculin binding. We provide evidence for importance of mechanotransduction with the intrinsic force sensitivity for vinculin recruitment to adherens junctions of epithelial cell sheets with mutated α-catenins.


Asunto(s)
Actinas/metabolismo , Uniones Adherentes/fisiología , Mecanotransducción Celular , Vinculina/metabolismo , alfa Catenina/química , alfa Catenina/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Vinculina/química , Vinculina/genética , alfa Catenina/genética
9.
Proc Natl Acad Sci U S A ; 113(34): 9539-44, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27503891

RESUMEN

The main cause of death globally remains debilitating heart conditions, such as dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), which are often due to mutations of specific components of adhesion complexes. Vinculin regulates these complexes and plays essential roles in intercalated discs that are necessary for muscle cell function and coordinated movement and in the development and function of the heart. Humans bearing familial or sporadic mutations in vinculin suffer from chronic, progressively debilitating DCM that ultimately leads to cardiac failure and death, whereas autosomal dominant mutations in vinculin can also provoke HCM, causing acute cardiac failure. The DCM/HCM-associated mutants of vinculin occur in the 68-residue insert unique to the muscle-specific, alternatively spliced isoform of vinculin, termed metavinculin (MV). Contrary to studies that suggested that phosphoinositol-4,5-bisphosphate (PIP2) only induces vinculin homodimers, which are asymmetric, we show that phospholipid binding results in a domain-swapped symmetric MV dimer via a quasi-equivalent interface compared with vinculin involving R975. Although one of the two PIP2 binding sites is preserved, the symmetric MV dimer that bridges two PIP2 molecules differs from the asymmetric vinculin dimer that bridges only one PIP2 Unlike vinculin, wild-type MV and the DCM/HCM-associated R975W mutant bind PIP2 in their inactive conformations, and R975W MV fails to dimerize. Mutating selective vinculin residues to their corresponding MV residues, or vice versa, switches the isoform's dimeric constellation and lipid binding site. Collectively, our data suggest that MV homodimerization modulates microfilament attachment at muscular adhesion sites and furthers our understanding of MV-mediated cardiac remodeling.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/química , Vinculina/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Modelos Moleculares , Mutación , Fosfatidilinositol 4,5-Difosfato/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica , Vinculina/genética , Vinculina/metabolismo
10.
J Biol Chem ; 292(17): 7077-7086, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28298447

RESUMEN

Intercellular epithelial junctions formed by classical cadherins, ß-catenin, and the actin-binding protein α-catenin link the actin cytoskeletons of adjacent cells into a structural continuum. These assemblies transmit forces through the tissue and respond to intracellular and extracellular signals. However, the mechanisms of junctional assembly and regulation are poorly understood. Studies of cadherin-catenin assembly in a number of metazoans have revealed both similarities and unexpected differences in the biochemical properties of the cadherin·catenin complex that likely reflect the developmental and environmental requirements of different tissues and organisms. Here, we report the structural and biochemical characterization of HMP-1, the Caenorhabditis elegans α-catenin homolog, and compare it with mammalian α-catenin. HMP-1 shares overall similarity in structure and actin-binding properties, but displayed differences in conformational flexibility and allosteric regulation from mammalian α-catenin. HMP-1 bound filamentous actin with an affinity in the single micromolar range, even when complexed with the ß-catenin homolog HMP-2 or when present in a complex of HMP-2 and the cadherin homolog HMR-1, indicating that HMP-1 binding to F-actin is not allosterically regulated by the HMP-2·HMR-1 complex. The middle (i.e. M) domain of HMP-1 appeared to be less conformationally flexible than mammalian α-catenin, which may underlie the dampened effect of HMP-2 binding on HMP-1 actin-binding activity compared with that of the mammalian homolog. In conclusion, our data indicate that HMP-1 constitutively binds ß-catenin and F-actin, and although the overall structure and function of HMP-1 and related α-catenins are similar, the vertebrate proteins appear to be under more complex conformational regulation.


Asunto(s)
Actinas/química , Cadherinas/química , Proteínas de Caenorhabditis elegans/química , Proteínas del Citoesqueleto/química , alfa Catenina/química , beta Catenina/química , Sitio Alostérico , Animales , Caenorhabditis elegans , Adhesión Celular , Cristalografía por Rayos X , Glutatión Transferasa/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Conejos , Relación Estructura-Actividad , Vinculina/química
11.
J Cell Sci ; 129(23): 4354-4365, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27737911

RESUMEN

Vinculin is a highly conserved protein involved in cell adhesion and mechanotransduction, and both gain and loss of its activity causes defective cell behaviour. Here, we examine how altering vinculin activity perturbs integrin function within the context of Drosophila development. Whereas loss of vinculin produced relatively minor phenotypes, gain of vinculin activity, through a loss of head-tail autoinhibition, caused lethality. The minimal domain capable of inducing lethality is the talin-binding D1 domain, and this appears to require talin-binding activity, as lethality was suppressed by competition with single vinculin-binding sites from talin. Activated Drosophila vinculin triggered the formation of cytoplasmic adhesion complexes through the rod of talin, but independently of integrin. These complexes contain a subset of adhesion proteins but no longer link the membrane to actin. The negative effects of hyperactive vinculin were segregated into morphogenetic defects caused by its whole head domain and lethality caused by its D1 domain. These findings demonstrate the crucial importance of the tight control of the activity of vinculin.


Asunto(s)
Drosophila melanogaster/metabolismo , Integrinas/metabolismo , Vinculina/metabolismo , Animales , Adhesión Celular , Citoplasma/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Modelos Biológicos , Músculos/embriología , Músculos/metabolismo , Agregado de Proteínas , Unión Proteica , Dominios Proteicos , Vinculina/química
12.
Cell Biol Int ; 42(8): 1076-1078, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29696730

RESUMEN

The focal adhesion protein vinculin has been implicated in associating with soluble and membranous phospholipids. Detailed investigations over the past ten years describe the intermolecular interactions of the vinculin tail domain with soluble and membrane phospholipids. Previous studies have implied that the tail's unstructured C-terminal region affects the mechanical behavior of cells and that the same region, at the molecular level, has bi-stable behavior sensitive to different protonation states. The aim of this short communication is to discuss whether the C-terminal vinculin tail (Vt) domain interacts favorably with membrane-embedded phospholipids such as PIP2 and that the region is also an anchor for lipid membranes.


Asunto(s)
Fosfolípidos/metabolismo , Vinculina/metabolismo , Animales , Dicroismo Circular , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolípidos/química , Unión Proteica , Dominios Proteicos , Vinculina/química
13.
Proc Natl Acad Sci U S A ; 112(14): 4352-6, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831507

RESUMEN

Fluorescence live imaging has become an essential methodology in modern cell biology. However, fluorescence requires excitation light, which can sometimes cause potential problems, such as autofluorescence, phototoxicity, and photobleaching. Furthermore, combined with recent optogenetic tools, the light illumination can trigger their unintended activation. Because luminescence imaging does not require excitation light, it is a good candidate as an alternative imaging modality to circumvent these problems. The application of luminescence imaging, however, has been limited by the two drawbacks of existing luminescent protein probes, such as luciferases: namely, low brightness and poor color variants. Here, we report the development of bright cyan and orange luminescent proteins by extending our previous development of the bright yellowish-green luminescent protein Nano-lantern. The color change and the enhancement of brightness were both achieved by bioluminescence resonance energy transfer (BRET) from enhanced Renilla luciferase to a fluorescent protein. The brightness of these cyan and orange Nano-lanterns was ∼20 times brighter than wild-type Renilla luciferase, which allowed us to perform multicolor live imaging of intracellular submicron structures. The rapid dynamics of endosomes and peroxisomes were visualized at around 1-s temporal resolution, and the slow dynamics of focal adhesions were continuously imaged for longer than a few hours without photobleaching or photodamage. In addition, we extended the application of these multicolor Nano-lanterns to simultaneous monitoring of multiple gene expression or Ca(2+) dynamics in different cellular compartments in a single cell.


Asunto(s)
Luciferasas/química , Luminiscencia , Proteínas Luminiscentes/química , Proteínas Recombinantes de Fusión/química , Animales , Calcio/metabolismo , Línea Celular , ADN/química , Perros , Células Madre Embrionarias/citología , Endosomas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Adhesiones Focales , Regulación de la Expresión Génica , Luciferasas de Renilla/metabolismo , Ratones , Datos de Secuencia Molecular , Oligonucleótidos/química , Peroxisomas/metabolismo , Regiones Promotoras Genéticas , Renilla , Vinculina/química
14.
Biophys J ; 113(8): 1697-1710, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045864

RESUMEN

Focal adhesions are dynamic constructs at the leading edge of migrating cells, linking them to the extracellular matrix and enabling force sensing and transmission. The lifecycle of a focal adhesion is a highly coordinated process involving spatial and temporal variations of protein composition, interaction, and cellular tension. The assembly of focal adhesions requires the recruitment and activation of vinculin. Vinculin is present in the cytoplasm in an autoinhibited conformation in which its tail is held pincerlike by its head domains, further stabilized by two high-affinity head-tail interfaces. Vinculin has binding sites for talin and F-actin, but effective binding requires vinculin activation to release its head-tail associations. In migrating cells, it has been shown that the locations of vinculin activation coincide with areas of high cellular tension, and that the highest recorded tensions across vinculin are associated with adhesion assembly. Here, we use a structure-based model to investigate vinculin activation by talin modulated by tensile force generated by transient associations with F-actin. We show that vinculin activation may proceed from an intermediate state stabilized by partial talin-vinculin association. There is a low-force regime and a high-force regime where vinculin activation is dominated by two different pathways with distinct responses to force. Specifically, at zero or low forces, vinculin activation requires substantial destabilization of the main head-tail interface, which is rigid and undergoes very limited fluctuations, despite the other being relatively flexible. This pathway is not significantly affected by force; instead, higher forces favor an alternative pathway, which seeks to release the vinculin tail from its pincerlike head domains before destabilizing the head-tail interfaces. This pathway has a force-sensitive activation barrier and is significantly accelerated by force. Experimental data of vinculin during various stages of the focal adhesion lifecycle are consistent with the proposed force-regulated activation pathway.


Asunto(s)
Adhesiones Focales/metabolismo , Vinculina/metabolismo , Actinas/química , Actinas/metabolismo , Fenómenos Biomecánicos , Simulación por Computador , Citoplasma/química , Citoplasma/metabolismo , Adhesiones Focales/química , Humanos , Cinética , Modelos Moleculares , Dominios Proteicos , Estabilidad Proteica , Estructura Secundaria de Proteína , Talina/química , Talina/metabolismo , Vinculina/química
15.
Hum Mutat ; 38(3): 289-296, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27957775

RESUMEN

Pleiotropy is the phenomenon by which the same gene can result in multiple phenotypes. Pleiotropic proteins are emerging as important contributors to rare and common disorders. Nevertheless, little is known on the mechanisms underlying pleiotropy and the characteristic of pleiotropic proteins. We analyzed disease-causing proteins reported in UniProt and observed that 12% are pleiotropic (variants in the same protein cause more than one disease). Pleiotropic proteins were enriched in deleterious and rare variants, but not in common variants. Pleiotropic proteins were more likely to be involved in the pathogenesis of neoplasms, neurological, and circulatory diseases and congenital malformations, whereas non-pleiotropic proteins in endocrine and metabolic disorders. Pleiotropic proteins were more essential and had a higher number of interacting partners compared with non-pleiotropic proteins. Significantly more pleiotropic than non-pleiotropic proteins contained at least one intrinsically long disordered region (P < 0.001). Deleterious variants occurring in structurally disordered regions were more commonly found in pleiotropic, rather than non-pleiotropic proteins. In conclusion, pleiotropic proteins are an important contributor to human disease. They represent a biologically different class of proteins compared with non-pleiotropic proteins and a better understanding of their characteristics and genetic variants can greatly aid in the interpretation of genetic studies and drug design.


Asunto(s)
Estudios de Asociación Genética , Pleiotropía Genética , Predisposición Genética a la Enfermedad , Biología Computacional , Bases de Datos Genéticas , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Oportunidad Relativa , Unión Proteica , Conformación Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Transducción de Señal , Relación Estructura-Actividad , Biología de Sistemas/métodos , Vinculina/química , Vinculina/genética , Vinculina/metabolismo
16.
Methods ; 94: 13-8, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26318089

RESUMEN

Mechanosensing of the micro-environments has been shown to be essential for cell survival, growth, differentiation and migration. The mechanosensing pathways are mediated by a set of mechanosensitive proteins located at focal adhesion and cell-cell adherens junctions as well as in the cytoskeleton network. Here we review the applications of magnetic tweezers on elucidating the molecular mechanisms of the mechanosensing proteins. The scope of this review includes the principles of the magnetic tweezers technology, theoretical analysis of force-dependent stability and interaction of mechanosensing proteins, and recent findings obtained using magnetic tweezers.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Mecanotransducción Celular , Moléculas de Adhesión Celular/química , Espectroscopía de Resonancia por Spin del Electrón , Matriz Extracelular/química , Matriz Extracelular/fisiología , Adhesiones Focales/química , Adhesiones Focales/fisiología , Fenómenos Magnéticos , Estabilidad Proteica , Talina/química , Talina/fisiología , Vinculina/química , Vinculina/fisiología , alfa Catenina/química , alfa Catenina/fisiología
17.
Biophys J ; 111(7): 1444-1453, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705767

RESUMEN

Phosphoinositols are an important class of phospholipids that are involved in a myriad of cellular processes, from cell signaling to motility and adhesion. Vinculin (Vn) is a major adaptor protein that regulates focal adhesions in conjunction with PIP2 in lipid membranes and other cytoskeletal components. The binding and unbinding transitions of Vn at the membrane interface are an important link to understanding the coordination of cell signaling and motility. Using different biophysical tools, including atomic force microscopy combined with confocal fluorescence microscopy and Fourier transform infrared spectroscopy, we studied the nanoscopic interactions of activated and autoinhibited states of Vn with lipid membranes. We hypothesize that a weak interaction occurs between Vn and lipid membranes, which leads to binding of autoinhibited Vn to supported lipid bilayers, and to unbinding in freestanding lipid vesicles. Likely driving forces may include tethering of the C-terminus to the lipid membrane, as well as hydrophobic helix-membrane interactions. Conversely, activated Vn binds strongly to membranes through specific interactions with clusters of PIP2 embedded in lipid membranes. Activated Vn harbored on PIP2 clusters may form small oligomeric interaction platforms for further interaction partners, which is necessary for the proper function of focal adhesion points.


Asunto(s)
Fosfolípidos/química , Liposomas Unilamelares/química , Vinculina/antagonistas & inhibidores , Vinculina/química , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Fluorescente , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier , Vinculina/metabolismo
18.
Biophys J ; 111(5): 1044-52, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27602732

RESUMEN

Mechanotransduction at E-cadherin junctions has been postulated to be mediated in part by a force-dependent conformational activation of α-catenin. Activation of α-catenin allows it to interact with vinculin in addition to F-actin, resulting in a strengthening of junctions. Here, using E-cadherin adhesions reconstituted on synthetic, nanopatterned membranes, we show that activation of α-catenin is dependent on E-cadherin clustering, and is sustained in the absence of mechanical force or association with F-actin or vinculin. Adhesions were formed by filopodia-mediated nucleation and micron-scale assembly of E-cadherin clusters, which could be distinguished as either peripheral or central assemblies depending on their relative location at the cell-bilayer adhesion. Whereas F-actin, vinculin, and phosphorylated myosin light chain associated only with the peripheral assemblies, activated α-catenin was present in both peripheral and central assemblies, and persisted in the central assemblies in the absence of actomyosin tension. Impeding filopodia-mediated nucleation and micron-scale assembly of E-cadherin adhesion complexes by confining the movement of bilayer-bound E-cadherin on nanopatterned substrates reduced the levels of activated α-catenin. Taken together, these results indicate that although the initial activation of α-catenin requires micron-scale clustering that may allow the development of mechanical forces, sustained force is not required for maintaining α-catenin in the active state.


Asunto(s)
Cadherinas/metabolismo , Adhesión Celular/fisiología , Mecanotransducción Celular/fisiología , alfa Catenina/metabolismo , Actinas/química , Actinas/metabolismo , Antígenos CD , Cadherinas/química , Cadherinas/genética , Adhesión Celular/efectos de los fármacos , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Mecanotransducción Celular/efectos de los fármacos , Microscopía Confocal , Microscopía Fluorescente , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/metabolismo , Estrés Mecánico , Vinculina/química , Vinculina/metabolismo , alfa Catenina/química , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/química , Quinasas Asociadas a rho/metabolismo
19.
J Biol Chem ; 290(18): 11403-16, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25759389

RESUMEN

Vasodilator-stimulated phosphoprotein (VASP) can catalyze actin polymerization by elongating actin filaments. The elongation mechanism involves VASP oligomerization and its binding to profilin, a G-actin chaperone. Actin polymerization is required for tension generation during the contraction of airway smooth muscle (ASM); however, the role of VASP in regulating actin dynamics in ASM is not known. We stimulated ASM cells and tissues with the contractile agonist acetylcholine (ACh) or the adenylyl cyclase activator, forskolin (FSK), a dilatory agent. ACh and FSK stimulated VASP Ser(157) phosphorylation by different kinases. Inhibition of VASP Ser(157) phosphorylation by expression of the mutant VASP S157A in ASM tissues suppressed VASP phosphorylation and membrane localization in response to ACh, and also inhibited contraction and actin polymerization. ACh but not FSK triggered the formation of VASP-VASP complexes as well as VASP-vinculin and VASP-profilin complexes at membrane sites. VASP-VASP complex formation and the interaction of VASP with vinculin and profilin were inhibited by expression of the inactive vinculin mutant, vinculin Y1065F, but VASP phosphorylation and membrane localization were unaffected. We conclude that VASP phosphorylation at Ser(157) mediates its localization at the membrane, but that VASP Ser(157) phosphorylation and membrane localization are not sufficient to activate its actin catalytic activity. The interaction of VASP with activated vinculin at membrane adhesion sites is a necessary prerequisite for VASP-mediated molecular processes necessary for actin polymerization. Our results show that VASP is a critical regulator of actin dynamics and tension generation during the contractile activation of ASM.


Asunto(s)
Actinas/química , Moléculas de Adhesión Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Contracción Muscular , Músculo Liso/fisiología , Fosfoproteínas/metabolismo , Multimerización de Proteína , Tráquea/fisiología , Vinculina/metabolismo , Acetilcolina/farmacología , Animales , Biocatálisis , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Pollos , Colforsina/farmacología , Perros , Epinefrina/farmacología , Humanos , Contracción Muscular/efectos de los fármacos , Músculo Liso/citología , Fosforilación/efectos de los fármacos , Profilinas/metabolismo , Estructura Cuaternaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Tirosina/metabolismo , Vinculina/química
20.
Cell Biol Int ; 40(3): 241-56, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26909547

RESUMEN

Cell-matrix adhesion and cell-cell contacts are essential for the metabolism, protein synthesis, survival, and cancer metastasis of cells. Major transmembrane receptors are the integrins, which are responsible for cell-matrix adhesions, and the cadherins, which are important for cell-cell adhesions. Adherent cells anchor via focal adhesion proteins to the extracellular matrix, whereas cell-cell contacts connect via focal adherens junction proteins. The temporal formation of these connections is greatly strengthened either through externally applied stresses on the cell or by myosin-driven cell contractility. The mechanism by which protein(s) within these connections sense, transmit, and respond to mechanochemical signaling is currently strongly debated and various candidates have been named. Vinculin has been described as one of the key players in cell-matrix and cell-cell adhesions that build a strong physical connection for transmitting forces between the cytoskeleton, the extracellular matrix, and cell-cell connections.


Asunto(s)
Mecanotransducción Celular/fisiología , Vinculina/metabolismo , Actinas/metabolismo , Uniones Adherentes/metabolismo , Adhesión Celular , Proteína Sustrato Asociada a CrK/metabolismo , Matriz Extracelular/metabolismo , Humanos , Integrinas/metabolismo , Unión Proteica , Vinculina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA